
REVIEW PAPER

Influence measures in nonparametric regression model
with symmetric random errors

Germán Ibacache-Pulgar1,5 · Cristian Villegas2 ·
Javier Linkolk López-Gonzales3 · Magaly Moraga4

Accepted: 15 May 2022 / Published online: 25 June 2022
© Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In this paper we present several diagnostic measures for the class of nonparametric
regression models with symmetric random errors, which includes all continuous and
symmetric distributions. In particular, we derive some diagnostic measures of global
influence such as residuals, leverage values, Cook’s distance and the influence
measure proposed by Peña (Technometrics 47(1):1–12, 2005) to measure the influ-
ence of an observation when it is influenced by the rest of the observations. A
simulation study to evaluate the effectiveness of the diagnostic measures is presented.
In addition, we develop the local influence measure to assess the sensitivity of the
maximum penalized likelihood estimator of smooth function. Finally, an example
with real data is given for illustration.
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1 Introduction

As was noted by some authors in nonparametric regression analysis, the estimation of
the nonparametric function is influenced when there are outlying observations. For
this reason, diagnostic analysis is a fundamental process in the statistical modelling
and have been largely investigated in the statistical literature. Some of the diagnostic
techniques frequently used are global influence (elimination of cases) and local
influence. The majority of the works have given emphasis in studying the effect of
eliminating observations on the results from the fitted model.

This approach has also been extended to nonparametric and semiparametric
models. For example, Eubank (1984, 1985) derives influence diagnostic measures
based on the leverage and residuals for spline regression. Silverman (1985) discusses
the application of residuals in spline regression. Eubank and Gunst (1986) derive
some influence diagnostic measures for penalized least-squares estimates from a
Bayesian perspective. Eubank and Thomas (1993) propose diagnostic tests and
graphics for assessing heteroscedasticity in spline regression. Kim (1996) discusses
the application of residuals, leverage and Cook-type distance for smoothing spline.
Wei (2004) presents some influence diagnostic and robustness measures for
smoothing spline. Kim et al. (2002) derive influence measures for the partial linear
models based on residuals and leverage for the estimates of the regression
coefficients and the nonparametric function suggested in Speckman (1988). Fung
et al. (2002) studied influence diagnostics for normal semiparametric mixed models
with longitudinal data. They consider single influential case or subject for the
maximum penalized likelihood estimates suggested in Zhang et al. (1998). Peña
(2005) defined for normal regression model a new way to measure the influence of an
observation based on how this observation is being influenced by the rest of the data
and Türkan and Toktamis (2013) extended these diagnostic measure for semipara-
metric regression model. Vanegas and Paula (2016) studied the log-symmetric
regression models. In this context, the mean and skewness were modeled through
nonparametric functions based on P-splines and cubic spline considering an arbitrary
number of knots. In addition, they developed some diagnostic measures which were
computerized in R-project. The main idea of the local influence technique, introduced
by Cook (1986), is to evaluate the sensitivity of the parameters estimators when small
perturbations are introduced in the assumptions of the model or in the data (for
example, in the response or explanatory variables). This method has the advantage,
with respect to elimination of cases, that it is not necessary to calculate the estimates
of the parameters for each case excluded. Some of the works related to the technique
of local influence are the following. Thomas (1991) developed local influence
diagnostics for the smoothing parameter under nonparametric regression model.
Ibacache-Pulgar et al. (2012, 2013) derived the local influence curvature for elliptical
semiparamteric mixed and symmetric semiparametric additive models, respectively.
Ferreira and Paula (2017) extended the local influence technique for different
perturbation schemes considering a skew-normal partially linear model and Emami
(2018) applied the local influence analysis to the Liu penalized least squares
estimators. Recently, Zhu et al. (2003) and Ibacache-Pulgar and Paula (2011) to
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provide local influence measures under different perturbation schemes in normal and
Student-t partially linear models, respectively. The aim of the work is to derive some
diagnostic measures such as global and local influence in nonparametric regression
model under symmetric random errors. Here, the nonparametric components is
estimated by incorporating a quadratic penalty function in the log-likelihood function
and whose solution leads to cubic spline functions. The work is presented as follows.
In Sect. 2, we introduce the nonparametric regression models under symmetric
random errors and a penalized log-likelihood function is proposed for the parameter
estimation. In Sect. 3, we propose some diagnostic measures based on the global
influence and we develop the local influence method for various perturbations
schemes. In Sect. 4, a set of real data is used to illustrate the methodologies proposed
in this paper. A simulation study to evaluate the effectiveness of the diagnostic
measures derived in this paper is presented in Sect. 5. The last section deals with
some concluding remarks.

2 Nonparametric regression model with symmetric random errors

In this section we present the nonparametric regression model under symmetrical
random errors and penalized likelihood function, which is often required for
maximizing the penalized likelihood function. The symmetric class (see, for instance,
Fang et al. (1990)) includes all symmetric continuous distributions such as normal,
Student-t, power exponential, logistics I and II, contaminated normal, among others.
The variety of error distributions with different kurtosis coefficients gives more
flexibility for modelling data sets from light- and heavy-tailed distributions.

2.1 The model

The nonparametric regression model is a powerful tool in statistical modelling due to
their flexibility to model explanatory variable effect that can contribute in the
nonparametric way, when there is no linear relationship between the variables. Such
models assume the following relationship between the response and the explanatory
variable values:

yi ¼ f ðtiÞ þ �i; i ¼ 1; . . .; n; ð1Þ
where yi denotes the ith response value at design point ti, f ð�Þ is an unknown smooth
function that belongs to the Sobolev function space W 2

2 ½a; b� ¼ ff : f 2 ½a; b�; f ; f ð1Þ
absolutely continuous and f ð2Þ 2 L2½a; b�g, where f ð2ÞðtÞ ¼ d2

dt2
f ðtÞ, and �i are inde-

pendent random errors such that �i follows a symmetric distribution with location
parameter 0, scale parameter /[ 0 and density function, given by

h�ið�Þ ¼
1ffiffiffiffi
/

p gð�2=/Þ; ð2Þ

where � 2 R and g : R ! ½0;1� is typically known as the density generator
function that satisfies

123

Influence measures in nonparametric regression model... 3



Z 1

0
gðuÞdu\1 with u ¼ ðy� lÞ2

/
:

Let now f ¼ ðn1; . . .; nrÞT a ðr � 1Þ vector such that nj ¼ f ðt0j Þ; with t0j ðj ¼ 1; . . .; rÞ
denoting the distinct and ordered values of the explanatory variable t called knots,
and N an ðn� rÞ incidence matrix whose (i, j)th element equals the indicator
function Iðti ¼ t0j Þ for j ¼ 1; . . .; r and i ¼ 1; . . .; n. Then, we may rewrite model (1)

as follows:

y ¼ Nf þ �; ð3Þ

where y is the ðn� 1Þ vector of response values and � ¼ �1; . . .; �nð ÞT is a ðn� 1Þ
vector of random errors.

2.2 The penalized log-likelihood function

From (2)we have that yi follows a symmetric distribution with location parameter li
and scale parameter / whose density function is given by

hyðyiÞ ¼
1ffiffiffiffi
/

p gðdiÞ;

where di ¼ /�1 yi � lið Þ2 and li ¼ nTi f , with nTi denoting the ith row of the inci-
dence matrix N. We have, when they exist, that EðyiÞ ¼ li ¼ nTi f and VarðyiÞ ¼ ./;
where .[ 0 is a constant that may be obtained from the derivative of the charac-
teristic function (see, for instance, Fang et al. (1990)). Then, the log-likelihood

function for h ¼ ðfT ;/ÞT is given by

LðhÞ ¼ � n

2
log/þ

Xn
i¼1

logfgðdiÞg; ð4Þ

where h 2 H � Rp� ; with p� ¼ r þ 1. A well known procedure for estimating f is
based on the idea of log-likelihood penalization and consists in incorporing a penalty
function in the log-likelihood function. Following, for instance, Green and Silverman
(1993), we will consider the penalty function given by

Jðf Þ ¼ � a
2

Z b

a
f ð2ÞðtÞ
h i2

dt ¼ � a
2
fTKf ;

where K 2 Rr�r is a positive-definite matrix that depends only on the knots t0j .

Therefore, the penalized log-likelihood function associated to h can be expressed as

Lpðh; aÞ ¼ LðhÞ � a
2
fTKf ; ð5Þ

where the smoothing parameter a controls the tradeoff between goodness of fit,
measured by large values of LðhÞ, and the smoothness estimated function, measured
by small values of J(f). It is important to note that large values of a generate smoother
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curves while smaller values produce more oscillating curves. In practice situations
the smoothing parameter should be selected from the data. When a smoothing spline
is used, for example, it is usual to consider the cross-validation method or the
generalized cross-validation method Craven and Wahba (1978). Alternatively, this
parameter may be selected by applying the Akaike information criterion (Akaike,
1973) or the Bayesian information criterion (Schwarz, 1978).

An alternative approach for estimating the smooth function is to use a set of base
functions which are more local in their effects compared to other methods such as
fourier expansion. For example, Eilers and Marx (1996) proposed P-splines, whose
penalty is direct on the coefficients, instead the curve, and is based on finite
differences of the coefficients of adjacent B-splines (Boor, 1978), allowing a good
discrete approximation to the integrated square of the dth derivative. Such penalties
are more flexible since it is independent of the degree of the polynomial used to
construct the B-splines. The study of other types of base can be found, for instance,
in Wood (2003).

2.3 Estimation process

Differenting the penalized log-likelihood function (5) with respect to h ¼ fT ;/
� �T

and equating the elements to zero, we have the following estimating equations:

1

/
NTDvðy� NfÞ � aKf ¼0

ð2/Þ�1 /�1ðy� NfÞTDvðy� NfÞ � n
n o

¼0;

with Dv ¼diag1� i� nðviÞ and vi ¼ �2fi; with fi ¼ d log gðdiÞ
ddi

. The quantity vi’s can be

interpreted as weights since g dið Þ is, for the majority of the symmetrical distributions,
a positive decreasing function. Exceptions are Kotz, generalized Kotz and double
exponential distributions. Consequently, the solution to estimating equations leads to
the following two-step iterative process:

Step 1 Denoted by hð0Þ and hðmþ1Þ the starting and current values of h, for
m ¼ 0; 1; . . . and a fixed. In this stage, f can be estimated by using the equation

f ðmþ1Þ ¼ NTDðmÞ
v Nþ a/ðmÞK

� ��1
NTDðmÞ

v y;

where DðmÞ
v ¼ diag1� i� n við ÞjhðmÞ

Step 2 Update / by using the following equation:

/ðmþ1Þ ¼ n�1 y� Nf ðmÞ
� �T

DðmÞ
v y� Nf ðmÞ
� �

:

Note that in first step of iterative process we maximize the penalized log-likelihood
function with regard f given / while in the second step we maximize the penalized
log-likelihood function with regard / given f . Thus, alternating between stages 1 and
2, this iterative process leads to the maximum penalized likelihood estimate (MPLE)
of h.
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2.4 Approximate standard errors

Analogously to the parametric regression model with normal random errors, the

approximate covariance matrix of bh is derived from the inverse of the expected
information matrix. In fact,

dCovapproxðbhÞ ¼ |�1
p

���bh ;
where the matrix |p is defined by (see, for instance, Ibacache-Pulgar et al. (2013))

|p ¼
NTDdNþ aK 0

0
n 4fg � 1
� �
4/2

0B@
1CA;

where Dd ¼ 4dg
/ I; with dg ¼ E f2g �2i

� �
�2i

� �
; fg ¼ E f2g �2i

� �
�4i

� �
, I denoting an ðn� nÞ

identity matrix and �i follows a symmetric distribution with location parameter 0,
scale parameter / and generator function g; see, for example, Ibacache-Pulgar and
Paula (2011). In particular, if we are interested in drawing inferences for f and /, the
approximate covariance matrices can be estimated by using the corresponding block-
diagonal matrices obtained from |�1

p , that is,

dCovapproxðbf Þ ¼ NTDdNþ aK
� ��1

���bh ð6Þ

and

dCovapproxðb/Þ ¼ 4/2

nð4fg � 1Þ
����bh :

An approximate pointwise standard error band (SEB) for f ð�Þ which allows us to

assess how accurate the estimator bf ð�Þ is at different locations within the range of

interest it is given by bf ðt0j Þ 	 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarapproxðbf ðt0j ÞÞq

, where dVarapproxðbf ðt0j ÞÞ denotes the
estimated approximate variance of bf ðt0j Þ; for j ¼ 1; . . .; r; obtained from Eq. (6).

3 Global and local influence measures

In this section, we propose some diagnostics measures such as: leverage,
standardized residuals, Cook’s distance, Peña measured and likelihood displacement
for detecting misspecifications of the error distribution as well as the presence of
outlying observations.
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3.1 Leverage

Considering that in the iterative process the weights vi’s are calculated based on
previous iteration, it is not possible to obtain an explicit expression for the smoother
matrix (hat matrix). However, for the final iteration, the estimates not depend on h

and therefore the hat matrix has the same role as the hat matrix in linear regression
that is detecting atypical observation for the predicted values of y. Considering a;/
and Dv fixed, the vector of predictions from the fitted model (3) is given by

by ¼ bl ¼ HðaÞy; ð7Þ

where HðaÞ ¼ N NTDvNþ a/K
� ��1

NTDv ¼ hijðaÞ
� 	n

i;j¼1
is called smoother or hat

matrix and byi ¼ bli ¼
Pn

j¼1 hijðaÞyj: The diagonal elements of the matrix defined as

hiiðaÞ ¼ nTi NTDvNþ a/K
� ��1

nivi

are called leverage values and indicate how much influence yi has on the fit of yi. In
general, the hat matrix HðaÞ is not a projection operator, except under normally
distributed random errors (see, for instance, Eubank 1984). However, for purposes of
diagnostic analysis, this matrix has the same role as the hat matrix in classical linear
regression. Then, considering that the hat matrix HðaÞ is not a projection operator,
we have that the conditional covariance matrix of the prediction vector is given by

CovapproxðblÞ ¼ ./HðaÞHT ðaÞ: ð8Þ
Note that Varapprox blið Þ ¼ ./h2iiðaÞ; for i ¼ 1; . . .; n:

3.2 Effective degrees of freedom and smoothing parameter

In the literature concerning nonparametric regression models there are different
definitions for the degrees of freedom, depending on the context in which they are
used. A natural candidate to measure the contribution of the nonparametric
component (see, for instance, Buja et al. 1989) is given by

df ðaÞ ¼ trfHðaÞg; ð9Þ
where HðaÞ is defined above. According to Eilers and Marx (1996), if we consider
QN ¼ NTDvN and Qa ¼ a/K, the trace of HðaÞ can be written as

tr
�
HðaÞ	 ¼tr

�ðQN þQaÞ�1QN

	
¼tr
�
Q1=2

N ðQN þQaÞ�1Q1=2
N

	
¼tr
�ðIðr�rÞ þQ�1=2

N QaQ
�1=2
N Þ�1	:

Consequently, this can be written as (see, for instance, Hastie and Tibshirani 1990)

123

Influence measures in nonparametric regression model... 7



tr
�
HðaÞ	 ¼tr

�ðIðr�rÞ þ Pðr�rÞÞ�1	
¼
Xr
j¼1

1

1þ a/‘j


2þ
Xr
j¼3

1

1þ a/‘j
;

ð10Þ

where ‘|, for | ¼ 1; . . .; r, are the eigenvalues of P ¼ Q�1=2
N QaQ

�1=2
N . The calculation

of df ðaÞ from Eq. (9) involves a matrix of order n, while the calculation from
expression (10) involves matrices of order r (r\n), which minimizes the compu-
tational cost. It is important to note that (i) df ðaÞ ¼ trfHðaÞg is a monotonically
decreasing function of a, given /; (ii) df ðaÞ ! 2þ r as a ! 0; (iii) df ðaÞ ! 2 as
a ! 1; (iv) 2� df ðaÞ� 2þ r; and (v) once we have obtained the eigenvalues ‘|’s,
the calculation of the degrees of freedom df ðaÞ, given / and a, is computationally
simple, and can be used to determine a value for the smoothing parameter given its
decreasing monotonic relationship.

3.3 Residual

As an extension for the nonparametric regression model with symmetric random
errors, we will consider the ordinary residual for checking the assumption of our
model. It follows from (7) that the vector of ordinary residuals is given by

e ¼ y� bl ¼ In �HðaÞð Þy;
where the ith residual is ei ¼ yi � bli, for i ¼ 1; . . .; n: From (8), follows that the
approximate variance of the ith ordinary residual is given by

Varapprox eið Þ ¼ ./ 1� hiiðaÞf g2:
Then, following Eubank (1985) and Silverman (1985), for / and a fixed, we can use
the standardized residuals,

r2i ¼
e2i

./ 1� hiiðaÞð Þ2

for assessing the quality of the fit to yi. Alternatively, one might consider the versions
of the studentized residuals given by

r2i ¼
e2i

.b/�
� �

1� hiiðaÞð Þ2
and t½i�

2 ¼ e2i

.b/�½i�
� �

1� hiiðaÞð Þ2
;

where b/� is the estimator of / defined as (see, for instance, Wahba 1983)
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b/� ¼ ðy� blÞTDvðy� blÞ
tr I�HðaÞf g ;

and b/�½i� is the estimator of / but without the ith observation (see, for instance,
Eubank 1984), this is,

b/�½i� ¼
Xn

j¼1;j6¼i

vj
ej þ vihjiðaÞei= 1� vihiiðaÞð Þ
 �2

n� 1� tr H½i�ðaÞ� 	
 � ;

with

tr H½i�ðaÞ
n o

¼
Xn

j¼1;j6¼i

hjjðaÞ þ vih
2
jiðaÞ= 1� vihiiðaÞð Þ

h i
:

Alternatively, we can consider the quantile residuals proposed by Dunn and Smyth
(1996) and which are defined as

rqi ¼ U�1fFYiðyi; hÞg;

where h ¼ ðfT ;/ÞT , Uð�Þ and FYiðyi; hÞ denote, respectively, the fda’s of the standard
normal distribution and the postulated symmetric distributions. Under the model one
has that rqi are independent and equally distributed N(0, 1), for i ¼ 1; . . .; n.

3.4 Cook’s distance

In ordinary linear regression models, Cook (1977) proposed measuring the influence
of a point by the squared norm of the vector of forecast changes. Analogously, Hastie
and Tibshirani (1990) defined a version of Cook’s distance for measuring the
influence of the ith observation on the fit of a nonparametric regression model. Based
on those works, we define Cook’s distance as follows:

Di ¼
bl � bl½i�
� �T

Cov�1
approxðblÞ bl � bl½i�

� �
trfHðaÞg ;

where bl½i� ¼ Nbf ½i� denote the cubic smoothing spline fit to the data when the ith
observation, ti; yið Þ, has been deleted, and by assuming that aK remains approxi-
mately constant removing the ith observation one has that

bf ½i� ¼ bf � NTDvNþ a/K
� ��1

niviei
1� hiiðaÞð Þ : ð11Þ

A more convenient way of writing Di follows from relation (see, for instance, Craven
and Wahba 1978),
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bli � bl½i�
i ¼ nTi bf � nTi bf ½i�
¼ nTi NTDvNþ a/K

� ��1
niviei

1� hiiðaÞð Þ

¼ hiiðaÞei
1� hiiðaÞ :

ð12Þ

Then, by using the Eqs. (11) and (12), we may write statistic Di as

Di ¼
bf � bf ½i�� �T

niCov
�1
approxðblÞnTi bf � bf ½i�� �

trfHðaÞg

¼ 1

trfHðaÞg
1

./h2iiðaÞ
h2iiðaÞe2i

1� hiiðaÞð Þ2

¼ 1

./trfHðaÞg
e2i

1� hiiðaÞð Þ2

¼ 1

trfHðaÞg r
2
i

Then, motivated by practices in ordinary regression analysis, influential obser-
vations are detected by large values of their Cook’s distance; this is, when Di [ 2 �D,
with �D ¼Pn

i¼1
Di
n . Note that under normality, this is vi ¼ 1 and Var yið Þ ¼ /hiiðaÞ,

the statistic Di agree with statistic proposed, for example, by Eubank (1985).

3.5 Peña measure

In the normal linear regression model, Peña (2005) proposed a statistic called S-
statistic, to measure sensitive in the forecast of the ith observation when each
observation is deleted. This type of influence analysis complements the traditional
one and is able to indicate features in the data, such as clusters of hight-leverage
outliers. In addition, this new statistics is very simple to compute and with an
intuitive interpretation, that can be a useful tool in regression analysis, mainly with
large datasets in high dimension. As an extension on nonparametric regression model
with symmetric random errors, such statistic can be defined analogously by

Si ¼ sik k2
trfHðaÞgVar�1

approxðbliÞ
;

where

si ¼ bli � bl½1�
i ; . . .; bli � bl½n�

i

� �T
Considering VarapproxðbliÞ ¼ ./h2iiðaÞ and by using the identity (see, for instance,
Eubank 1985)
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bli � bl½j�
i ¼ hijðaÞej

ð1� hjjðaÞÞ ;

we can write statistic Si as

Si ¼ sik k2
trfHðaÞg.b/h2iiðaÞ

¼ 1

.b/trfHðaÞgh2iiðaÞ
Xn
j¼1

h2ijðaÞe2j
1� hjjðaÞ
� �2

¼
Xn
j¼1

q2jiDj;

where qji ¼ hijðaÞ=hiiðaÞhjjðaÞ
� 	� 1 is the correlation between forecast bli � blj and

Dj ¼ 1
trfHðaÞg r

2
j . An alternative way of writing Si is given by

Si ¼ 1

.b/trfHðaÞg
Xn
j¼1

wjiðaÞe½j�
2

j ;

where e½j�j ¼ ej= 1� hjjðaÞ
� �

and wjiðaÞ ¼ h2ijðaÞ=h2iiðaÞ: In this case, the cutoff point

is considered as 4:5MADðSiÞ, where MADðSiÞ ¼ median Si �medðSÞj j, with medðSÞ
being the median of the Si values. A observation is considered heterogeneous if
jSi �medðSÞj � cutoff . The properties of the S-statistic are discussed in Peña (2005).

3.6 Likelihood displacement

Let Lpðh; aÞ the penalized log-likelihood function under nonparametric regression

model with symmetric random errors and h ¼ ðfT ;/ÞT . Following Cook (1986), we
define the penalized likelihood displacement as

LDiðh; aÞ ¼ 2
h
Lpðbh; aÞ � Lpðbh½i�; aÞi;

where bh½i� ¼ bf ½i�T ; b/½i�
� 
T

denotes the MPLE of h by dropping the ith observation,

Lpðbh; aÞ is the penalized log-likelihood function evaluated in h ¼ bh; and
Lp
�bh½i�; a� ¼ � n

2
log b/½i� þ

Xn
i¼1

log g bd½i�i� 
� 

� a
2
bf ½i�TKbf ½i�:

Then, we have that likelihood displacement may be expressed in the form
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LDiðh; aÞ ¼ n log
b/½i�b/

 !
þ 2

Xn
i¼1

log
g bdi� �
g bd½i�i� 


0BB@
1CCAþ a f ½i�

T

Kf ½i� � bf TKbf� �
:

In particular, under normal random errors we have that the likelihood displacement
may be expressed in the form

LDiðh; aÞ ¼ n log
n

n� 1

� � n� 1� p0ð Þ
r2i þ n� 1� p0ð Þ

� �
þðn� 1Þ 1� hiiðaÞð Þ�1r2i

n� 1� p0ð Þ
�1� atr eHðaÞ yyT � y�y�

T
� �n o

;

where p0 ¼ tr H½i�ðaÞ� 	
and ~HðaÞ ¼ HðaÞTKHðaÞ. According Green and Silverman

(1993) (Lemma 3.1) the vector bf ½i� satisfies equality bf ½i� ¼ HðaÞy�, where the vector
y� is defined by

y�j ¼yj for j 6¼ i

y�i ¼bf ½i�ðtiÞ:
Note that part of LDiðh; aÞ, due to the nonparametric regression model, coincides
with expression (5.2.9) given in Cook and Weisberg (1982) under normal linear
regression model.

3.7 Local influence measure

Let x ¼ x1; . . .;xnð ÞT be an ðn� 1Þ vector of perturbations restricted to some open
subset X 2 Rn and the logarithm of the perturbed penalized likelihood denoted by
Lpðh; ajxÞ: Suppose that there is a point x0 2 X that represents no perturbation of
the data so that Lp h; ajx0ð Þ ¼ Lpðh; aÞ: To assess the influence of minor perturba-

tions on bh; we consider the likelihood displacement LDðxÞ ¼
2 Lpðbh; aÞ � Lp bhx; a� �h i

� 0; where ĥx is the MPLE under LPðh; ajxÞ: The measure

LDðxÞ is useful for assessing the distance between bh and bhx. Cook (1986) suggested
studying the local behavior of LDðxÞ around x0: The procedure consists in selecting
a unit direction ‘ 2 Xðk‘k ¼ 1Þ; and then to consider the plot of LD x0 þ a‘ð Þ
against a; where a 2 R: This plot is called lifted line. Each lifted line can be
characterized by considering the normal curvature C‘ðhÞ around a ¼ 0: The
suggestion is to consider the direction ‘ ¼ ‘max corresponding to the largest
curvature C‘maxðhÞ: The index plot of ‘max may reveal those observations that under
small perturbations exercise notable influence on LDðxÞ: According to Cook (1986)

the normal curvature in the unitary direction ‘ is given by C‘ðhÞ ¼
�2 ‘TDT

pL
�1
p Dp‘

n o
; where Lp is the Hessian matrix and Dp is the perturbation

matrix. These matrices are defined in the appendix.
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4 Application and results

To illustrate the methodology described in this paper we consider the house price
data set that has been analyzed by various authors. The aim of the study is to assess
the association of the house prices with the air quality of the neighborhood by using
regression models. The response variable LMV (logarithm of the median house price
in USD 1000) is related with 14 explanatory variables. Altogether there are 506
observations. Here we only consider the explanatory variable LSTAT (% lower status
of the population) due to its non-linear relationship with the response variable; see
Fig. 1 .

Indeed, we consider the nonparametric regression model

yi ¼ f tið Þ þ �i; i ¼ 1; . . .; 506;

where yi denotes the logarithm value of the median house price in USD 1000 and ti
denotes the value of % lower status of the population. For comparative purposes, we
will assume that random errors �i follow a normal, Student-t and power exponential
distribution. The smoothing parameters associated with both models were selected
such that the effective degrees of freedom are close to 3. The degrees of freedom
m ¼ 5 and shape parameter (k ¼ 0:3) for the Student-t and power exponential
models, respectively, were obtained by applying the Akaike information criterion.
Table 1 shows a summary of the fit of models.

Comparing these results, we observe that the estimate b/ under the power
exponential model is lower (as is the standard error) with respect to the normal and
Student-t models, however these are not comparable with each other. In addition, we
may notice that the AIC value under the Student-t model is smaller compared to the
normal and power exponential models, indicating a superiority of the heavy-tailed
model, which is confirmed through the normal probability plots presented in Fig. 2a–

1.5

2.0

2.5

3.0

3.5

4.0

403020100

LSTAT

LM
V

Fig. 1 Scatter plot: LMV versus
LSTAT
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c. The estimated smooth function under three models and their corresponding
approximate standard error band are presented in Fig. 2d–f.

Figs. 3, 4 and 5 show some plots of residuals and global influence under normal,
Student- t and power exponential errors, respectively. Specifically, the index plots of
the residuals (left side of the first row), leverage values (right side of the first row)
and Cook’s distance (left side of the second row), the scatterplot Cook’s distance

Table 1 Maximum penalized likelihood estimates, estimated standard errors and AIC values under nor-
mal, Student-t (m ¼ 5) and power exponential (k ¼ 0:3) models fitted to house price data

Normal Student-t Power exponential

Estimate SE Estimate SE Estimate SE

/ 0.0542 0.0034 0.0356 0.0028 0.031 0.0022

AIC �34.8231 �50.5265 �45.4996
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Fig. 2 Scatter plots: a normal probability plot under normal errors, b normal probability plot under
Student-t errors, c normal probability plot under power exponential errors, d estimated smooth function
under normal errors, e estimated smooth function under Student-t errors, f estimated smooth function under
power exponential errors, with its approximate pointwise standard error band denoted by red lines
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versus the S-statistic (right side of the second row), and the index plot of the S-
statistic (bottom of the figure) considering the cutoff point proposed by Peña (2005).

In Fig. 3 (under normal errors), the plot of the residual does not show the presence
of outliers, while the plot of the leverage values reveals that the observations #375
and #415 are intermediate-leverage outliers. For its part, Cook’s distance plot shows
that observations #375 and #413 are outliers. On the other hand, the scatterplot of
Cook’s distance versus the S-statistic clearly indicates the presence of some outliers;
this is, the observations #375;#399;#406;#413 and #415: This is confirmed by
comparing the values of S-statistic with the cutoff point mentionedabove.

In Fig. 4 (under Student-t errors), the plot of the residual shows the presence of
five outliers, observations #215;#372;#406;#413 and #506; while the plot of the
leverage values reveals that the observation #375;#415 and #439 are intermediate-
leverage outliers. Cook’s distance plot shows that observations #142;#374;#375
and #413 are outliers, while the plot of dispersion between Cook’s distance and the
S-statistic indicates gain the presence of some outliers, specifically, observations
#142;#215;#375 and #413 being confirmed, for some observations, by compar-
ing the values of S-statistic.
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Fig. 3 Global influence analysis of the Boston data under normal errors: a index plot of residuals, b index
plot of leverage values, c index plot of Cook’s distance, dispersion plot of S-statistics, d Cook’s distance,
e index plot of S-statistics
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In Fig. 5 (under power exponential errors), the plot of the residual does not show the
presence of outliers, while the plot of the leverage values reveals that the observations
#415 and #439 are intermediate-leverage outliers. For its part, Cook’s distance plot
shows that observation#145;#215;#375 and#415 are outliers.On the other hand, the
scatterplot of Cook’s distance versus the S-statistic clearly indicates the presence of some
outliers; this is, the observations #142;#215;#375 and #415 . This is confirmed by
comparing the values of S-statistic. It is important tomention that the observations#215,
and #406 that appear as possible outliers under the Student-t model, the estimation
process assigns them small weights, confirming the robust aspects of theMPLEs against
outlying observations under heavier-tailed error models; see Fig. 8.

On the other hand, Figs. 6 and 7 show the local influence plots for the case-weight
and response variable perturbation schemes assuming normal, Student-t and power
exponential errors, respectively. The results of local influence for f obtained under the
scale perturbation scheme are the same as those obtained for the case-weight scheme,
and therefore are omitted. Based on Fig. 6 we notice that observations 215#, 375#,
#413 and #414 are more influential under the normal model (left side) whereas the

(a) (b) (c)

(e)(d)

Fig. 4 Influence analysis of the Boston data under Student-t errors: a index plot of residuals, b index plot
of leverage values, c index plot of Cook’s distance, dispersion plot of S-statistics, d Cook’s distance,
e index plot of S-statistics
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(a) (b)
(c)

(d) (e)

Fig. 5 Influence analysis of the Boston data under power exponential errors: a index plot of residuals,
b index plot of leverage values, c index plot of Cook’s distance, dispersion plot of S-statistics, d Cook’s
distance, e index plot of S-statistics

(a) (b) (c)

Fig. 6 Local influence analysis of the Boston data under case-weight perturbation: a normal errors,
b Student-t errors, c power exponential errors
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observations #215 and #142 appear slightly influential under Student-t model
(middle). Under power exponential model, the 142#, 213#, #215 and #415 are more
influential (right side). Looking at Fig. 7 we observe that no observation appears
highly influential under the three models. Based on these local influence graphics we

can conclude that bf appear to be less sensitive in the Student-t model under case-

weight perturbation, whereas the sensitivity of bf appears to be similar for the three
fitted models under response variable perturbation.

It is important to note that for Student-t model the current weight

vðmÞi ¼ ðmþ 1Þ= mþ dðmÞi

� �
, with dðmÞi ¼ yi �lðmÞi

� �2
=/ðmÞ, is inversely proportional

to the distance between the observed value yi and its current predicted value lðmÞi , so
that outlying observations tend to have small weights in the estimation process.
Therefore, we may expected that the MPLEs from the Student-t model are less
sensitive to outlying observations than the MPLEs from normal models. Fig. 8 shows
the plot between the standardized residual and estimated weights, and estimated
weights under Student-t and power exponential models. We can be seen that
observations #215 and #406 have a large and small residual, respectively, and a high
estimated weight; see Fig. 8a–b. Looking Fig. 8c–d we can see that observations
#215 and #406 have a large and small residual respectively, and a high estimated
weight. Finally, it is important to note that the iterative process under Student-t model
generates a reduction in the weights associated with the observations detected as
discrepant. Hence such estimators present some characteristics of robustness similar
to the associated with the weight function described by Huber (2004).

5 Simulation study

To evaluate further the effectiveness of the diagnostic measures derived in this paper,
specifically Cook’s distance and Peña Measure, we consider a simulated data set with
two forced outliers. We simulated data from the model

(a) (b) (c)

Fig. 7 Local influence analysis of the Boston data under response variable perturbation: a normal errors,
b Student-t errors, c power exponential errors
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(a) (b)

(c) (d)

Fig. 8 Scatter plots between: a the standardized residual and estimated weights and b estimated
Mahalanobis distance and estimated weights, under the Student-t model; c the standardized residual and
estimated weights and d estimated Mahalanobis distance and estimated weights, under power exponential
model
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yi ¼ sin
2pi
n

� 

þ �i ði ¼ 1; . . .; nÞ

where �i follows a symmetric distribution. To perform the simulation, we will con-
sider the models N 0; 0:12ð Þ and t 0; 0:12; 3ð Þ; and implement an R routine that cal-
culates the proportion of times that forced outlier observations are detected by
diagnostic measures Di and Si; for n 2 f25; 50; 10g and 1000 replicates each. To
obtain the two outlier observations we change the values of the responses for the 1 th
and n th observations in the form y�1 ¼ y1 þ 1:5 and y�n ¼ yn � 1:5; respectively. A
summary of our simulation study is presented in Table 2; see also Figs. 9, 10, 11
and 12. We can observe, for example, that for normal errors and sample size 50 in
100% of the simulations the 1 th and n th observation is detected as influential for
both measures, while for Student-t errors with the same sample size in the 100% and
96:6% of the simulations, the 1 th and n th observation are detected as influential by
the measures Di and Si, respectively. This confirmed in Figs. 13 and 14, respectively,
where it is observed that the values of Di and Si associated with observations 1 th and
n th are the highest. In conclusion, in this simulation study, the two forced outliers are
correctly identified by the diagnostic measures that we derive in Sect. 3. Similar
results were found for the LDiðh; aÞ measure but were omitted in this study.

6 Concluding remarks

In this paper we consider some diagnostic measures of global and local influence for
the nonparametric regression model with symmetric random errors. In the context of
global influence, we derive expressions for the residuals, leverage values and Cook’s
distance similar to those obtained in classical regression under the assumption of
normality. In addition, we extend the influence measure proposed by Peña (2005) in
order to measure the influence of an observation when it is influenced by the rest of
the observations and we use the Boston house price as an illustration. In the context
of local influence, we derive the normal curvature for three perturbation schemes,
with the purpose of evaluating the sensitivity of the maximum penalized likelihood
estimator of smooth function. Both global and local influence measures were
illustrated through a set of data. The study provides evidence on the robust aspects of
the MPLEs from Student-t with small degrees of freedom against outlying
observations. However, these robust aspects do not seem to the extended to all
perturbation schemes of the local influence approach, indicating the usefulness to the

Table 2 Number of times (in %)
in which the forced outlier
observations were detected as
influential through the measures
Di and Si

sample size Normal Student-t

Di Si Di Si

n ¼ 25 100 100 99.6 86.7

n ¼ 50 100 100 100 96.6

n ¼ 100 100 100 99.9 97.1
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(a) (b)

Fig. 9 Index plots of the Di and Si measures for n ¼ 25 and 1000 simulations under normal errors

(a) (b)

Fig. 10 Index plots of the Di and Si measures for n ¼ 25 and 1000 simulations under Student-t errors

(a) (b)

Fig. 11 Index plots of the Di and Si measures for n ¼ 100 and 1000 simulations under normal errors

(a) (b)

Fig. 12 Index plots of the Di and Si measures for n ¼ 100 and 1000 simulations under Student-t errors
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normal curvature derived in this paper for assessing the sensitivity of the MPLEs
from the symmetric nonparametric regression model.

Appendix

Hessian matrix

Let Lp p� � p�ð Þ be the Hessian matrix with j�; ‘�ð Þ -element given by

o2Lpðh; aÞ=ohj�h‘� for j�; ‘� ¼ 1; . . .; p�: After some algebraic manipulations we find

o2Lpðh; aÞ
ofofT

¼ � 1

/
NTDaN� aK;

o2Lpðh; aÞ
o/2 ¼ 1

/2

n

2
þ dTDf0d�

1

/
�TDv�

� �
and

o2Lpðh; aÞ
ofo/

¼ 2

/2 N
Tb;

where

Da ¼ diag1� i� n aið Þ;Df0 ¼ diag1� i� n f0i
� �

; b ¼ b1; . . .; bnð ÞT ; d ¼ d1; . . .; dnð ÞT , � ¼
�1; . . .; �nð ÞT ; ai ¼ �2 fi þ 2f0idi

� �
; bi ¼ fi þ f0idi

� �
�i; �i ¼ yi � li; f

0
i ¼ dfi

ddi
and

di ¼ /�1�2i :

(a) (b)

Fig. 13 Index plots of the Di and Si measures for n ¼ 50 and 1000 simulations under normal errors

(a) (b)

Fig. 14 Index plots of the Di and Si measures for n ¼ 50 and 1000 simulations under Student-t errors

123

22 G. Ibacache-Pulgar et al.



Cases-weight perturbation

Let us consider cases-weight perturbation for the observations in the penalized log-
likelihood function as

Lpðh; ajxÞ ¼
Xn
i¼1

xiLiðhÞ � a
2
fTKf ;

where x ¼ x1; . . .;xnð ÞT is the vector of weights, with 0�xi � 1; for i ¼ 1; . . .; n.

In this case, the vector of no perturbation is given by x0 ¼ ð1; . . .; 1ÞT. Differenti-
ating Lpðh; ajxÞ with respect to the elements of h and xi; we obtain after some
algebraic manipulation

o2Lpiðh; ajxÞ
ofoxi

�����
h¼ĥ;x¼x0

¼� 2b/ bfib�ini and

o2Lpiðh; ajxÞ
o/oxi

�����
h¼ĥ;x¼x0

¼� 1

2b/ � 1

2b/ bfibdi;
where b�i ¼ yi � bli , for i ¼ 1; . . .; n.

Scale perturbation

Under scale parameter perturbation scheme it is assumed that yi � Sðli;x�1
i /; gÞ;

where x ¼ x1; . . .;xnð ÞT is the vector of perturbations, with xi [ 0; for i ¼
1; . . .; n: In this case, the vector of no perturbation is given by x0 ¼ ð1; . . .; 1ÞT such
that Lpðh; ajx ¼ x0Þ ¼ Lpðh; aÞ: Taking differentials of LPðh; ajxÞ with respect to
the elements of h and xi; we obtain after some algebraic manipulation

o2Lpiðh; ajxÞ
ofoxi

jh¼ĥ;x¼x0
¼� 2b/ bf0id̂i þ bfin ob�inTi

o2Lpiðh; ajxÞ
o/oxi

jh¼ĥ;x¼x0
¼� 1

2b/ � 1

/̂
bf0id̂i þ bfin o

d̂i;

where b�i ¼ yi � bli , for i ¼ 1; . . .; n.

Response variable perturbation

To perturb the response variable values we consider yix ¼ yi þ xi; for i ¼ 1; . . .; n,

where x ¼ x1; . . .;xnð ÞT is the vector of perturbations. Here, the vector of no

perturbation is given by x0 ¼ ð0; . . .; 0ÞT and the perturbed penalized log-likelihood
function is constructed from (5) with yi replaced by yix; that is,
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Lpðh; ajxÞ ¼ LðhjxÞ � a
2
fTKf ;

where Lð�Þ is given by (4) with dix ¼ /�1 yix � lið Þ2 in the place of di: Differenti-
ating Lpðh; ajxÞ with respect to the elements of h and xi; we obtain, after some
algebraic manipulation, that

o2Lpiðh; ajxÞ
ofoxi

jh¼ĥ;x¼x0
¼� 1b/ 2bfi 0bdi þ 2bfin o

and

o2LPiðh; ajxÞ
o/oxi

jh¼ĥ;x¼x0
¼� b�ib/2

2bf0ibdi þ 2bfin o
;

where b�i ¼ yi � bli , for i ¼ 1; . . .; n.
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