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Abstract
Sample surveys may suffer from nonignorable unit nonresponse. This happens when
the decision of whether or not to participate in the survey is correlated with variables
of interest; in such a case, nonresponse produces biased estimates for parameters
related to those variables, even after adjustments that account for auxiliary infor-
mation. This paper presents a method to deal with nonignorable unit nonresponse
that uses generalised calibration and latent variable modelling. Generalised calibra-
tion enables to model unit nonresponse using a set of auxiliary variables (instru-
mental or model variables), that can be different from those used in the calibration
constraints (calibration variables). We propose to use latent variables to estimate the
probability to participate in the survey and to construct a reweighting system
incorporating such latent variables. The proposed methodology is illustrated, its
properties discussed and tested on two simulation studies. Finally, it is applied to
adjust estimates of the finite population mean wealth from the Italian Survey of
Household Income and Wealth.
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1 Introduction

Unit nonresponse occurs when sample selected units do not participate in a survey.
When the decision whether or not to participate depends on one or more variables of
interest, the missing data are said to be missing not at random. It is also referred to as
nonignorable nonresponse because the missing data cannot be ignored when
estimating finite population totals or means of survey variables in order to get
consistent estimators (Deville 2000; Kott and Chang 2010).

In order to adjust for nonresponse, it would be essential to have access to granular
auxiliary information on nonrespondents. Unfortunately, this is rarely the case.
Generally, auxiliary information takes the form of a set of auxiliary variables whose
value is known for the respondents and whose population totals are known or can be
unbiasedly estimated. In this context, calibration weighting methods are often used to
include auxiliary information at the estimation stage (Deville and Särndal 1992;
Särndal 2007) and have been shown to be very useful in treating unit nonresponse as
well (see e.g. Särndal and Lundström 2005). Their goal is the construction of a single
set of weights to be used for all variables of interest modifying specified initial
weights (usually the basic design weights), while satisfying benchmark constraints
on known auxiliary information. No explicit model is specified for the treatment of
the nonresponse mechanism; it is implicitly given by the calibration procedure.

Extending the calibration procedure, instrument vector method or generalised
calibration allows distinction to be drawn among auxiliary variables between those
that are useful to model unit nonresponse (instrumental or model variables) and those
that are used in the calibration constraints (calibration variables). See Kott (2006),
Chang and Kott (2008), and see Kott (2014) for a review on calibration weighting
when model and calibration variables differ. It is important to note that in generalised
calibration model variables need only be known for the respondents. This offers a
particularly useful tool when the response probability of the units depends on one or
more survey variables of interest and/or on other variables that we observe only on
the respondents. Within this framework, the only proposal available in the literature
to address unit nonresponse consists in using directly the variable of interest as an
instrument in generalised calibration. Lesage et al. (2019) discuss the properties of
the final estimator and the conditions under which it is successful in reducing
nonresponse bias. This approach has at least two main pitfalls. First, nonresponse is
likely to depend not just upon the variable of interest. This is particularly the case
with multipurpose surveys. A second pitfall is due to the fact that observed variables
may be affected by measurement error. Failing to consider such an issue may result in
biased estimators.

In this paper, we propose to use latent variables as instruments in generalised
calibration for the treatment of nonresponse. We believe that response to a survey is
the outcome of a complex process that involves several aspects which cannot be
captured by a single variable. Latent variable models can be used to extract either
continuous constructs (latent trait models) or categorical ones (latent class models)
from a set of manifest variables collected from respondents. Latent variable
modelling has already been studied in the context of unit nonrepsonse: Matei and
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Ranalli (2015) discuss a setting in which a latent variable to be used as a covariate in
a classical logistic model for response indicators is estimated from the set of response
indicators in the presence of item nonresponse. Here, we present a more general
framework to use latent variables in the context of calibration. In addition, we are
able to test our approach on a real survey, the Survey of Household Income and
Wealth conducted by the National Central Bank of Italy (see for instance
Banca d’Italia 2018). This application is relevant since the survey collects very
sensitive information and it is affected, like other similar surveys, by nonignorable
unit nonresponse. In particular, rich households are known to be difficult to enroll in
a sample survey. We use the 2008 wave for which we have also auxiliary information
that enables us to enhance the performance of our estimator. To the best of our
knowledge, this is the first application to real survey data of generalised calibration to
deal with the issue of nonignorable nonresponse.

Notation and a review of generalised calibration as a treatment of unit
nonresponse is provided in Sect. 2. A brief overview of the latent variable models
used in the paper is provided in Sect. 3. The proposed methodology is introduced in
Sect. 4. We test the methodology using two simulation studies (Sect. 5) and, finally,
apply it to adjust estimates from the Italian Survey of Household Income and Wealth
(Sect. 6). Some concluding remarks are provided in Sect. 7.

2 Calibration and generalised calibration for unit nonresponse

We are interested in estimating finite population quantities of interest (like totals,
means and functions thereof). The finite population is considered fixed and the
source of randomness (other than the nonresponse mechanism) is the sampling
design. In this sense, our approach is mainly design based. Below we introduce the
framework of this approach.

2.1 Framework

Let U ¼ f1; . . .; k; . . .;Ng be the set of labels identifying the units of a finite
population of interest and let yk ¼ ðy1k ; . . .; ymk ; . . .; yMkÞ be the value taken on unit
k 2 U by an M-vector of variables of interest y. We are interested in estimating its
population total ty ¼

P
U yk . We will use the shorthand

P
A for

P
k2A, with A � U

an arbitrary set. To this end, a sample s of fixed size n is selected from U using a
sampling design p(s) with first and second order inclusion probabilities pk ¼ Pðk 2
sÞ and pkl ¼ Pðk; l 2 sÞ, respectively, for k and l 2 U : Let Ik ¼ 1 be the indicator
variable for unit k selected in the sample, so that PðIk ¼ 1Þ ¼ pk ¼ EfIk jFg, where
F ¼ fy1; . . .; yNg is the finite population. Let dk ¼ p�1

k and dkl ¼ p�1
kl ; for k and

l 2 U : Assuming pk [ 0; for all k 2 U , the Horvitz-Thompson estimator (Horvitz
and Thompson 1952) of ty is

btHTy ¼
X
s

dkyk

and has variance
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VfbtHTy jFg ¼
X
U

X
U

Dkly
T
k yk ;

with Dkl ¼ p�1
k p�1

l ðpkl � pkplÞ ¼ d�1
kl ðdkdl � dklÞ:

We denote by r � s the set of survey respondents and let the response indicator
Rk ¼ 1 if unit k 2 r and 0 otherwise. Thus r ¼ fk 2 sjRk ¼ 1g and the response
mechanism is given by the probability distribution q(r|s). The random indicator
variables Rk are assumed independent of one another and of the sample selection
mechanism. Then, the probability of responding of unit k to the survey is given by

pk ¼ PðRk ¼ 1jk 2 sÞ:
This is the two-phase approach where the sampling design is the first phase and the
response mechanism is the second phase; it is based on the quasi-randomisation
model of Oh and Scheuren (1983) (see also Särndal et al. 1992, Chapter 9). If the pk’s
were known, the double expansion estimator

bt2Ey ¼
X
r

dkp
�1
k yk

would be unbiased for ty. In practice, a two-step procedure is applied in which the
response probabilities pk are estimated assuming a response model and using data
from the sample, and then applied to modify the basic design weight, dk ; k 2 s. The
prefix “quasi” is added to emphasise that inference depends not only on the design,
but also on the assumed response model.

2.2 Calibration

Let x be a set of auxiliary variables whose value xk ¼ ðx1k ; . . .; xqkÞ is known for
k 2 r and whose population total tx is known or can be unbiasedly estimated with the
Horvitz-Thompson estimator btHTx ¼Ps dkxk. Let t

H
x denote the population total of x

or its Horvitz-Thompson estimator accordingly. As opposed to the two-step
approach, calibration pursues the construction of a set of weights wc

k to be used
for all variables of interest using a single-step approach. In particular, it modifies
specified initial weights (usually the dk’s), while satisfying benchmark constraints on
known auxiliary information, i.e. X

r

wc
kxk ¼ tHx : ð1Þ

No explicit model is specified for the treatment of the nonresponse mechanism; it is
implicitly given by the calibration procedure. In fact, in the calibration approach the
initial weights dk are adjusted by a factor FðxkccÞ that depends on the auxiliary
information and using a differentiable known function Fð�Þ. The final set of weights
is given by
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wc
k ¼ dkFðxkbccÞ;

where cc is estimated using the constraints given in (1). In particular, bcc is the value
of cc for which X

r

dkFðxkccÞxk � tHx ¼ 0:

Newton-Raphson methods can be used to this end. See e.g. Kott (2006, Sect. 4).
Then, the calibration estimator of ty is

btCALy ¼
X
r

wc
kyk ¼

X
r

dkFðxkbccÞyk :
Fuller et al. (1994) and Särndal and Lundström (2005) consider “linear” calibration,
i.e. FðxkccÞ ¼ 1þ xkcc, while Folsom (1991), Folsom and Singh (2000) and Kott
(2006) consider “nonlinear” calibration, in which Fð�Þ is a nonlinear function as, e.g.,
for raking ratio FðxkccÞ ¼ expðxkccÞ:

The function Fð�Þ plays an important role in calibration for nonresponse. Different
specifications of the function Fð�Þ have been suggested since the introduction of
calibration in the paper by Deville and Särndal (1992). Note that, in the case in which
nonresponse is not present, the effect on the final estimate of these alternative choices
is limited. In fact, in that case bcc converges in probability to 0, when n ! 1;
N ! 1, and Fð0Þ ¼ F 0ð0Þ ¼ 1, where F 0ð�Þ is the first derivative of Fð�Þ, and
FðuÞ � 1þ u, i.e. all choices of Fð�Þ provide estimators that are asymptotically
equivalent to the one based on linear calibration (Deville and Särndal 1992). In the
case of nonresponse this is not the case anymore, since bcc does not converge to 0 (see
also Haziza and Lesage 2016).

The choice of Fð�Þ is very relevant in the presence of nonresponse also because it
influences significantly the properties of the final estimator. In fact, the calibration
weight adjustment implicitly estimates the inverse of the probability of response, as
pk is implicitly assumed to be the inverse of Fð�Þ. Calibration provides double
protection against nonresponse bias in the sense of Kim and Park (2006). That is, if
either a linear prediction model or the implicit selection model holds, then the
resulting estimator has a negligible bias. Fuller et al. (1994) noted this property for
the case of linear calibration: the estimator is nearly unbiased under the joint
response-sampling mechanism that treats response as a second phase of random

sampling and as long as the probability of response is such that pk ¼ ð1þ xkccÞ�1.
Kott (1994) introducing double protection in a survey setting (see also Haziza and
Rao 2006) notes this equivalence for the regression estimator. Therefore, linear
calibration can provide unrealistic values for such implicitly estimated probabilities,
since weighting adjustments allow the implicit estimated selection probability to be
less than 0 or greater than 1. For this reason, nonlinear calibration based on
generalisations of raking is usually employed. See Kott and Liao (2012) for a
discussion of the properties of alternative functions Fð�Þ. In addition, Haziza and
Lesage (2016) provide a thorough discussion and simulation results of alternative
choices of such functions when using calibration in nonresponse.
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2.3 Generalised calibration

As discussed so far, no discrimination is made within the set of auxiliary variables
available: a single set of variables is employed at the same time for nonresponse
treatment, sampling error reduction and coherence among estimates. There are cases,
however, in which one has a good reason to believe that nonresponse depends on a
set of p model variables z, whose components need not coincide with the components
of the calibration vector x. This can be accommodated in the calibration framework
using “instrument vector” or “generalised” calibration introduced by Deville (2000)
(see also Kott 2006) in which weights are given by

wk ¼ dkFðzkbcÞ;
where bc is an estimator of a set of parameters c such that, again,

P
r wkxk ¼ tHx :

The model variables z are assumed to be related to the nonresponse propensity and
are often called “instrumental variables”. Note that we use this term following the
survey sampling literature on the topic, rather than the econometric literature on
sample selection models, under which x would be called instrumental variable, and
model variables z are more closely related to those variables that satisfy “exclusion
restrictions” (see Lesage et al. 2019, for more details on this topic).

A solution for c is most easily found when the number of model variables z (p)
coincides with that of the calibration variables x (q). Then, given Fð�Þ and bc, the
generalised calibration estimator of ty is

btGCALy ¼
X
r

dkFðzkbcÞyk :
In particular, in the case of linear calibration,

wk ¼ dk 1þ �tHx �
X
r

dkxk
��X

r

dkz
T
k xk
��1

zTk

 !
:

Then, the estimate of the total reduces to a sort of regression estimator such that

btGCAL�lin
y ¼

X
r

dkyk þ ðtHx �
X
r

dkxkÞbb; ð2Þ

where bb ¼ ðPr dkz
T
k xkÞ�1P

r dkz
T
k yk . See Chang and Kott (2008) and Kott and Liao

(2017) for methods to find an estimate also when p\q, and Kott (2014) for a review
on calibration weighting when model and calibration variables differ.

Note that the value of the model variables needs to be known only for k 2 r in
order to compute the estimates bc and the final set of weights wk : For this reason,
generalised calibration is particularly useful for nonresponse treatment, because
unlike other reweighting methods, the problem can be addressed even when the
variables that cause nonresponse are known only for the respondents. This is
particularly relevant when nonresponse is nonignorable, i.e. when the topic of the
survey and, therefore, the variables of interest and/or other variables influence the
response probability of a unit, and we observe such variables only on the
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respondents. In fact, the possibility of introducing the variables of interest (known
only for the respondents) as instrumental variables as a means of correcting this type
of nonresponse has been investigated in the literature. See Deville (2000); Kott and
Chang (2010). This aspect is being further addressed to investigate the properties of
the generalised calibration estimator that uses the variable of interest in the
instrument vector (Lesage et al. 2019).

2.4 Variance estimation for generalised calibration

Let t̂ GCALym ¼Pr dkFðzkbcÞymk denote the estimator of the total tym of a particular

variable of interest ym and let ~tGCALym ¼PrdkFðzkcÞymk . Following Kott (2006, p.

138), an estimator of the variance of t̂ GCALym can be derived from the form of the

asymptotic variance of ~t GCALym . Let

am ¼
X
U

F 0ðzkcÞpkzTk xk
 !�1X

U

F 0ðzkcÞpkzTk ymk : ð3Þ

Then, under the two-phase approach, the variance of ~t GCALym is the sum of two variance

components – the sampling and the nonresponse variance component. That is,

Vf~t GCALym jFg ¼ Vsam þ Vnr;

where Vsam ¼ VfPs dke
H
mk jFg and

eHmk ¼
ymk if tHx ¼ btHTx

emk ¼ ymk � xkam if tHx ¼ tx

(
;

and Vnr ¼ EfPs d
2
k p

�1
k ð1� pkÞe2mk jFg. Then, a variance estimator of t̂

GCAL
ym is given

by

V̂2pðt̂ GCALym Þ ¼bVsam þ bV nr

¼
X
k 6¼l

X
k;l2r

dklDkl
êHmk
p̂k

êHlk
p̂l

þ
X
r

dkDkk
ðêHmkÞ2
p̂k

þ
X
r

ð1� p̂kÞ
p̂2k

ðdkêmkÞ2;

where êHmk ¼ ymk if tHx ¼ btHTx or êHmk ¼ êmk ¼ ymk � xkbam with

bam ¼
X
r

dkF
0ðzkbcÞzTk xk

 !�1X
r

dkF
0ðzkbcÞzTk ymk ð4Þ

if tHx ¼ tx, and p̂k ¼ FðzkbcÞ�1.
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Obtaining bV sam for a particular design may be cumbersome because one has to
start from the respondents set. The “reverse” approach proposed by Shao and Steel
(1999) considerably simplifies the task. In this framework, the finite population is
first divided into two strata – the respondents and the nonrespondents – using the
response mechanism (first phase). Then, within the population of respondents, the
sample is selected using the sampling design (second phase). Since we assume that
the response mechanism is independent of the sampling process, the two terms can
be exchanged in the decomposition of the variance. Therefore, the variance of a
generic estimator t̂ym can be written as

Vft̂ymjRN ;Fg ¼ EfVft̂ymjRN ;FgjFg þ VfEft̂ymjRN ;FgjFg
¼ V1 þ V2;

where RN ¼ ðR1; . . .;RN Þ, and the conditional distribution given RN is the distri-
bution over the sampling mechanism treating the response indicators Rk ; k 2 U as
fixed.

Following Kim and Riddles (2012, Sect. 4) we can estimate the variance of t̂ GCALym

with that of its linear approximation. This can be written as

~~t GCALym ¼ tHx ~am þ
X
s

dkRkFðzkcÞðymk � xk ~amÞ;

where

~am ¼
X
U

RkF
0ðzkcÞzTk xk

 !�1X
U

RkF
0ðzkcÞzTk ymk : ð5Þ

Then we have Vf~~t GCALym jRN ;Fg ¼ VfPs dkg
H
mk jRN ;Fg; where

gHmk ¼
xk ~am þ RkFðzkcÞðymk � xk ~amÞ if tHx ¼ btHTx

RkFðzkcÞðymk � xk ~amÞ if tHx ¼ tx

(
: ð6Þ

Since V1 ¼
P

U

P
U DklgHmkg

H
ml, a plug-in estimator for V1 is

bV 1 ¼
X
s

X
s

dklDklĝ
H
mk ĝ

H
ml;

where ĝHmk is such that c and ~am are substituted with bc and bam, respectively, in gHmk .
Now, to estimate V2; note that

V2 ¼ V
nX

U

gHmk jF
o
¼
X
U

1� pk
pk

ðymk � xk ~amÞ2

can be estimated by
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bV 2 ¼
X
r

dk
1� p̂k
p̂2k

ê2mk : ð7Þ

Finally, we obtain

bV revðt̂GCALym Þ ¼ bV 1 þ bV 2:

Note that the second term in the reverse approach is negligible compared to the first
term if n/N is negligible.

The two variance estimators considered above require computation of coefficients
and residuals for each variable of interest. Since we are usually interested in
estimating the total of a whole set of variables of interest, a replication based variance
estimator will also be considered. In particular, a jackknife variance estimator ofbtGCALym is

bV jackðbtGCALym Þ ¼ nr � 1

nr

X
l2r

ðlÞbtGCALym �btGCALym

� �2
;

where nr is the size of r, ðlÞbtGCALym ¼Pk2r
ðlÞ wkymk ; the jackknife replicate weights

are

ðlÞwk ¼ wk

ðlÞdk
dk

þ
�
tHx �

X
k02r

wk 0
ðlÞdk0
dk0

xk0
� X

k 02r
ðlÞ dk0F 0ðzk0bcÞzTk0xk0

 !�1

ðlÞdkF 0ðzkbcÞzTk ;
ðlÞdk ¼ 0 when k ¼ l and ðlÞdk ¼ nrdk=ðnr � 1Þ otherwise (see Kott 2006). Note
that the jackknife variance estimator is an estimator of the first term of the reverse

approach V1 assuming with replacement sampling. In addition, bV jackðbtGCALym Þ is

consistent for V1 even if the nonresponse model is incorrectly specified.

3 Latent variable models

Our proposal suggests to use latent variable models to obtain a suitable model
variable to be used in generalised calibration, in surveys where such latent variables
can be computed. Latent variable models are multivariate regression models that link
continuous or categorical manifest response variables to unobserved latent variables
(see Skrondal and Rabe-Hesketh 2007, for a survey). Several methods exist to
determine such latent variables depending on the nature of the response variables.
According to the nature of the latent phenomenon, we can distinguish between latent
class and latent trait models. Latent classes refer to the categories of a discrete latent
variable; such categories may, but need not, be ordered along a continuum. Latent
traits, on the other hand, refer to a latent continuum which all individuals, based on
their pattern of responses to a set of observed variables, are mapped on.

For example, we could use latent class models as a method of grouping survey
respondents with respect to some underlying, unobservable variables, using
responses to categorical manifest variables, such as “Do you have enough money
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to keep your home in a decent state of repair?”, with responses coded as either “have
or don’t want or need” or “can’t afford”, included into a survey on below average
income households. Alternatively, we could use continuous latent variables which
are unmeasured variables that are believed to influence responses to a survey and are
related to the variable of interest or the survey topic, such as “willing to respond to
the survey” or “reluctance to provide confidential information”. Other examples of
applications of these ideas are discussed in Sect. 4.2. We now briefly present below
the two types of latent variable models considered in this paper: latent class models
and latent trait models.

3.1 Latent class models

In latent class models, the latent variable is supposed to be discrete (Lazarsfeld and
Henry 1968; Goodman 1974). Latent class models allow manifest variables to be
polytomous (ordered or unordered). Chapter 6 in Bartholomew et al. (2011) gives an
overview of latent class models.

Let the latent class variable be denoted by #k, a particular latent class by c and the
number of latent classes by C. Let the vector of manifest variables observed for k 2 r
be denoted by xk ¼ ðx1k ; . . .;x‘k ; . . .;xLkÞ, whereas h ¼ ðh1; . . .; hLÞ refers to a
possible response pattern. Components of the manifest vector may include
components of the response variable vector yk and of the model vector zk. Then
the latent class model can be expressed as

Pðxk ¼ hÞ ¼
XC
c¼1

Pð#k ¼ cÞPðxk ¼ hj#k ¼ cÞ; ð8Þ

in which the probability of observing a response pattern h is a weighted average of
class-specific probabilities. In fact, the term Pðxk ¼ hj#k ¼ cÞ is the conditional
response probability of observing pattern h given that unit k belongs to class c, and
the weight is the probability that such unit belongs to the latent class c.

Conditional to the latent variable, the observed variables are assumed to be
independent within latent classes, and the conditional probability of unit k takes the
form

Pðxk ¼ hj#k ¼ cÞ ¼
YL
‘¼1

Pðx‘k ¼ h‘j#k ¼ cÞ:

The model can be extended to allow for the presence of covariates that influence the
probabilities Pð#k ¼ cÞ.

The parameters of a latent class model are usually estimated by means of the EM
algorithm. The number of latent classes may be chosen using model selection criteria
like AIC, BIC or cAIC. The final step in a traditional latent class analysis is to use the
estimated parameters of the model to classify cases into the appropriate latent classes.
The classification problem of assigning respondents to latent classes may be
approached from a Bayesian point of view. In fact, posterior probabilities Pð#k ¼
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cjxk ¼ hÞ can be estimated and the final estimate of #k is given by the class with the
largest posterior probability given an observed response pattern.

Note that in the context of treatment of unit nonresponse in sample surveys,
classification of units in latent classes provides an alternative way of building
response homogeneity groups. In this case our latent variable hk ¼ ðh1k ; . . .; hCkÞ will
be an indicator variable vector such that hck ¼ 1 if #k ¼ c, and 0, otherwise (see the
application in Sect. 6). When classes can be ordered, #k can also be used as is as a
latent variable (see the first simulation study in Sect. 5.1).

3.2 Latent trait models

For ease of notation, we consider L binary manifest variables and let xk be, again, the
vector of these manifest variables observed for k 2 r. Denote by qk‘ ¼ Prðx‘k ¼
1jhkÞ; where hk ¼ ðh1k ; . . .; hjk ; . . .; hJkÞ is the value taken on unit k by the vector of
J\L continuous latent variables. A latent trait model (see e.g. Bartholomew et al.
2002) is defined as

logitðqk‘Þ ¼ b‘0 þ
XJ
j¼1

b‘jhjk ;

for ‘ ¼ 1; . . .; L; where b‘0; . . .; b‘J are model parameters. An important special case
is obtained by taking J ¼ 1, i.e. a unidimensional latent trait model

logitðqk‘Þ ¼ b‘0 þ b‘1hk ; ð9Þ
where, for model identifiability, the location and scale parameters of hk are set to pre-
specified values, usually 0 and 1, respectively. Model (9) is also referred to as a two
parameter logistic Rasch model, and is essentially a logistic regression except that the
hk’s are not observed. Covariates may be introduced in the process of estimating the
latent variable hk : Extension to ordered categorical manifest variables can be
accommodated using Polytomous Rasch Models and Partial Credit Models (Fischer
and Molenaar 1995).

When J ¼ 1, it is assumed that the L manifest variables measure a single latent
variable. The probability of success qk‘ is assumed to be a monotonic increasing
function of the latent trait hk (monotonicity assumption). In addition, under the
assumption of conditional independence, the values of the L manifest variables are
assumed to be independent for each k given hk . Different goodness-of-fit measures of
Model (9) are available in the literature to check whether these assumptions hold (see
e.g. Bartholomew et al. 2002). Note that, however, these assumptions are particularly
relevant when the objective of the study is the estimation and interpretation of the
model parameters. In our perspective, the main objective is prediction and the ability
to obtain a good reduction of the information from the manifest variables, to be used
as members of the instrumental vector. The parameters of Model (9) can be estimated
using different methods: maximum likelihood, generalised least squares, EM
algorithm or Markov Chain Monte Carlo. The book of Bartholomew et al. (2011)
provides a good description of these methods (Sect. 4.5 for an EM algorithm, Sect.
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4.8 for the generalised least squares, and Sect. 4.11 for Markov Chain Monte Carlo
methods).

4 Generalised calibration with latent variables

4.1 The proposed methodology

Once an estimate of the latent variable is obtained, either using latent class or latent
trait models, it can be used in a generalised calibration framework as the instrumental
variable z or as a component of the vector of instrumental variables. The choice
between latent trait models over latent class models is essentially dictated by the
application at hand. Other types of latent models may also be used, according to the
type of manifest variables we have available.

In this section we wish to discuss the properties of btGCALy ¼Pr wkyk , when a

latent variable is used in the construction of wk : First note that, since the components
of zk come from the survey and may include information on the survey variables of
interest, properties that involve a superpopulation linear model between a particular
survey variable, say ym, and the auxiliary variables x are more problematic to
establish, rather than in the simpler calibration case (see Kott 2006; Kott and Chang
2010). Then, we will focus on the response model. In a multipurpose setting, in
addition, this is a sensible choice also because a good model for one survey variable
may not be as good for another survey variable.

A necessary condition, therefore, under which btGCALy is a consistent estimator for

ty, is that pk ¼ FðzkcÞ�1. This condition has two main ingredients: the function Fð�Þ,
that we have discussed already, and the choice of z. On this regard, Lesage et al.
(2019) show that in order to achieve consistency, it is also required that the response
mechanism is independent of x given z and, similarly, the response mechanism is
independent of each element of y given z. In other words, the instrumental variables
should extract all the relevant information that links the response process with x and
with the response variables. Note that, in practice, it is usually not possible to validate
the choice of Fð�Þ and/or the choice of the model variables in z, and their relationship
with the survey and the auxiliary variables. In fact, model variables are only available
for the respondents. In our opinion, external data on the nonrespondents and/or on
the population should be available in order to validate such assumptions. See, for
example, the application in Sect. 6.

As of variance estimation, we will consider the estimators proposed in the
literature and reviewed in Sect. 2.4. We tested these estimators in the simulation
studies in Sect. 5.

4.2 Motivation of using latent variables

There are several reasons why we find it is useful to introduce latent variables in
generalised calibration. The first, and more obvious, is to reduce nonresponse bias
compared to the classical calibration estimator, because it introduces information on
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the nonresponse behaviour when we believe that nonresponse depends on
unobservable variables that can be estimated from a set of manifest variables using
latent variable models. Of course this can be achieved also using generalised
calibration using all the manifest variables as model variables. However, we will
show in the simulation studies in Sect. 5, that using latent variables reduces
considerably the variance of the generalised calibration estimator as opposed to
including the variable(s) of interest. Note that this is true also when nonresponse
depends on the variable of interest. In fact, it is known that in order to reduce the bias
and the variance of the generalised calibration estimator, the model and the
calibration variables should be highly correlated. Lesage et al. (2019) show that the
generalised calibration estimator has a problem of variance amplification if the
calibration variables and the model variables are not correlated, as this implies that
the vector c is poorly estimated.

Using information from the survey variables of interest in the instrumental vector
is shown to provide a trade-off between bias reduction and variance increase. The use
of latent variables provides a very useful tool to achieve a compromise since we use
an instrumental variable that is well correlated with both the variable of interest and
the calibration variables. Note that calibration variables can be used in the estimation
of the latent variables, by this increasing correlation and decreasing variance (see the
first simulation study in Sect. 5.1).

In addition, depending on the context, a latent variable may be included as single
instrumental variable, or together with other instrumental variables in generalised
calibration. Consider the following examples. In attitude and behavioural surveys,
nonresponse may be related to the survey topic itself (see Groves et al. 2006). It is the
case of surveys on attitudes towards politics or abortion. In this context, a latent
variable called “attitude towards politics” or “attitude towards abortion” can better
explain the response probability of a unit to answer the survey questionnaire than any
observed variable. Thus, it is possible to model the response probability as a function
of this latent variable.

A similar example concerns a latent variable called “will to respond to the survey”
which can be computed from item response indicators to the observed variables (e.g.
Moustaki and Knott 2000; Matei and Ranalli 2015). The “will to respond to the
survey” latent variable is well measured when nonresponse is nonignorable; e.g. in
attitude surveys or in income surveys. Since this latent variable is a measure of the
will to answer the survey, it can be assumed that response probabilities depend on it.
As in the previous example, the “will to respond to the survey” latent variable may be
included as an instrumental variable in the generalised calibration method.

On the other hand, most surveys are multipurpose. It is often difficult to make the
assumption that nonresponse depends upon a single variable of interest. Again, the
use of few latent variables which capture the behavior of variables of interest is
useful because it reduces the dimensionality of the problem and allows for bias
adjustment, without increasing the variance as much as when several variables of
interest are used. In addition, note that the use of several variables of interest as
model variables largely increases the variability of the final set of calibration weights.
Finally, latent variables are a useful mean of dealing with the presence of
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measurement error in the manifest variables. Indeed, the latent variable approach is
widely used to deal with such issues; see e.g. Biemer (2009).

Section 6 provides evidence with regard to both these issues using data from the
Survey on Household Income and Wealth (SHIW). It is conducted by the National
Central Bank of Italy every two years and collects detailed information on household
income, wealth and consumption. In these instances, it is not sensible to assume that
unit nonresponse depends only on a single surveyed item. In the SHIW survey, some
households may refuse to participate because they don’t want to report their income
from self-employment. They may fear the consequences of disclosure of the answers
to tax authorities. Others may not report all the houses they own because of social
desirability bias or because they fear they could be robbed. Others may not be willing
to participate because they don’t want to report their financial wealth. Indeed, the
survey collects information on two topics that are generally considered highly
sensitive: income and household wealth. Therefore, it is reasonable to assume that
each of these factors could contribute to nonresponse. A second issue that arises in
the case of SHIW, is that of measurement error, since previous research has shown
that both income and wealth are affected by underreporting (Neri and Zizza 2010;
Neri and Ranalli 2011). Failing to consider such an issue may result in biased
estimates. In this context, it is possible to create response homogeneity groups which
are here in fact latent classes. The latter are constructed using survey responses as
proxies of true wealth, and used in the generalised calibration method as instrumental
variables.

5 Simulation studies

We present two simulation studies. The first one uses a categorical latent variable,
while the second one a continuous one. In both studies, for a generic estimator bty the
following measures are computed:

● the Monte Carlo Bias

B ¼ EsimðbtyÞ � ty;

where

EsimðbtyÞ ¼Xnsim
i¼1

btyi=nsim;
btyi is the value of the estimator bty at the i-th simulation run and nsim is the total
number of simulation runs;

● the Monte Carlo Variance

VAR ¼ 1

nsim� 1

Xnsim
i¼1

btyi � EsimðbtyÞ� �2
;

● the Monte Carlo Mean Squared Error

123

182 M. Giovanna Ranalli et al.



MSE ¼ B2 þ VAR:

5.1 Simulation using a categorical latent variable

The first simulation study is based on the ‘election’ data available in the R package
poLCA (Linzer and Lewis 2014). This data set reports information gathered during
the 2000 American National Election Study public opinion poll. Following Linzer
and Lewis (2011), three latent classes are constructed based on two sets of six items
concerning a series of traits (moral, caring – really cares about people like you,
knowledgable, strong leadership, dishonest, and intelligent) potentially describing
the candidates Al Gore and George W. Bush: ‘a reasonable theoretical approach
might suppose that there are three latent classes of survey respondents: Gore
supporters, Bush supporters, and those who are more or less neutral’.

Each question has four possible choices: (1) extremely well; (2) quite well; (3) not
too well; and (4) not well at all. The party respondent’s identification (seven different
parties, from strong Democratic to strong Republican, with Independents at 3-4-5 on
the scale) is used as covariate x in the construction of the three latent classes. After
deleting observations with missing values, the population size is 880. The model
predicts that 26% of the units are Gore supporters, 35% of the units are Bush
supporters, and 39% of the units are neutral. Eight observations considered as badly
classified into the three classes have been removed from the population. Thus, N ¼
872: The variable of interest y is the fourth item in this data set (the question is ‘In
your opinion, does the phrase he is knowledgeable describe Al Gore extremely well,
quite well, not too well, or not well at all?’).

We focus on estimation of the population total of people answering ‘extremely
well’ or ‘quite well’ to the fourth item. The variable of interest y is, thus,
dichotomised, taking value 1 if the answer is ‘extremely well’ or ‘quite well’ and 0
otherwise. The population total is ty ¼ 476:

A number of 10,000 samples of size n ¼ 300 have been drawn from the
population using simple random sample without replacement. From the selected
samples, the respondents sets were generated using Poisson sampling with

probabilities pk ¼ FðzkcÞ�1: The response probabilities pk were computed using
four response models, respectively, where z is replaced by # or y:

Model 1: pk ¼ 1=ð1:1þ 0:9#kÞ;
Model 2: pk ¼ 1= expð0:2þ 0:5#kÞ;
Model 3: pk ¼ 1=ð1:5� 0:3ykÞ;
Model 4: pk ¼ 1= expð0:4� 0:2ykÞ:

For each response model, the population average for pk is around 0.7. The population
correlation coefficient between the auxiliary information x (here ‘Party’) and y is
�0:56, while between x and # is 0.75; the correlation coefficient between y and # is
�0:63:

Corresponding to Models 1, 2, 3, and 4, there are respectively four link functions
to use in generalised calibration:
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Lin�# : Fð#kcÞ ¼ 1:1þ 0:9#k ;
Rak�# : Fð#kcÞ ¼ expð0:2þ 0:5#kÞ;
Lin�y : FðykcÞ ¼ 1:5� 0:3yk ;
Rak�y : FðykcÞ ¼ expð0:4� 0:2ykÞ:

We used two different forms of the link function (linear and exponential) since the
choice of Fð�Þ is important as underlined in Sect. 2. To test the performances of the
different weighting systems, three estimators were computed: a generalised
calibration, where z is the latent variable # (denoted below by GCAL�#), a
generalised calibration, where z is the variable of interest y (GCAL�y), and a simple
calibration estimator, where z is the auxiliary variable x (CAL�x). Table 1 reports the
simulation results considering the previous Monte Carlo measures. The (generalised)
calibration weights have been computed using the appropriate link function in the R
package sampling (Tillé and Matei 2021) and then applied to estimate ty: Finally,
variance estimators have been considered as well. Note that in this particular setting
in which we use simple random sampling without replacement to select the sample,

and we use population level auxiliary information, we have found out that bV 2p andbV rev coincide. Appendix A provides a proof of this equivalence. We will denote

simply by bV in Table 1 the result from these estimators.
Model 1, Model 2, Model 3 and Model 4, corresponding to Lin �#; Rak �#; Lin

�y and Rak �y, respectively are the true response models. Note that a true response

Table 1 First simulation study. Monte Carlo Bias, Variance and MSE for each estimator in each simulation
setting. Monte Carlo mean and 95% confidence interval coverage for each variance estimator. Election data
set, n ¼ 300;N ¼ 872

Working
model

B VAR MSE bV 95% bV jack 95%jack

Lin �#

t̂y GCAL�y -18.9 1371.7 1728.0 1372.9 92.4% 1850.1 96.4%

CAL�x 5.7 424.6 457.4 420.0 93.8% 572.2 97.0%

GCAL�# 0.1 480.7 480.7 476.1 94.5% 645.2 97.5%

Rak �#

t̂y GCAL�y 21.9 1075.3 1557.0 1107.6 91.7% 1626.0 96.6%

CAL�x -4.9 311.8 335.9 309.1 94.0% 462.6 97.8%

GCAL�# 0.9 347.0 348.0 344.3 94.7% 514.6 97.9%

Lin �y

t̂y GCAL�y -0.1 1410.1 1410.2 1427.1 95.7% 1915.3 97.8%

CAL�x 33.4 431.2 1547.9 429.8 64.1% 582.1 75.2%

GCAL�# 26.1 483.9 1164.9 488.2 77.9% 657.4 86.0%

Rak �y

t̂y GCAL�y 0.03 1419.9 1419.9 1439.9 95.8% 1928.3 97.8%

CAL�x 30.0 432.3 1334.3 432.8 69.9% 585.2 80.0%

GCAL�# 23.3 486.1 1030.3 492.0 81.3% 661.7 88.5%
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model is not necessarily the same with the underling model used in the computed
estimators, because the model variable may be different. The models underling the
computed estimators are called here working models. The link functions corre-
sponding to them share the same form of the link functions (linear or exponential)
corresponding to the true response models. In Table 1 the three estimators are given
in the column ‘Working model’, below each Fð�Þ corresponding to a true response
model.

In Model 1 and Model 2, z is taken to be #, following thus theoretical approaches
where political partisanship is strongly correlated with attitudes and behavior and
thus can influence the probability to answer a political survey. In Model 3 and Model
4, z is the variable of interest y. The last two models represent a tool to test the
robustness of GCAL�#, since pk depends on yk , and not on #k :

Following the results given in Table 1, we note that when the response model is
based on # (Lin �# and Rak �#), GCAL-# has, as expected, a negligible bias and a
smaller variance than GCAL-y. It also reduces the bias compared to CAL-x, since #
is more correlated with the variable of interest y than x. On the other hand, as
expected, its variance is larger than CAL-x. It also shows a larger mean square error
than CAL-x, but of similar size. GCAL-# provides thus a good compromise: it
shows smaller bias than the classical calibration estimator CAL-x and smaller
variance than GCAL-y.

When GCAL�y is based on the true response model (Lin �y and Rak �y) its
bias is negligible, but its variance is relatively larger than that of the other estimators,
including the classical calibration estimator. The classical calibration estimator
CAL�x has the opposite behavior, with a large bias and a small variance that places
concern on the coverage rate. This behavior of the generalised calibration estimator
versus the classical calibration one is also verified in other simulation studies given in
the literature (see e.g. Osier 2013). When the response model is based on y (Lin �y
and Rak �y), GCAL-# also provides the previous good compromise: it shows
smaller bias than CAL-x and smaller variance than GCAL-y. But also its mean square
error is smaller than the mean square errors of GCAL-y and GCAL-x.

Table 1 also reports the performance of the variance estimators. For each variance
estimator, its Monte Carlo expectation is computed, together with the empirical

coverage rate of a 95% confidence interval. We note that bV has better behavior thanbV jack in terms of Monte Carlo expectation. However, better coverage rates are

provided by bV jack when the working model is misspecified. In fact, bV shows lower
coverage rate when the response model depends on y and it is not the true one for
CAL-x and GCAL-#; this is due to the presence of a larger bias displayed by the

estimators CAL-x and GCAL-#. In some instances, the coverage rate of bV jack is
above 95%. This may be due to a relatively high sampling fraction,

300=872 ¼ 34:4%. Since bV jack does not incorporate the finite population correction,
the first term V1 is overestimated and this compensates the underestimation of the
second term V2 of the reverse approach that is not negligible in this case.
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5.2 Simulation using a continuous latent variable

We consider the ‘Abortion’ data set formed by four binary variables extracted from
the 1986 British Social Attitudes Survey and concerning attitudes to abortion. N ¼
379 individuals answered the following questions after being asked if the law should
allow abortion under the circumstances presented under each item:

1. The woman decides on her own that she does not want to keep the baby.
2. The couple agrees that they do not wish to have a child.
3. The woman is not married and does not wish to marry the man.
4. The couple cannot afford any more children.

The data are analyzed in Bartholomew et al. (2002) and found to hide a latent
continuous variable, interpretable as the “attitude to abortion”. It is plausible in this
example to assume that the response probability of a unit k to the survey depends on
its attitude to abortion hk , rather than on a single variable of interest enumerated
before. In our study, we will consider both cases.

We focus on estimation of the total of the second variable in this data set (y),
having in the population ty ¼ 225: At the population level, the latent variable hk has
been estimated for each unit using Model (9) and the R package ltm (Rizopoulos
2006). The method used for estimation is marginal maximum likelihood. An

auxiliary variable xk has been generated as xk ¼ 1þP4
m¼1 ymk þ �k , with

�k �Nð0; 1Þ. Its population total is assumed known. The simulation data frame
consists of N ¼ 379 observations with binary answers the previous four items,
associated latent variable hk and auxiliary information xk : The correlation coefficient
between x and h, and between y and h is around 0.8 in the population, respectively.

We draw 10,000 simple random samples without replacement of size n ¼ 100
(similar results not shown here have been obtained using the same settings, and a
sample size n ¼ 50). For each selected sample, nonresponse was simulated using
Poisson sampling with probabilities defined for each unit according to two different
models:

Model 5: pk ¼ 1= expð0:1þ 0:5hkÞ;
Model 6: pk ¼ 1= expð0:1þ 0:5ykÞ:

The corresponding link functions in generalised calibration are respectively:

Rak�h : FðhkcÞ ¼ expð0:1þ 0:5hkÞ;
Rak�y : FðykcÞ ¼ expð0:1þ 0:5ykÞ:

In both models, the population average for pk is around 0.7. As in Sect. 5.2, three
estimators were computed: a generalised calibration, where z is the latent variable h
(denoted below by GCAL�h), a generalised calibration, where z is the variable of
interest y (GCAL�y), and a simple calibration estimator, where z is the auxiliary
variable x (CAL�x). In particular, by using GCAL�h; we wish to investigate the
ability of the proposed approach to reduce bias when Model 5 is used to create the set
of the respondents in the population, and its robustness in terms of bias and variance
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in the case when Model 6 is employed. In this example, only the exponential link
function was used. Similar results (not shown here) have been obtained using the
linear case.

Table 2 shows the results for ‘abortion’ data. Estimators behave similarly to the
first simulation study. The generalised calibration estimator GCAL�h has, as
expected, a very good performance in the Rak �h setting, but is also a very good
compromise in the other case. We also note that when the response model depends on
y (Rak �y) the use of hk as model variable shows good behavior in terms of both
bias and variance compared to GCAL�y and CAL�x: In particular, we can see,
again, that the proposed approach is robust also if nonresponse depends only one
variable of interest. In addition, it is always much less variable that the one that uses
the variable of interest. Note that the estimator provided by our approach shows, in
these settings, smaller values of the mean square error than those given by the
calibration estimator that uses only classical auxiliary information. The variance
estimators behave similarly to the the first simulation.

6 Application to the Italian survey on household income and wealth

The Survey on Household Income and Wealth (SHIW) is conducted by the National
Central Bank of Italy every two years to study the economic behaviours of Italian
households by collecting detailed information on their income and wealth. Our goal
here is to make inferences about the average household net wealth for the Italian
population in 2008. We use the 2008 wave since for this survey we have access to
auxiliary information that can be used to better explore the properties of our
estimator. The sample consists of about 8000 households selected from population
registers using a complex two-stage (municipality-household) sampling design. The
survey also collects paradata on the recruitment process of households, such as
information on the call attempts and on the characteristics of the dwelling, such as
exterior appearance and the overall assessment of the area where the building is

Table 2 Second simulation study. Monte Carlo Bias, Variance and MSE for each estimator in each
simulation setting. Monte Carlo mean and 95% confidence interval coverage for each variance estimator.
Abortion data set, n ¼ 100;N ¼ 379

Working
model

B VAR MSE bV 95% bV jack 95%jack

Rak �h

t̂y GCAL�y 12.1 403.1 549.0 414.5 93.1% 508.8 95.8%

CAL�x -8.8 195.5 272.9 192.3 90.4% 242.3 94.0%

GCAL�h 0.4 236.9 237.0 234.8 94.3% 292.5 96.6%

Rak �y

t̂y GCAL�y 0.9 405.2 406.1 417.4 95.4% 512.1 97.3%

CAL�x -21.3 206.7 661.6 204.6 68.3% 256.8 76.4%

GCAL�h -11.3 246.2 372.8 247.1 87.6% 306.5 91.7%
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located. Because of the sensitiveness of the issues surveyed, measurement error and
unit nonresponse are two major components of total survey error. On the contrary,
item nonresponse is negligible because of the design of the survey (in case the
respondent does not provide information on income or wealth, the overall interview
is not accepted).

Previous research based on SHIW data shows that nonresponse is nonignorable
and depends on the true wealth (for more details see D’Alessio and Faiella 2002;
Neri and Ranalli 2011; D’Alessio and Neri 2015). It should be noted that the true
wealth is not observed either for respondents because of measurement error. Our
approach uses survey responses related to wealth as proxies of true wealth and builds
latent classes to be used as response homogeneity groups. In particular, we use the
following variables to build the vector of manifest variables xk : the individual
observed wealth class (ordinal variable with five levels), the number of total call
attempts needed to make the interview (ranging between 1 and 4) and six dummy
indicators for the ownership of a secondary dwelling, of bonds, of agricultural and of
non-agricultural land, of other non-residential buildings and for the household living
in a deluxe dwelling. Overall, the vector of manifest variables x is made of L ¼ 12
components.

Using latent class analysis, we classify respondents into five latent classes. We
used the BIC measure to select the number of classes to use. The value of the BIC for
the six class model was slightly smaller than the one for five. However, the sixth
class was very small and not very different from another one, and so we decided to
use a classification in five latent classes. The latent classes can be interpreted in terms
of the household’s economic well-being. The first class is formed by the very rich
and it represents about 16% of the sample. It is mainly made of individuals with a
high level of financial and non-financial wealth, living in a luxurious residence and
who are difficult to contact or to interview. The second class can be named the well-
off: it includes households with a medium-high wealth, living in a luxurious
residence, with high financial wealth, and who are easy to contact or to interview
(about 30% of the sample). The third class is made of average households (average
wealth, owners of some land and non-residential buildings, easy to contact or to
interview – about 16% of the sample). The fourth class is composed of below
average households (about 25% of the sample). They have low levels of wealth but
they are easy to contact or to interview. Finally, the last class is made of the very
poor. Households in this class have a low wealth, almost zero financial wealth and
they are difficult to contact or to interview (about 13% of the sample). Note that the
latent classes are not strictly ordered. This is another reason why we have decided to
use a latent class model, instead of a latent trait model: in this application one latent
trait was not fitting the data well, by this implying that these manifest variables hide a
multidimensional structure.

The predicted latent class memberships hk are used as model variables zk . As
calibration variables, we use two sources of auxiliary information. The first one is the
Italian National Statistical Office and consists of the distribution of individuals
according to some demographic variables: age (5 classes), gender, education (3
levels), nationality (italian/foreigner), job status (employed/unemployed/inactive),
geographical area (north/centre/south). The second one is the Italian Department of
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the Treasury holding administrative records of real estate owners and consists of the
distribution of individuals according to the value of the owned dwelling (5 classes).
Overall, the vector of population totals tx is made of q ¼ 18 components.

Six different approaches to estimate the mean household wealth are compared:

(1) the Hajek estimator
P

r dkyk=
P

r dk (without nonresponse adjustment);
(2) a double expansion estimator in which response probabilities are estimated via

a logistic model that uses covariates known also for nonrespondents (see
details in Neri and Ranalli 2011);

(3) the classical calibration estimator using the aforementioned 18 calibration
variables;

(4) the generalised calibration using the predicted latent class memberships bhk as
model variables;

(5) the generalised calibration using twelve manifest variables xk as model
variables;

(6) the generalised calibration using the individual observed wealth class (classes
of yk) as model variables.

For cases (4), (5) and (6), since p\q, we use a two-step generalised calibration
approach to obtain final weights wk ¼ dkFðzkbc1ÞFðxkbc2Þ: The first step is the
adjustment step Fðzkbc1Þ obtained using the method proposed in Chang and Kott
(2008). Since it does not provide calibrated weights, in the second step Fðxkbc2Þ is
obtained calibrating on tx using dkFðzkbc1Þ as starting weights. The inverse of the two
step adjustment Fðzkbc1ÞFðxkbc2Þ provides a measure of the implicit response
probability estimated with generalised calibration. Table 3 reports the mean value of
1=Fðzkbc1ÞFðxkbc2Þ computed for household wealth and income percentiles. As
expected, the higher the household income or wealth, the lower the estimated
response probability. Households in the lowest quintile of both distribution have a
response propensity of about 0.8. This figure drops to about 0.4 in the upper tail of
the distribution. The relation is almost monotonic as far as wealth is concerned. As to
income, the drop in the response probability is mainly due to households with a
median-high income.

Table 3 Estimated mean of the implicit response probability estimated using the proposed methodology
by household (HH) wealth and income percentile

Percentile of HH income

Percentile of HH wealth Less than 20 20–39.9 40–59.9 60–79.9 80–100 Total

less than 20 0.82 0.83 0.81 0.81 0.72 0.82

20–39.9 0.75 0.74 0.74 0.72 0.73 0.74

40–59.9 0.63 0.69 0.64 0.58 0.47 0.63

60–79.9 0.55 0.54 0.54 0.50 0.50 0.52

80–100 0.44 0.46 0.45 0.45 0.44 0.45

Total 0.73 0.72 0.65 0.53 0.47

123

Generalised calibration with latent variables... 189



Table 4 reports the results for all the approaches with an estimate of the standard
error using jackknife. Nonresponse adjustments via calibration all provide an
increase in the estimate. This is reasonable since we expect wealthier households to
be less cooperative. It is worth noting that the true mean of the households’ wealth is
unknown for this application. In fact, there is a macro estimate of total household
wealth produced the Bank of Italy using different sources that do not include the
SHIW survey. For 2008 this estimate is about 8,500 billions of euro, i.e. 368,840
euros mean estimate. We do not use this information in calibration because of the
differences in definitions between the two sources. Moreover, the macro estimate is
constructed using also statistical models and assumptions. Nonetheless, it can
provide some insights on the goodness of our approach. In Table 4 the ratio of the
estimates to this value is also provided. It can be noted that all estimates based on
generalised calibration get closer to the macro one.

The estimated variance of the generalised calibration estimators ð4Þ � ð6Þ is larger
than that of classical calibration (3), because of the increased complexity in the first
step nonresponse adjustment. As already noted in the simulations, generalised
calibration that uses the variables of interest as model variables (cases (5) and (6))
provides more variable estimators than the one that uses latent variables. By
comparing (5) with (4), it seems that the reduction in dimensionality performed by
latent class analysis allows for a more stable estimator, without losing too much in
terms of information. This is also true when comparing (4) and (6), that have the
same number of model variables. Finally, note that (4) shows a far less variable set of
weights as opposed to (5) and (6).

7 Conclusions

This paper proposes the use of latent variables in generalised calibration to handle
nonignorable unit nonresponse in those surveys where such latent variables can be
computed. The method is tested on a series of simulation studies and applied to
adjust estimates from the Italian Survey on Household Income and Wealth.

Table 4 Estimated mean of the households’ wealth using different estimators, ratio to the macro estimate
of the total, estimated jackknife standard error, coefficient of variation (in %), standard deviation of the set
of calibrated weights

Estimated Ratio to Jackknife %CV Weights
Method Mean macro est. St. Err. St. Dev.

(1) Hajek estimator 252,407.35 0.684 7,780.42 3.08 2,465.59

(2) Two–phase estimator 296,012.21 0.803 8,862.29 2.99 3,349.27

(3) Classical calibration 282,378.61 0.766 6,732.86 2.38 2,550.33

Two–step generalised calibration:

(4) Model variables – latent classes 307,762.18 0.834 7,843.80 2.55 2,697.16

(5) Model variables – manifest variables 329,457.08 0.893 26,458.18 8.03 8,306.05

(6) Model variables – classes of y 319,804.76 0.867 8,393.59 2.62 3,075.03
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We find that the method presents some merits compared to the main current
proposal available in the literature, which consists in using the variable of interest as
an instrument in generalised calibration. This approach has at least two main pitfalls.
First, nonresponse is likely to depend not just upon the variable of interest. This is
particularly the case with multipurpose surveys. One may also try to add other
observed variables, but this usually increases the complexity of the estimator and,
therefore, the variability of the estimates and of the final set of weights. A second
pitfall is that observed variables may be affected by measurement error. Failing to
consider such an issue may result in biased estimators.

We considered in our examples only a single latent variable as instrumental
variable. However, several latent variables can also be used, because the vector z is p-
dimensional. For example, in the continuous case, in addition to “will to respond to
the survey” presented in Sect. 4.2, a second latent variable “reluctance to provide
confidential information” can also be employed as instrumental variable, since they
could explain more accurately dependence among the manifest variables. In the
discrete case, more than one class variable can be used. We borrow from Jeon et al.
(2017) an example where adolescent violent behavior and drug-using behaviors are
investigated. For this example, nonresponse may be related to the survey topic. Three
class variables are provided using data from 4,957 male high-school students who
participated into a “Youth Risk Behavior Surveillance System” in 2015: violent
behavior (with four classes), alcohol drinking (with three classes), tobacco cigarette
smoking (with three classes), and other drug use (with three classes). These class
variables can be introduced as instrumental variables in our approach. On the other
hand, Jeon et al. (2017) propose a joint latent class analysis, which seeks to explain
the joint patterns of two or more latent class variables. For the example provided,
three joint classes are identified based on the previous class variables, reducing
finally again the approach to the use of a single latent variable.

We find that our approach is a parsimonious method to relax the assumption that
nonresponse depends on a single variable of interest. Moreover, the latent variable
framework is widely used in the literature to deal with the issue of measurement
error. Therefore it allows us to relax the assumption that manifest variables used as
instruments are error-free. Our simulations show that the latent variable approach
reduces the variance compared to the generalised calibration even when response
probabilities depend on the variable of interest and the latter is used as an
instrumental variable. It is also more efficient than classical calibration that uses only
auxiliary information as model variables.

We have considered latent trait models, which provide a continuous measure of
the response propensity, and latent class models, which provide a categorical measure
thereof. The choice between the two is essentially dictated by the application at hand.
However, some guidelines can be provided. In general, weights based on a small
number of classes tend to be more stable than the weights obtained using an
estimated propensity. Latent classes provide a model based alternative to the
construction of post-strata that are, by construction, built using similar units. In
addition, note that very often in surveys, even when a continuous response
propensity is estimated, it is not used as is, but it is categorised in classes (see e.g.
Haziza and Lesage 2016). We do believe that using latent classes provides a much
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better and data-driven classification of units, than subjectively setting thresholds of
values for response propensities.

We also present an application of the method to survey data relating to household
wealth and compare it with other methods. To the best of our knowledge, this is the
first application to real data of generalised calibration with variables of interest used
as instrumental variables. To avoid the issue of variance amplification as highlighted
in Lesage et al. (2019), it is important to use auxiliary variables that are well
correlated with the latent variables and the nonresponse behavior. In this way it is
possible to estimate better the calibration parameters. In our application, this role has
been played by auxiliary information coming from administrative records of real
estate owners and consists of the distribution of individuals according to the value of
the owned dwelling. More research is still needed on tools to select auxiliary and
model variables in generalised calibration.

Of course, this approach suffers from bias when the assumed nonresponse model
is misspecified in terms of the model variables or in terms of the link function. The
robustness of the generalised calibration estimator in this case is still an open
problem. We can never safely assume one thing or the other unless we have external
independent data (on nonrespondents) that can help verify these. As an alternative, it
is important to have external validation information that we can use as a sort of gold
standard to evaluate results. In our application, we have used to this end a macro
estimate of the total household wealth produced using different sources that do not
include the SHIW survey. We find that the use of latent variables seems to provide a
good compromise between bias reduction and variance increase, and helps to make
generalised calibration more applicable.

We end the discussion with some cautionary considerations in the application of
the proposed methodology. As we underlined, our proposal is suitable for estimation
using data issued from surveys where it makes sense to compute latent variables
(where the assumptions and usual measures of goodness-of-fit are fulfilled for such
models). Sometimes, however, even in these surveys, possibly poor latent variables
for generalised calibration can occur, showing a weak correlation with the calibration
variables, and/or being not necessarily related to the nonresponse structure. We
provide below some practical guidelines to decide between the use a (possibly poor)
latent variable or the direct use of the manifest variables:

● compute some measure of association and/or correlation between the latent
variable(s) and the calibration variables; if their values are low, a simple
calibration approach is suitable instead of generalised calibration, and the
proposed method should be avoided;

● if the measures of association and/or correlation are important, compute two
estimates: using the latent variable(s) and using the manifest variables;

● for each estimate, compute: the jackknife standard error estimator proposed in
Sect. 2.4, the estimated coefficient of variation, and the standard deviation of the
final weights. Finally, choose the method providing the best results, minimising
these three measures.
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Appendix A: Equivalence of V̂2pðt̂GCALym Þ and bV revðt̂GCALym Þ under simple
random sampling without replacement and t*x = tx

Under simple random sampling without replacement and tHx ¼ tx,

bV 2pðt̂GCALym Þ ¼ bVsam þ bV nr

¼
X
k 6¼l

X
k;l2r

dklDkl
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bV 2pðt̂GCALym Þ can be written after some algebra as
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bV 2pðt̂GCALym Þ ¼ N2

n2
N � 1

n� 1

n� 1

N � 1
� n

N

� � X
r
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that is equivalent to bV revðt̂GCALym Þ as in equation A.1.
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