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Abstract Full-length cDNAs are essential for the correct

annotation of genomic sequences as well as for the func-

tional analysis of genes and their products. We have iso-

lated about 240,000 RIKEN Arabidopsis full-length

(RAFL) cDNA clones. These clones were clustered into

about 17,000 non-redundant cDNA groups, i.e., about 60%

of all Arabidopsis predicted genes. The sequence infor-

mation of the RAFL cDNAs is useful for promoter anal-

ysis, and for the correct annotation of predicted

transcriptional units and gene products. We prepared

cDNA microarrays containing independent full-length

cDNA groups and studied the expression profiles of genes

under various stress- and hormone-treatment conditions,

and in various mutants and transgenic plants. These

expression profiling studies have shown the expression

levels of many genes as a detailed snapshot describing the

state of a biological system in planta under various con-

ditions. We have applied RAFL cDNAs to the functional

analysis of proteins using the full-length cDNA over-

expressing (FOX) gene hunting system and the wheat germ

cell-free protein synthesis system. The RAFL cDNA col-

lection was also used for determination of the domain

structure of proteins by NMR. In this review, we summa-

rize the present state and perspectives of functional

genomics using RAFL cDNAs.

Keywords Arabidopsis thaliana � DNA microarray �
Environmental stress � Functional genomics � RAFL cDNA

Introduction

Arabidopsis thaliana has been adopted as a model organ-

ism in the study of plant biology because of its small size,

short generation time, and high efficiency of transformation

(Meinke et al. 1998). The whole genome sequence has

been determined by the Arabidopsis Genome Initiative

(AGI) (The Arabidopsis Genome Initiative 2000).

About 1,500,000 expressed sequence tags (ESTs) from

Arabidopsis have been deposited in the EST database

(dbEST) as of 5 January 2009, including sequences from

large-scale EST projects in France (Höfte et al. 1993;

Cooke et al. 1996), the Unites States (Newman et al. 1994;

White et al. 2000), and Japan (Asamizu et al. 2000). These

projects have produced EST data from different tissues,

organs, and developmental stages (Höfte et al. 1993;

Newman et al. 1994; Cooke et al. 1996; Asamizu et al.

2000; White et al. 2000). However, as of 1996, only about

50,000 Arabidopsis ESTs were registered (Höfte et al.

1993; Newman et al. 1994; Cooke et al. 1996) and most of

these EST projects were based on cDNA libraries in which
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most of the inserts are not full-length. ESTs are useful for

making a catalog of expressed genes, but not for further

study of gene function. Consequently, genome-scale col-

lections of the full-length cDNAs of expressed genes are

important for the analysis of the structure and function of

genes and their products in this era of functional genomics.

Since 1996, we have constructed Arabidopsis full-length

cDNA libraries from plants grown under different conditions

(Seki et al. 1998, 2002a) using the biotinylated CAP trapper

method exploiting trehalose-thermoactivated reverse trans-

criptase (Carninci et al. 1996, 1997, 1998) and about 240,000

RIKEN Arabidopsis full-length (RAFL) clones have been

isolated (Seki et al. 2002a; Sakurai et al. 2005). At present,

there are numerous Arabidopsis full-length cDNAs pro-

duced and deposited in the GenBank database by other

groups, such as Ceres (Haas et al. 2002), Genoscope (Castelli

et al. 2004), and others. Information on these full-length

cDNAs is available at http://www.arabidopsis.org/portals/

masc/ORFeomics_2008Report.pdf. Full-length cDNAs have

many advantages for improvement of genome annotation

and functional genomics in the post-sequencing era (Fig. 1)

(Seki et al. 2001a, 2002b, 2004a).

In this review, we summarize the present state and

perspectives of analyses using RAFL cDNAs, including their

collection and annotation, their application to expression

profiling, and the structural and functional analysis of plant

proteins.

Collection and sequencing of RAFL cDNAs

As reported previously, we have constructed Arabidopsis

full-length cDNA libraries from plants grown under vari-

ous stress, hormone and light conditions, from plants at

various developmental stages, and from various plant

tissues (Seki et al. 1998, 2002a) using the biotinylated CAP

trapper method with trehalose-thermoactivated reverse

transcriptase (Carninci et al. 1996, 1997, 1998). The

overall strategy for preparing cDNA libraries, including

standard, normalized, and subtracted libraries, has been

described (Seki et al. 2001b). We have isolated about

240,000 RAFL cDNA clones, clustered into about 17,000

non-redundant cDNA groups, representing about 60% of

all Arabidopsis predicted genes (Fig. 1; Seki et al. 2002a;

Sakurai et al. 2005). Note that all Arabidopsis full-length

cDNAs including the RAFL cDNAs are mapped on about

19,000 loci in the Arabidopsis genome.

Using the 50-end sequences of mRNAs, promoter

sequences can be obtained by comparison with Arabidopsis

genomic sequences. We obtained 50-ESTs of the RAFL

cDNA clones and constructed a promoter database (Seki

et al. 2002a; Sakurai et al. 2005) using the plant cis-acting

regulatory DNA elements (PLACE) database (Higo et al.

1999). The Arabidopsis promoter database thus constructed

contains information on genomic sequences 1,000-bp

upstream from the 50-terminus of each RAFL cDNA clone,

and cis-acting elements known from plants, and is available

as part of the RIKEN Arabidopsis Genome Encyclopedia

(RARGE) database (http://rarge.gsc.riken.go.jp/; Sakurai

et al. 2005). Several established plant promoter databases

are also available today, such as the Arabidopsis Gene

Regulatory Information Server (AGRIS, http://arabidopsis.

med.ohio-state.edu.; Davuluri et al. 2003). Yamamoto et al.

(2007) have applied local distribution of short sequences

(LDSS) analysis to extract promoter constituents by gen-

ome-wide statistical analysis, and have identified 1,000

octamer sequences as LDSS-positive promoter elements.

The information on core promoters thus extracted is

available at the plant promoter database (PPDB, http://

www.ppdb.gene.nagoya-u.ac.jp).

Fig. 1 Application of RIKEN

Arabidopsis thaliana full-length

(RAFL) cDNAs to plant

functional genomics
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Although many algorithms have been written to predict

a transcriptional unit (TU) from genomic sequence data,

the accuracy of such predictions is still limited. A more

direct and efficient approach to identify coding sequences

is to sequence full-length cDNAs (Fig. 1). We have been

determining the full-length sequences of the RAFL cDNA

clones in collaboration with the Arabidopsis SSP group in

the United States (Yamada et al. 2003), which comprises

the Salk Institute [principal investigator (PI): J. R. Ecker],

the Stanford Genome Technology Center (PI: R. W. Davis)

and the Plant Gene Expression Center (PI: A. Theologis),

and the Japanese group (K. Hanada et al., unpublished

results), which comprises the RIKEN BioResource Center

(BRC) (PI: M. Kobayashi), the National Institute of

Genetics (PI: Y. Kohara) and the Genome Core Technol-

ogy Facilities of RIKEN Genomic Sciences Center (GSC)

(PI: Y. Sakaki). The RAFL cDNA clones are publicly

available from the RIKEN BRC (http://www.brc.riken.

go.jp/lab/epd/Eng/).

Application of full-length cDNAs to genome sequence

annotation

Dramatic improvements in Arabidopsis genome sequence

annotation have been achieved by mapping of RAFL

cDNA sequences to the Arabidopsis genome (Seki et al.

2002a; Yamada et al. 2003).

Genome-wide analysis of alternative splicing events in

Arabidopsis found that more than 4,700 transcribed pre-

mature mRNAs were alternatively spliced (Iida et al.

2004; Wang and Brendel 2006). Iida et al. (2004) found

that the pattern of alternative splicing events was affected

by cold stress conditions. Recent full-length sequencing

analysis of 1,800 RAFL cDNAs that had 50- and/or

30- sequences previously found to have alternative

splicing events or alternative transcription start sites

revealed the presence of 601 novel alternatively spliced/

structure variant transcripts in Arabidopsis (Iida et al.

2009).

More than 1,000 overlapping sense-antisense (SAT)

pairs have been identified by a genome-wide search of

Arabidopsis cDNAs (Seki et al. 2004b; Jen et al. 2005;

Wang et al. 2005). Antisense RNAs have been believed to

control expression of sense transcripts negatively in plants

(Borsani et al. 2005). Recently, we identified about 8,000

SAT pairs via Arabidopsis tiling array analysis under abi-

otic stresses. Many non-protein coding transcripts were

found to belong to SAT transcripts, and the expression

ratios (treated/untreated) of sense transcripts and the ratios

of antisense transcripts showed a significant linear corre-

lation (Matsui et al. 2008). Antisense RNAs have been

shown to participate in a broad range of types of regulation,

such as gene silencing, RNA stability, RNA editing, RNA

masking, and methylation. Our recent tiling array analysis

also demonstrated that several non-protein-coding anti-

sense RNAs are suppressed by the nonsense-mediated

mRNA decay (NMD) pathway (Kurihara et al. 2009).

One significant class of genes missing from the existing

genome annotation is non-protein-coding RNAs. In addi-

tion to their role in protein synthesis (ribosomal and

transfer RNAs), non-protein-coding RNAs have been

implicated in control processes such as chromosomal

silencing, transcriptional regulation, developmental con-

trol, and responses to stress (MacIntosh et al. 2001).

Recently, we identified about 7,000 putative non-protein-

coding RNAs in unannotated intergenic regions using

an Arabidopsis Affymetrix tiling array (Matsui et al. 2008).

These include non-protein-coding RNAs present 50-upstream

and 30-downstream of AGI code genes. Interestingly, 27

promoter-associated short RNA (PASR)-like transcrip-

tional units (TUs) (Kapranov et al. 2007) and 27 termini-

associated short RNA (TASR)-like TUs (Kapranov et al.

2007), which are supported by full-length cDNAs, have

been identified in the tiling array analysis (Fig. 2b, d;

Matsui et al. 2008). Eight PASR-like TUs and ten TASR-

like TUs that are supported by full-length cDNAs show

ABA- or stress-responsive gene expression. Martianov

et al. (2007) demonstrated that a non-protein-coding tran-

script upstream of the human dihydrofolate reductase

(DHFR) gene has a critical function in transcriptional

repression of the DHFR gene. Several novel PASR-like

TUs in 50-upstream regions might act as negative regulators

of the downstream main TUs. Our tiling array analysis also

showed that the 50- and 30-end regions of the 67 and 34

AGI code genes (Fig. 2a, c; Matsui et al. 2008), respec-

tively, are shorter in a previous TAIR6 gene model than

the gene model of the AGI code genes detected by the

‘‘ARTADE’’ (Arabidopsis tiling array-based detection of

exons) program (Toyoda and Shinozaki 2005), as also

supported by full-length cDNAs. These results show that

the tiling array is also a useful tool for improvement of

genome sequence annotation.

RAFL cDNA microarray analysis

cDNA microarrays are a powerful tool for the systematic

analysis of expression profiles of large numbers of genes,

including stress-inducible gene expression and changes in

the expression profiles of mutants or transgenics (Seki et al.

2004a). One interesting type of application of microarray

analysis is the identification of novel cis-elements that

regulate the expression of genes in response to various

experimental treatments (Simpson et al. 2003). By identi-

fying subsets of the genes that have a common expression
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profile, it might be possible to identify conserved motifs in

promoter regions. For example, promoter databases have

been used for systematic analysis of cis-acting elements in

Arabidopsis (Fig. 1).

We prepared the following two types of cDNA micro-

array: (1) a 1.3 K RAFL cDNA microarray (Seki et al.

2001a) containing about 1,300 RAFL cDNA clones, and

(2) a 7K RAFL cDNA microarray (Seki et al. 2002b)

containing about 7,000 RAFL cDNA clones. Using these

cDNA microarrays, we have studied the expression profiles

of Arabidopsis genes under various stress conditions

(Fig. 1), such as drought, cold, and high-salinity-stresses

(Seki et al. 2001a, 2002b), and high light stress (Kimura

et al. 2003), as well as various treatment conditions, such

as abscisic acid (ABA) (Seki et al. 2002c), rehydration

treatment after dehydration (Oono et al. 2003), ethylene

(Narusaka et al. 2003), jasmonic acid (JA) (Narusaka et al.

2003), salicylic acid (SA) (Narusaka et al. 2003), reactive

oxygen species (ROS)-inducing compounds such as para-

quat and rose bengal (Narusaka et al. 2003), UV-C

(Narusaka et al. 2003), proline (Pro) (Satoh et al. 2002),

and inoculation with pathogen (Narusaka et al. 2003). We

have also studied expression profiles in various mutants

and transgenic plants (Fig. 1; Seki et al. 2001a; Osakabe et al.

2002; Abe et al. 2003; Dubouzet et al. 2003; Nanjo

et al. 2003; Chini et al. 2004; Kamei et al. 2005; Noutoshi

et al. 2005; Osakabe et al. 2005). Note that various types of

oligonucleotide DNA microarrays that are available from

Affymetrix (http://www.affymetrix.com/products_services/

index.affx#1_1) and Agilent Technologies (http://www.chem.

agilent.com/en-US/products/instruments/dnamicroarrays/

Pages/default.aspx) etc. have been widely used recently

instead of cDNA microarrays. This might be due to the fact

that oligonucleotide DNA microarrays are superior to

cDNA microarrays in terms of the number of genes that are

contained on each microarray, as well as easier manage-

ment of the microarray system. The oligonucleotide

microarrays have been prepared using sequence informa-

tion from the updated gene models of the Arabidopsis

genome. Expression profiling studies using these micro-

arrays have shown the expression levels of many genes as a

detailed snapshot describing the state of a biological sys-

tem in plants under certain conditions.

Identification of genes regulated by drought,

cold, high-salinity-stress or abscisic acid

Plant growth is affected greatly by environmental abiotic

stresses, such as drought, high salinity, and low tempera-

ture. Plants respond and adapt to these stresses in order to

survive. These stresses induce various biochemical and

physiological responses in plants. Several thousand genes

have been identified that respond to drought, high-salinity

or cold stress at the transcriptional level (Thomashow

1999; Hasegawa et al. 2000; Seki et al. 2002b; Zhu 2002;

Matsui et al. 2008). It is important to study the function of

stress-inducible genes not only to understand the molecular

Fig. 2 New gene models supported by full-length cDNAs and tiling

array analysis. a, c Arabidopsis genome initiative (AGI) code genes

whose 50-end- (a) or 30-end- (c) regions are short in the TAIR 6 gene

model. b Promoter-associated short RNA (PASR)-like transcriptional

units (TUs). The full-length cDNA sequences support the non-AGI

TUs mapped on the promoter region of the AGI code genes.

d Termini-associated short RNA (TASR)-like TUs. The full-length

cDNA sequences support the non-AGI TUs mapped around the

30-termini of the AGI code genes. The lower panels represent

examples of the tiling array expression data supporting the new gene

models (Matsui et al. 2008; http://omicspace.riken.jp/gps/group/psca1)
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mechanisms of stress tolerance and responses in plants but

also to improve stress tolerance by genetic engineering.

Stress-inducible genes have been used to improve the stress

tolerance of plants by gene transfer (Thomashow 1999;

Hasegawa et al. 2000; Shinozaki and Yamaguchi-Shino-

zaki 2000).

Several years ago, we prepared a full-length cDNA

microarray (7K RAFL cDNA microarray) containing ca.

7,000 independent Arabidopsis full-length cDNA groups

(Seki et al. 2002b), and applied the 7K RAFL cDNA

microarray to identify new drought-, cold-, high-salinity-

or abscisic acid (ABA)-inducible genes. We identified 299

drought-inducible genes, 54 cold-inducible genes, 213

high-salinity-stress-inducible genes and 245 ABA-induc-

ible genes (Seki et al. 2002b, c). Venn diagram analysis

indicated the existence of significant crosstalk between

drought and high-salinity stress signaling processes (Seki

et al. 2002b). Many ABA-inducible genes are induced after

drought- and high-salinity-stress treatments, which indi-

cates the existence of significant crosstalk between drought

and ABA responses (Seki et al. 2002c). These results

indicate the presence of strong overlaps of gene expression

in response to drought, high-salinity, and ABA (Shinozaki

and Yamaguchi-Shinozaki 2000), and partial overlap of

gene expression in response to cold and osmotic stress.

The products of the drought-, high-salinity- or cold-

stress-inducible gene products can be classified into two

groups (Fig. 3; Shinozaki and Yamaguchi-Shinozaki 2000;

Seki et al. 2002b). The first group includes functional

proteins, or proteins that probably function in stress toler-

ance. They are late-embryogenesis abundant (LEA) pro-

teins, heat shock proteins, KIN (cold-inducible) proteins,

osmoprotectant-biosynthesis-related proteins, carbohydrate-

metabolism-related proteins, water channel proteins, sugar

transporters, potassium transporters, detoxification

enzymes, proteases, senescence-related proteins, protease

inhibitors, ferritin, and lipid transfer proteins (Seki et al.

2002b).

The second group contains regulatory proteins, that is,

protein factors involved in further regulation of signal

transduction and gene expression that probably function in

the response to stress (Shinozaki and Yamaguchi-Shino-

zaki 2000; Seki et al. 2002b, c). These include various

transcription factors, protein kinases, protein phosphatases,

enzymes involved in phospholipid metabolism, and other

signaling molecules such as calmodulin-binding protein

(Seki et al. 2002b, c). We identified many stress-inducible

transcription factor (TF) genes, such as dehydration-

responsive element (DRE)-binding protein (DREB), eth-

ylene-responsive element binding factor (ERF), zinc finger,

WRKY, MYB, basic helix-loop-helix (bHLH), bZIP, NAC

and homeodomain-leucine zipper (HD-ZIP) TF genes,

suggesting that various transcriptional regulatory mecha-

nisms function in the drought-, cold- or high-salinity-stress

signal transduction pathways (Seki et al. 2002b, c). These

transcription factors probably regulate various stress-

inducible genes cooperatively or separately.

Identification of candidate genes regulated

by stress-inducible transcription factors

Transcriptional activation of some stress-responsive genes,

such as the RD29A/COR78/LTI78 gene (responsive to

dehydration/cold-regulated/low-temperature-induced) is well

understood. The promoter of this gene contains both an

ABRE (abscisic acid-responsive element) and a DRE/CRT

(dehydration responsive element/C-repeat) (Yamaguchi-

Shinozaki and Shinozaki 2005, 2006). ABRE and DRE/CRT

are cis-acting elements that function in ABA-dependent and

ABA-independent gene expression in response to stress,

respectively. Transcription factors belonging to the ERF/

AP2 (ethylene-responsive element binding factor/apetala 2)

family that bind to DRE/CRT were isolated and termed

DREB1/CBF (DRE-binding protein 1/C-repeat-binding

factor) and DREB2 (Yamaguchi-Shinozaki and Shinozaki

Fig. 3 Drought-, cold- and

high-salinity-stress-inducible

genes and their possible

functions in stress tolerance and

response
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2005, 2006). Their conserved DNA-binding motif is

A/GCCGAC. The DREB1/CBF genes are rapidly and tran-

siently induced in response to cold stress, and these tran-

scription factors in turn activate the expression of target

genes.

Overexpression of the DREB1A/CBF3 cDNA under the

control of the cauliflower mosaic virus (CaMV) 35S pro-

moter or the stress-inducible rd29A promoter in transgenic

plants gave rise to strong constitutive expression of stress-

inducible DREB1A target genes, and increased tolerance to

freezing and drought stresses (Jaglo-Ottosen et al. 1998; Liu

et al. 1998; Kasuga et al. 1999). Kasuga et al. (1999) iden-

tified six DREB1A target genes. However, it remains poorly

understood how overexpression of the DREB1A cDNA in

transgenic plants increases stress tolerance to freezing and

drought stresses. We applied the RAFL cDNA microarrays

to identify new target genes of DREB1A (Seki et al. 2001a;

Maruyama et al. 2004) and identified more than 40 DREB1A

target genes. The downstream target genes include C2H2

zinc-finger-type- and ERF/AP2-type-TFs, RNA-binding

proteins, sugar transport proteins, LEA proteins, KIN

proteins, RFO (raffinose family oligosaccharides)-biosyn-

thesis-related proteins, and protease inhibitors. Conserved

sequences in the promoter regions of the DREB1A/CBF3

target genes were searched, and A/GCCGACNT was found

in their promoter regions between -51 and -450 as a con-

sensus DRE (Maruyama et al. 2004). These results showed

that the DNA microarray is a useful system with which to

identify target genes of stress-related transcription factors

and potential cis-acting DNA elements by combining

expression data with genomic sequence data.

We have also applied the RAFL cDNA microarray to

identify the target genes of the following stress-related

transcription factors: ERF/AP2 TF family, e.g., DREB2A

(Sakuma et al. 2006); bZIP TF family, e.g., AREB1 (Fujita

et al. 2005); MYB TF family, e.g., AtMYB2 (Abe et al.

2003); bHLH TF family, e.g., AtMYC2 (Abe et al. 2003);

NAC TF family, e.g., RD26/ANAC072 (Fujita et al. 2004;

Tran et al. 2004), ANAC019 (Tran et al. 2004) and

ANAC055 (Tran et al. 2004). The roles of TFs in the

abiotic stress signaling and the expression profiling results

are summarized in recent reviews (Bartels and Sunkar

2005; Seki et al. 2005; Yamaguchi-Shinozaki and Shino-

zaki 2005, 2006). Information on the target genes is useful

for understanding the transcriptional regulatory networks

involved in cellular responses to abiotic stresses.

Transcriptome analysis in the recovery process

following stress

Analysis of genes involved in the recovery from stress as

well as stress-inducible genes is also important, not only

for the understanding of the molecular responses to abiotic

stresses but also for improving the stress tolerance of crops

by gene manipulation. Oono et al. (2003) applied the

analysis of the 7K RAFL cDNA microarray to the identi-

fication of genes that are induced during the rehydration

process after dehydration stress treatment, and identified

152 rehydration-inducible genes. These genes can be

classified into the following three major groups: (1) regu-

latory proteins involved in further regulation of signal

transduction and gene expression, (2) functional proteins

involved in the recovery process after dehydration-induced

damage, and (3) functional proteins involved in plant

growth (Oono et al. 2003). Venn diagram analysis also

showed that among the rehydration-inducible genes, at

least two gene groups existed, i.e., genes functioning in

adjustment of cellular osmotic conditions and those func-

tioning in the repair of drought-stress-induced damage, and

that most of the rehydration-downregulated genes are

dehydration-inducible (Oono et al. 2003).

Oono et al. (2006) analyzed the gene expression profiles

in the process of cold acclimation and deacclimation

(recovery from cold stress) using two microarray systems:

the 7K RAFL cDNA microarray and the Agilent 22K oli-

gonucleotide array. Both microarray analyses identified

292 genes up-regulated and 320 genes down-regulated

during deacclimation, and 445 cold up-regulated genes and

341 cold down-regulated genes during cold acclimation.

Many genes up-regulated during deacclimation were found

to be down-regulated during cold acclimation, and vice

versa.

Application of RAFL cDNAs to functional analysis

of proteins

Endo’s group at Ehime University has established an effi-

cient wheat germ cell-free protein synthesis system to

produce milligram quantities of proteins (Madin et al.

2000; Sawasaki et al. 2002). We have applied the wheat

germ cell-free protein synthesis system using the RAFL

cDNAs to study the functional characteristics of Arabid-

opsis proteins (Fig. 1). Sawasaki et al. (2004) used about

400 RAFL cDNAs encoding protein kinases for protein

synthesis using the wheat germ system. The assay revealed

about 200 products with autophosphorylation activity.

Seven proteins out of 26 calcium-dependent protein kina-

ses phosphorylated a synthetic peptide substrate in the

presence of calcium ions, demonstrating that the translation

products retained their substrate specificity. Recently, we

also demonstrated that the wheat germ system is useful for

studying the biochemical characteristics of TFs (T. Sawasaki

et al. unpublished results) and proteins involved in ubiquiti-

nation (Takahashi et al. 2009).
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We also applied the RAFL cDNAs to a gain-of-function

gene hunting technique—full-length cDNA over-express-

ing (FOX) gene hunting system (Ichikawa et al. 2006;

Fig. 1)—that involves the random overexpression of a

normalized full-length cDNA library. Ichikawa et al.

(2006) introduced about 10,000 independent RAFL cDNAs

under the control of the CaMV 35S promoter into

Arabidopsis, and found about 1,500 possible morphologi-

cal mutants with various phenotypes, e.g., pale green,

dwarf, and bushy phenotypes, from about 15,000 trans-

formants. Fujita et al. (2007) focused on stress-inducible

TFs; the full-length cDNAs of 43 stress-inducible TFs were

mixed to create the FOX lines. After screening for salt-

stress-resistant lines, a number of salt-tolerant lines were

found to harbor a bZIP-type transcription factor (AtbZIP60)

involved in the endoplasmic reticulum stress response.

Full-length rice cDNAs have been introduced into Ara-

bidopsis (Kondou et al. 2009) and rice (Nakamura et al.

2007) plants using the FOX system, and many FOX lines

showing altered growth or morphological characteristics,

such as super-dwarf mutants, have been obtained. These

results demonstrate that the FOX system is useful method

to screen for genes with valuable functions. Ogawa et al.

(2008) introduced 96 metabolism-related RAFL cDNAs

into Arabidopsis suspension-cultured T87 cells by Agro-

bacterium-mediated transformation to study the plant

metabolome.

ORFeome clones, that is, cDNA clones containing full-

length open reading frames (ORFs) are a valuable research

tool for functional proteomics. In collaboration with the

Arabidopsis SSP group in the United States (Yamada et al.

2003), we used the RAFL cDNAs to construct the U (pUNI)

clone, an Arabidopsis ORFeome clone. We have constructed

about 10,500 U clones and determined full-length sequences

of the intact ORF regions for confirmation of error-free

ORFeome clones. The U clones are publicly available from

the Arabidopsis Biological Resource Center (ABRC;

http://www.biosci.ohio-state.edu/*plantbio/Facilities/abrc/

abrchome.htm). Several groups, such as the Yale group

(Gong et al. 2004), also have constructed various Arabid-

opsis ORFeome clones. Information on ORFeome clones

is available at http://www.arabidopsis.org/portals/masc/

ORFeomics_2008Report.pdf.

Application of RAFL cDNAs to structural analysis

of proteins

Full-length cDNAs are useful resources for determining the

three-dimensional structures of proteins by X-ray crystal-

lography and NMR spectroscopy (Seki et al. 2001b)

(Fig. 1). We have determined the three-dimensional

structures of plant proteins using Arabidopsis full-length

cDNAs by NMR spectroscopy in the RIKEN Structural

Genomics Initiative (Yokoyama et al. 2000), using cell-

free protein synthesis systems for protein expression. Cell-

free in vitro systems have three advantages over conven-

tional in vivo expression systems: (1) cell-free systems are

suitable for automated, high-throughput expression, as

proteins can be produced without the need for cloning

genes into expression vectors; (2) milligram quantities of

proteins can be obtained in several hours; and (3) proteins

that are difficult to express in vivo can be produced in vitro.

We have applied this system to plant protein expression

and determined the domain structure of 29 proteins con-

taining plant-specific-type TFs, such as the DNA-binding

domain of squamosa promoter-binding protein (Yamasaki

et al. 2004b, 2006), the B3 DNA-binding domain of the

cold-responsive transcription factor RAV1 (RAV for rela-

ted to ABI3/VP1) (Yamasaki et al. 2004a), the C-terminal

WRKY domain of the WRKY4 protein (Yamasaki et al.

2005a), and the DNA-binding domain of an ethylene-

insensitive 3 (EIN3) protein, EIL3 (Yamasaki et al. 2005b).

Determination of the three-dimensional structure of the

DNA-binding domains of stress-inducible TFs might be

applied to alter the target genes for improvement of stress

tolerance.

Conclusions and future perspectives

We have demonstrated that full-length cDNAs are an

important resource for improvement of genome sequence

annotation, expression profiling studies, and functional and

structural analysis of plant proteins in the post-sequencing

era. The RAFL cDNA clones are publicly available from

the RIKEN BRC, and the BRC has distributed about

24,000 RAFL cDNAs to more than 500 labs as of 22

October 2008. The RAFL cDNAs are a standard resource

in the Arabidopsis research community.

Once all the Arabidopsis full-length cDNAs are func-

tionally annotated, the database will be the Rosetta Stone

for understanding the network of gene functions in higher

plants (Appels et al. 2003; Clarke et al. 2003). Information

gained from these full-length cDNAs can be applied to

other crops, such as rice (Kikuchi et al. 2003), wheat

(Ogihara et al. 2004), barley (Sato et al. 2009), soybean

(Umezawa et al. 2008), and cassava (Sakurai et al. 2007),

to trees, such as poplar (Nanjo et al. 2007), Cryptomeria

japonica (Futamura et al. 2008), and Sitka spruce (Ralph

et al. 2008), and to model plants, such as Physcomitrella

patens (Nishiyama et al. 2003) and Thellungiella halophia

(Taji et al. 2008). Full-length cDNAs will be used for

improvement of plants in the future.

Recently, the SABRE (systematic consolidation of

Arabidopsis and other botanical resource) database
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(http://saber.epd.brc.riken.jp/sabre/SABRE0101.cgi) has

been developed to provide organized information on plant

full-length cDNA resources that are available from RIKEN

BRC. The SABRE database will help researchers access

counterpart full-length cDNA resources in other plant

species for basic and applied science.

Complete genome sequences of various plant species,

such as rice (International Rice Genome Sequencing Pro-

ject 2005), poplar (Tuskan et al. 2006), grapevine (The

French-Italian Public Consortium for Grapevine Genome

Characterization 2007) and Physcomitrella (Rensing et al.

2008) have been determined. Recently, next generation

sequencers that are available from 454 Life Sciences

(http://www.454.com/; Margulies et al. 2005), Illumina

(http://www.illumina.com/) and Applied Biosystems

(http://www.appliedbiosystems.com/) have been applied to

whole-genome sequencing in various plant species, and to

the identification of whole-genome sequence variation in

1,001 natural strains of Arabidopsis (http://1001genomes.

org; Ossowski et al. 2008). Paired-end diTag (PET; Ruan

et al. 2007) analysis, a useful method to characterize both

ends of DNA fragments, using such next generation

sequencers, will be applied to the analysis of the full-length

cDNAs of many plant species and strains in the future, and

will contribute to the discovery of useful genes and our

understanding of natural variation and evolution in plants.
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