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Abstract
The revenue loss from tax avoidance can undermine the effectiveness and equity of

the government policies. A standard measure of its magnitude is known as the tax
gap, that is defined as the difference between the total taxes theoretically col-

lectable and the total taxes actually collected in a given period. Estimation from a

micro perspective is usually tackled in the context of bottom-up approaches, where

data regularly collected through fiscal audits are analyzed in order to provide

inference on the general population. However, the sampling scheme of fiscal audits

performed by revenue agencies is not random but characterized by a selection bias

toward risky taxpayers. The current standard adopted by the Italian Revenue Agency
(IRA) for overcoming this issue in the Tax audit context is the Heckman model,
based on linear models for modeling both the selection and the outcome mecha-

nisms. Here we propose the adoption of the CART-based Gradient Boosting in place

of standard linear models to account for the complex patterns often arising in the

relationships between covariates and outcome. Selection bias is corrected by con-

sidering a re-weighting scheme based on propensity scores, attained through the

sequential application of a classifier and a regressor. In short we refer to the method

as 2-step Gradient Boosting. We argue how this scheme fits the sampling mecha-

nism of the IRA fiscal audits, and it is applied to a sample of VAT declarations from

Italian individual firms in the fiscal year 2011. Results show a marked dominance of

the proposed method over the currently adopted Heckman model in terms of pre-

dictive performances.
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1 Introduction

Tax evasion is the illegal activity of a person or an entity who deliberately avoids

paying a true tax liability. This yields a revenue loss for the public budget and can

undermine the effectiveness and equity of government policies. It represents one of

the main problems in modern economies, where government budget is constantly

under control and is required to match strict standards (Santoro 2010). The

magnitude of the national tax evasion is usually quantified in terms of the tax gap,
i.e. the difference between the total amounts of tax theoretically collectable and the

total amounts of tax actually collected in a given period.

The techniques used for its estimation can be divided into two broad

methodological approaches: macro and micro. Methodologies based on a macro
perspective (top-down) usually employ macroeconomic indicators or national

accounts data to directly derive a gross estimated of the revenue loss. Methodolo-

gies based on a micro perspective (bottom-up) instead consider individual data

derived from administrative tax records (usually provided by internal fiscal

agencies) and audit data1 (Dangerfield and Morris (1992), Pisani and Pansini (2017),

OECD (2017)). Unlike the former, the bottom-up perspective is able to derive

estimates of single components of different taxpayers, and can be used to investigate

individual factors that affect the individual inclination to evade taxes.

Several tax evasion studies are regularly conducted in many states by the

corresponding revenue agencies. The tax gap research in Italy can be traced back to

around 2000, since when the Italian Revenue Agency (IRA) provides yearly

estimates of the tax gap for each tax typology using an in-house developed top-

down methodology. Over the last few years, the IRA and Sogei2 started to work on

preliminary estimates of the tax gap related to self-employed taxpayers and small

firms. The final objective is to evaluate, with different methods and different timing,

the correspondence between the declared and the due amounts at the individual

level (D’Agosto et al. 2016). The study is based on a bottom-up approach that

integrates data from different sources, such as the Tax Register (Anagrafe

Tributaria) and the Tax Audits Database (FISCALIS Tax Gap Project Group

2018). The Tax Register contains the ‘‘Declared Income Tax Base’’ (BID) for

different entries of the individually filed tax returns, among which the Value Added

Tax (VAT). The Tax Audits Database contains a correction of the declared taxable

base for the same entries (namely the the ‘‘Potential Tax Base’’ - BIT), but it

contains only a small and non-random sample of audited taxpayers. Size and

sampling scheme of the individual Tax audits are determined by two main factors.

First, they are quite expensive and time-consuming and only a small portion of the

whole population of taxpayers (less than 10%) can be involved. Second, audits are

performed with an administrative (and not statistical) end: recover as much revenue

loss as possible given the limited time and resources available to perform the fiscal

checks. Therefore, the auditing activity is not (and cannot be) based on random

1 Data derived from ad-hoc tax assessments/controls on the taxpayer.
2 Società Generale d’Informatica S.p.A. Information technology company 100% owned by the Italian

Ministry of Economics and Finance.
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audits, but relies on risk-based criteria decided and verified by specialized tax-

auditors. As the tax-auditors do not have prior knowledge about the evaded

amounts, their selection is based on the assumption that non-compliant taxpayers

behave differently from compliant ones in terms of auxiliary information available

on public registers (e.g. Tax Register). This induces an indirect selection bias on the

observed response variable, which invalidates the inference of standard regression

methods when generalizing from the observed sample to the whole population of

taxpayers (Särndal et al. (2003), Särndal and Lundström (2005)).

The most widespread method to correct for such selection bias in the Tax gap

estimation area is the Tobit-like model known as the ‘‘Heckman model’’ (Tobin

(1952), Amemiya (1986), Heckman (1976), Heckman (1979)), currently adopted by

the IRA and other Revenue Agencies worldwide (Braiotta et al. (2015), Kumar

et al. (2015)). It verifies and accounts for the existence of a direct correlation

between the selection scheme and the analyzed outcome (evaded amount),

somehow taking for granted the effectiveness of the tax-auditors risk assessment.

One major limitation of the classical Heckman model is its reliance on linear models

for describing both the selection and the outcome processes. Real data are instead

often characterized by more complex patterns, where linearity is usually a very

coarse approximation that works fine for explanatory purposes, but lacks the

necessary flexibility to produce accurate predictions. For this reason, various

semiparametric estimation techniques have been increasingly used in combination

with the Heckman model (Li and Racine 2007; Newey 2009; Marra and Radice

2013; Wojtyś and Marra 2015).

We here propose the adoption of a non-parametric Machine Learning tool to

improve on the prediction accuracy of individual tax bases in for the IRA bottom-up

studies. Algorithms from the Machine Learning literature are natural candidates for

the analysis and detection of complex non-linear patterns in the data. However, their

naive application in the context of tax audits would neglect the selection bias

stemming from the non-random sampling scheme. We draw from Zadrozny (2004),

Cortes et al. (2008) and consider a re-weighting scheme based on the sequential

application of a classifier—for estimating the propensity scores (selection proba-

bilities)—and a regressor—for predicting the true potential tax base. The propensity

scores obtained at the first step are used to correct for the selection bias in the

second. In particular, we use of the Gradient Boosting (GB) algorithm (Friedman

2001) with Classification And Regression Trees (CART) as base learners in both

steps (i.e. 2-step Gradient Boosting). The use of CARTs make this algorithm apt for

data of any nature (without requiring much pre-processing) and exhibiting non-

linear patterns. Their ensembling through the Gradient Boosting accrues an efficient

and robust estimation of the boosted prediction function that circumvents over-

fitting. The CART GB has been chosen in place of other alternative methods as it is

extremely flexible and it is not a fully black-box as other Machine Learning

methods. Indeed, it allows to compute measures of variable importance for

interpreting the mechanisms behind its decisions and behavior (Deng and Yan

2019). It has already proved to perform well in estimating propensity scores in

previous works (Lee et al. 2010) and, in the last decade, it has been successfully

applied in a great variety of fields: economics (Liu et al. (2019), Yang et al. (2020)),
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biology (Moisen et al. (2006), clinical studies (Teramoto (2009), Zhang et al.

(2019), Yin et al. (2020)), sociology (Kriegler and Berk (2010)). Let us point out

that the selection bias correction considered in Zadrozny (2004), Cortes et al. (2008)

is valid for any pair of classifier and regressor. As far as uncertainty quantification

and prediction intervals are concerned, the 2-step GB must rely on non-parametric

approaches. We here exploit a particular version of the bootstrap method that is able

to quantify both bias and variability of the final estimates (Stine 1985; Efron and

Tibshirani 1993; Efron et al. 2003; Kumar and Srivistava 2012).

The Heckman model and the proposed method are used to estimate the potential

tax base on a representative sample of the Italian individual firms3 for the fiscal year
2011. We exploit the information available in the Italian Tax Register (including

auxiliary information and declared VAT) and collected on the audited taxpayers

(Tax Audits Database, including the potential VAT) to infer the potential tax base

on the whole sample. This is then used to build estimates of the individual and

aggregate undeclared tax bases (VAT gaps) and evasion intensity scores.

The final aim of this work is to compare the predictive performances (both at the

aggregate and individual level) of the proposed approach and of the currently

adopted Heckman model. The results show that the 2-step GB yields more accurate

individual potential VAT predictions, that ensure an improvement on the derived

estimates of the overall tax gap and of the VAT evasion intensity scores (ratio

between VAT gap and the declared part). In particular, the more reliable evasion

intensity scores can be profitably used to support the tax-auditors in the detection of

high risk taxpayers, drive for future tax audit selection, and recover a larger part of

the revenue loss without increasing compliance controls and incurring in larger

costs.

The paper is further organized as follows. Section 2 provides a general discussion

on the considered working framework. In particular, Sect. 2.1 provides a brief

description of the Heckman Model, its hypotheses and limitations, and Sect. 2.2

describes the proposed method. Section 2.3 includes a description of the bootstrap

method used to derive the prediction intervals in the considered non-parametric

setting. Finally, Sect. 3 envisions the application of both models on the above-

mentioned data and the discussion of the results.

2 Modeling approach: working framework and methodology

As an effect of tax non-compliance, the amount of tax revenue actually collected by

the state (declared tax base - BID) is generally lower than the true potential tax base

(BIT). The difference is due to the presence of an undeclared part (BIND). These

three quantities are connected through a basic accounting equation, known as the

main formula of gap computation:

BIND ¼ BIT� BID:

3 Individuals liable for tax on income as self-employees persons and small individual companies

(ownership, board of directors and management are totally controlled by one person).

123

240 P. Alaimo Di Loro et al.



The amount of the BIND does not only directly affect revenue sufficiency through

reduced tax revenues, but also impacts on income distribution and equity, limiting

development and sustainable economic growth. Hence, its proper quantification is

key in order support the decisions of policy makers on the allocation of the National

budget.

Here we pursue the modeling and estimation of the individual VAT potential tax
base of Italian individual firms BITi, from which the individual undeclared parts can

be derived as BINDi ¼ BITi � BIDi; i ¼ 1; . . .;N. This is in line with the micro

perspective taken by bottom-up approaches to tax-gap estimation. It allows

obtaining aggregate estimates of the overall true potential tax base BIT ¼
PN

i¼1 BITi and undeclared parts BIND ¼
PN

i¼1 BINDi, but also highlighting

possible risk factors associated with a larger evasion intensity (non-compliance

ratio) of single taxpayers (Braiotta et al. 2015). Whilst challenging from different

point of views, the great advantage of this perspective is that the detected patterns

may be used to identify possible high-risk groups of taxpayers and drive future

selections for tax audits

In Italy, individual level information on tax compliance are either available from

administrative sources such as the Tax Register, or collected via IRA Tax Audits.

The Tax Register contains data on the declared income taxes BIDif gNi¼1 for the

whole population of taxpayers P, while the undeclared tax base is available only on

a small non-random sample of audited taxpayers S: BITif gi2S . The selection of

taxpayers to audit is performed according to undisclosed criteria established by the

Director of the Revenue Agency (D’Agosto et al. 2016), with the aim to recover as

much loss revenue as possible given the limited resources for performing the audits.

The tax-auditors do not have prior knowledge on the potential tax base, and hence

cannot base their selection directly on it. Therefore, their selection is based on the

auxiliary information available on the tax register. Units manifesting a suspicious

behavior may be flagged as at risk of non-compliance and selected for an audit. If

the selection process works as desired, it must be marginally correlated with the

corresponding potential and undeclared tax base. Hence, it is non-negligible with

respect to the outcome of interest and provides a sample affected by selection bias.
If not taken into proper account, this can invalidate any inference and negatively

affect the estimation accuracy (Särndal and Lundström 2005).

Let us denote the variable of interest Y, and let it be observed only on a non-

random sample of units S selected according to a certain sampling design. The

expected value of the outcome on each unit can be decomposed as:

E Yi½ � ¼ E Yi j i 2 S½ � � P i 2 Sð Þ þ E Yi j i 2 Sc½ � � P i 2 Scð Þ: ð1Þ

If the sampling design is non-ignorable, then:

E Yiji 2 S½ � 6¼ E Yi j i 2 Sc½ �;

and any inferential conclusion based only on observations i 2 S cannot be directly

generalized to estimate E Yi j i 2 Sc½ �. In the specific context of tax audits, this

implies that it is not possible to directly get any estimate for the potential tax base of
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not-audited units by using only information on the audited ones. By classical

sampling theory (Lohr 2019), a correct estimation based on S could be obtained if

the selection probabilities of each unit i ¼ 1; . . .;N in the sample pi ¼ Pði 2 SÞ
were known. These would allow to correct for the non-rapresentativeness of the

selected sample but, in general, are never available a-priori. Nevertheless, while it is

true that the outcome of interest is available only on units i 2 S, other covariates are
usually known on all units. These can be used to model the selection mechanism and

estimate the unknown inclusion probabilities p̂i; i ¼ 1; . . .;N, paving the way to

selection-bias correction techniques.

2.1 The Heckman model: a brief review

The Heckman two-stage estimation procedure was initially introduced by Heckman

(1979) as an econometric tool to estimate behavioral relationships from non-

randomly selected samples in a regression setting. It is the standard method used by

the Italian Revenue Agency to correct for the selection bias in the tax gap bottom-up

estimates (Bordignon and Zanardi 1997; Pisani 2014), as it is for many other fiscal

authorities (Werding 2005; Toder 2007; Imes 2013; Kumar et al. 2015). It models

the effect of the selection bias as an ordinary specification error problem, implying a

direct correlation between the outcome variable and the sampling mechanism. The

observed outcome yif gNi¼1 is assumed to be the realization of a bi-variate latent

process ðzi1; zi2Þf gNi¼1. The first latent component zi1 is the actual variable of interest,
while the zi2 represents the propensity to be selected of unit i. Given two disjoint

sets of covariates X1 ¼ x1i
� �N

i¼1
and X2 ¼ x2i

� �N
i¼1

, the two latent components are

then expressed as:

zi1 ¼ xTi1b1 þ ui1

zi2 ¼ xTi2b2 þ ui2
8i ¼ 1; . . .;N:

Their relationship with the outcome of interest is the following:

yi ¼
zi1 zi2 [ 0

Unobserved zi2 � 0;

�

where it becomes apparent how zi2 is the random quantity regulating the selection

mechanism. Given that the expression of the two latent components does not share

any covariates, if the two errors ui1 and ui2 are independent, then the selection

mechanism would be negligible with respect to the estimation of yi. However, if the
two errors are dependent, selection bias would affect any estimates based on the

known values of yi. In particular, Heckman assumes that ui1 and ui1 have a bi-variate
Normal distribution:
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ui1

ui2

� �

�N 2

0

0

� �

;
r21 r12
r21 r22

" # !

8 i ¼ 1; . . .;N; ð2Þ

where r12 ¼ r21 regulates the extent of the selection bias effect on the outcome. All

parameters can be estimated in the likelihood framework, where an expression of

the full likelihood can be found in Amemiya (1986). However, such inference was

initially discarded in the seminal paper by Heckman (1979) due to the too long

computing time it would have required. Heckman’s original proposal is instead

based on a limited information maximum likelihood criteria, where the sample

selection is characterised as a special case of omitted variable problem on the

observed sample yif gzi2 [ 0. It can be proved that the omitted variable is the so-called

Inverse Mills-Ratio:

kðxTi2b2=r2Þ ¼
Uð�xTi2b2=r2Þ

1� Uð�xTi2b2=r2Þ
; ð3Þ

where Uð�Þ denotes the cumulative distribution function of the standard Normal. Let
si be indicator variable defined as:

si ¼
1 zi2 [ 0

0 zi2 � 0

�

Then, the value of the Inverse Mills-Ratio can be estimated fitting a Probit model

for si on X2. We can then get an unbiased estimation of the model on the yif gzi2 [ 0

by using the following regression:

yi ¼ xTi1b1 þ bkkðxTi2̂b2=r̂2Þ þ �i ð4Þ

where bk ¼ r12
r2 and �i �

iid
N ð0; r2Þ. Sign and magnitude of bk summarize direction

and intensity of the relationship between the outcome variable and the selection

process. This estimation method can be proved to be consistent as long as the

normality of u2 holds and it is currently the standard way to obtain final estimates

for the Heckman model.

However, even if this model looks elegant and can provide an effective solution

in a lot of real world applications, it is not devoid of criticism (Stolzenberg and

Relles 1997; Puhani 2000). For instance, it is generally not possible to distinguish a

priori which covariates should affect the selection process and which ones the

outcome. In these cases, X1 and X2 may have a large set of variables in common (or

even be identical), breaking the theorethical foundations of the Heckman model. In

practice, estimation is often pursued neglecting this issue, but two main practical

complications may arise. First of all, Eq. 4 is only identified through the non-

linearity of the Inverse Mills Ratio in Eq. (3). Since kð�Þ is an approximately linear

function over a wide range of its arguments, collinearity problems are likely to

affect stability and reliability of the final estimates. Secondly, if the selection

depends on covariates that also affect the outcome, then the observed sample

yi; xi1ð Þf gzi2 [ 0 will not be representative of the whole population with respect to the
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covariates in common. If the same linear relationship between the covariates and the

response variable holds over the whole domain, then this would not be an issue.

When instead the linearity is just an approximation, this may lead to wrong

estimation of the corresponding slope coefficients. Indeed, the estimated slope will

be based only on the behavior over the observed range of the predictors, while it

neglects the possibly different behavior over the unobserved portion of their

domain.

In addition, one could discuss whether the hypotheses of the Heckman model

actually suits our application. First of all, Heckman’s correction relies on the linear

regression setting for the modeling of both the selection mechanism and the

outcome. As highlighted in the introduction, many real-world application find

linearity to be a too restricting assumption for such relationship. Secondly, we must

recall that the audit sample is not self-selected, but the Italian Revenue Agency
selects it through the set of globally available covariates X. This means that the

selection mechanism and potential tax base are marginally correlated, but this

correlation vanishes when conditioning on the covariate values. Hence, if the

propensity weights are correctly estimated and the estimated conditional mean

function is able to follow the true behavior of the outcome, the two processes shall

be independent. These last considerations exacerbate the flaws of the classic

Heckman model implementation, emphasising the need for alternative solutions.

There are many works that explore possible semi or non parametric expression of

the mean functions within the Heckman setting, for instance considering Polynomial
and Spline regression (Newey 2009; Marra and Radice 2013; Wojtyś et al. 2016)

and Generalized Additive Models (Wojtyś and Marra 2015; Hastie and Tibshirani

2017). These methods can be positioned in between the interpretability of linear

models and the flexibility of machine learning approaches. They can be seen as

natural competitors to the method we propose, but their investigation is out of the

scope of this work.

2.2 The 2-step Gradient Boosting approach

The approach considered in this paper is based on cost-sensitive learning (Elkan

2001; Breiman et al. 2017) as it is discussed in Zadrozny et al. (2003), Zadrozny

(2004), Cortes et al. (2008). It consists of a re-weighting scheme that switches from

the paradigm of Empirical Risk Minimization (Devroye et al. 2013) to Weighted
Empirical Risk Minimization (Cortes et al. 2010; Du Plessis et al. 2014; Bekker

et al. 2019). Observations less likely to be selected are given a larger weight to

correct for their under-representation in the selected sample. In particular, such

weights shall be equal to the inverse of the selection probability of each unit and

must be estimated through an auxiliary model. Once the weights are known, the

primary model (i.e. the prediction model) can be fit onto the re-weighted sample and

provide correct predictions - as long as the outcome variable and the selection

mechanism are marginally correlated, but conditionally independent given X.
Solutions of this kind are very common in the correction for bias deriving from non-

negligible sampling designs, and is usually referred to as propensity score weighting
(Rosenbaum and Rubin 1985; DuGoff et al. 2014). It is applied in different

123

244 P. Alaimo Di Loro et al.



contexts, e.g.: when incorporating the response probability to correct for the non-

response bias (Bethlehem (1988), Alho (1990), Bethlehem (2010)), in the case of

the inverse probability of treatment weighting (IWTP) (Hirano et al. (2003), Austin

and Stuart (2015)). It relies on the accuracy of the predictions of both the auxiliary

classifier in the first step and the primary (substantial) predictive model in the

second. Here we propose using the Gradient Boosting algorithm (described in

Appendix A) on Classification And Regression Trees (CART) in both steps. The

CART GB can easily model non-linear relationships, avoid over-fitting through

regularization and it does not rely on any target distributional assumption. It is

known to provide good predictive performances in many application fields, and

already proved to perform well in the estimation of propensity scores in previous

works (Lee et al. 2010; Deng and Yan 2019). The comparative merits of the

proposed method and the Heckman model on the audited units are verified in Sect.

3. The same is not possible on un-selected units (not audited) as their true outcome

is unknown. Hence, we propose a toy example in Appendix B where the selection

mechanism tries mimicking the one of IRA audits.

2.2.1 The method

Let the complete population list i ¼ 1; . . .;N be available and accompanied by a

common set of covariates xif gNi¼1 and an indicator variable:

si ¼
1 yi is observed

0 yi is not observed

�

The theoretical foundations of the proposed methods rely on the conditional writing:

pðYi; Si j xiÞ ¼ pðYi j si; xiÞ � pðsi j xiÞ;

and the following set of hypotheses:

H1 the probability to be included in the sample for unit i, Pðsi ¼ 1jxiÞ, can be

explained by the observed set of covariates xi;
H2 the response variable of unit i, Yi, is conditionally independent from the

sampling design given the vector of covariates xi:

PðYijsi; xiÞ ¼ PðYijxiÞ 8 i 2 f1; . . .;Ng:

H1 is an hypothesis that must hold also in the Heckman setting. The most relevant

assumption is instead H2, which implies that the marginal dependence of the

outcome variable on the sample design E½Yijsi� 6¼ E½Yi� is fully explained by the

available covariates:

E½Yijsi; xi� ¼ E½Yijxi� 8 i 2 f1; . . .;Ng: ð5Þ

As mentioned before, the tax auditors perform the risk-assessment using only the

known covariates and hence H2 can be reasonably assumed to hold in this context.
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From a purely theorethical point of view, Eq. 5 could be estimated by simply

fitting the chosen model on the set of selected units. However, since selected units

differ from the un-selected ones in terms of the covariates values, the selected

sample is not fully representative of the whole population. The optimization

procedure favor good fits on the over-represented set of units and disregard the

performances on under-represented ones. Hence, if the selection scheme is sharp in

the covariates space, predictions on the un-selected units will rely on a certain dose

of extrapolation. Propensity score weighting is useful to correct for this kind of bias,

and its implementation is sketched here below.

1. Classification. A chosen classifier is trained on the whole sample with the

binary variable selected in the sample si as the target. It must detect patterns and

regularities between the selection mechanism of the units and the corresponding

covariate values xi, and then provide accurate estimates of the selection

probabilities p̂if gNi¼1. The estimated selection probabilities are nothing else but

approximations to the first order inclusion probabilities:

p̂i � pi ¼ PðSi ¼ 1 j xiÞ; i ¼ 1; :::;N: ð6Þ

This practically is an attempt to reverse-engineer the selection criteria adopted

by the tax-auditors to select units to audit.

2. Prediction. A prediction model is trained only on the selected sample

i : si ¼ 1f g with the response variable yi as a target. It is now possible to

incorporate the inclusion probability resulting from Eq. 6 as individual weights

in order to correct for the imbalanced representation of different units. These

can be used to produce the inverse weights defined as:

mi ¼
PðSi ¼ 1Þ

p̂i
/ 1

p̂i
; i ¼ 1; . . .;N; ð7Þ

where PðSi ¼ 1Þ is the probability to be selected notwithstanding the set of

covariates, hence constant across individuals. The formula of the inverse

weights in Eq. 7 derives from the Bias Correction Theorem (Zadrozny 2004;

Cortes et al. 2008), which states the following.

Theorem 1 For all distributions D, for all classifiers h and for any loss function
l(h(X), y), if we assume that Pðsjx; yÞ ¼ PðsjxÞ (that is, S and Y are independent
given x), then:

EX;Y �D lðhðXÞ; YÞ½ � ¼ E
X;Y � eD

lðhðXÞ; YÞjs ¼ 1½ �;

where eD � Pðs ¼ 1Þ DðX;Y ;sÞ
PðS¼1jxÞ

2.3 Estimation of uncertainty

Machine Learning models often cannot rely on parametric/distributional assump-

tions on the data generation mechanism for directly deriving interval estimates of
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their predictions. Different approaches to the construction of non-parametric

intervals have been proposed in the literature. One very common technique directly

estimates the conditional quantiles of the response variable at the desired levels a=2
and 1� a=2 by performing two separate quantile regressions4. While this should

provide intervals that do guarantee the nominal coverage of 1� a, this method

assumes unbiasedness of the estimates and neglects the propagation of model

uncertainty at all stages of the procedure (i.e. the mean regression and the quantile

regressions). Other alternatives rely onto empirical approaches to derive the error

distribution of the predictions, such as: bootstrap on the observed set (Efron et al.

(2003), Heskes (1997)); bootstrap on the prediction error (Coulston et al. 2016); fit

of additional predictive models that target the observed predictions error (Shrestha

and Solomatine 2006). Here, we consider a technique proposed in Kumar and

Srivistava (2012), which can be seen as a direct extension to the non-parametric

framework of the work originally proposed by Stine (1985) in the linear regression

setting.

Let us assume the observed outcome Yi can be expressed as:

Yi ¼ /ðxiÞ þ �i;

where /ð�Þ is the true and unknown function which links covariates and outcomes

and �i is the sampling noise (or error term, independent of Yi and possibly of xi).
Training a predictive learner to provide predictions for the Y’s given x means

building an approximation F	ð�Þ to /ð�Þ which is optimal in some terms (i.e.

according to the chosen loss function). The obtained F	ð�Þ is just one realization of

all possible approximations of the true underlying function /ð�Þ we could get

training the same learner on different sets of data ðY; XÞ. Intrinsically, it must be

characterised by some variability and it is also likely to be biased (Hastie et al.

2009). The generic outcome Yi can then be expressed as:

Yi ¼ F	ðxiÞ þ SF	 ðxiÞ þ BF	;/ðxiÞ þ �i;

where SFðxiÞ is the model variance noise term (or model uncertainty, arising from

the variability of the estimated function) and BF;/ðxiÞ is the model bias term. In

order to build meaningful and reliable intervals for the predictions, all these sources

of error shall be properly quantified.

Following Kumar and Srivistava (2012), let us randomly build B bootstrap
samples of arbitrary size n from the original train set. All samples are approximately

distributed according the empirical (observed) joint distribution of Y and X. The
same algorithm shall be trained separately and independently on the B bootstrapped

samples, yielding B different approximations of the function relating covariates and

the expected value of the response variable F	
bð�Þ

� �B
b¼1

. Using each of these

functions, we can get B sets of predictions on all the data. The whole procedure is

outlined in Fig. 1.

Quantifying model uncertainty. The model uncertainty distribution can be

trivially derived using only the B bootstrapped sets of predictions, independently

4 This can be trivially achieved by setting the proper loss function.
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from the observed values yi. For B large enough, the average F	
BðxiÞ is a good

approximation of the expected value E F	ðxiÞ½ �. Centering the bootstrapped

predictions about their mean, we then get B realizations from the model noise

distribution (i.e. zero mean and variance V F	ðxiÞ½ �) for each observed covariate

vector xi:

F	
bðxiÞ � F	

BðxiÞ ¼ ŜF;bðxiÞ�SF	 ðxiÞ; i ¼ 1; . . .;N; b ¼ 1; . . .;B:

These realizations can then be used to compute separately for each xif gNi¼1 the

empirical quantiles at levels a=2 and 1� a=2, and derive the desired intervals for

each F	ðxiÞ; i ¼ 1; . . .;N5. If F	ðxiÞ were guaranteed to be unbiased, this would be

sufficient to get intervals for /ðxiÞ ¼ E Yijxi½ �. However, we also need to quantify the
bias BF;/ðxiÞ in order to get intervals for /ðxiÞ and the sampling noise to extend the

intervals to Yi.
Quantifying sampling noise and bias. Disentangling sampling error and bias is an

impossible task. However, for the sole purpose of building prediction intervals,

there is no counter-indication in quantifying their sum altogether. Let us denote the

sum as tðxiÞ ¼ BF;/ðxiÞ þ �i. Considering for each xi the bootstrapped averages

F	
BðxiÞ, we get that:

V F	
BðxiÞ

h i
¼ V F	ðxiÞ½ �

B
!B!1

0:

Therefore, for B large enough, the obtained bootstrap averages F	
BðxiÞ

n oN

i¼1
are

affected by a negligible amount of the model variance. Hence, the empirical errors

t̂ðxiÞ ¼ yi � F	
BðxiÞ are N realizations (i.e. one for each observation) from the dis-

tribution of tðxiÞ. One single realization for each xi does not allow to get an

approximation for the observation-specific distribution of tðxiÞf gNi¼1, but resorting

to some simplifying assumptions it becomes possible to pool the realizations of tð�Þ
at the different xi’s to get an overall estimate of bias and sampling noise.

– If the distribution of tðxiÞ is independent from xi, which is to say

ti �
iid
ftð�Þ; 8i ¼ 1; . . .;N, all N errors tðxiÞf gNi¼1 can be used to approximate

the common ftð�Þ and compute the a=2 and 1� a=2 quantiles.

Fig. 1 Bootstrapping procedure

scheme. Ŷ;i represent the
N-sized vector of predictions on
the whole observed set of
covariates X

5 Note that this quantification is able to account also for possible heteroskedasticity of the outcome.
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– If the independence assumptions of tðxiÞ on xi does not hold, which is to say

tðxiÞ ¼ tijxi �
ind

ftðxiÞ; 8i ¼ 1; . . .;N, we still need to assume there exists a

predictable pattern between them. In this case, we can still partially pool all the

tðxiÞ’s together by fitting an additional regression model f 	ðxiÞ ¼ t̂ðxiÞ.

Combining the two sources of error. Finally, under the working assumption of

independence between the model variance noise estimators and model bias plus
sampling error estimators t̂i, we can obtain the quantile at any level p of the overall

noise distribution as:

qpðxiÞ ¼ ŜF;BðxiÞp þ tðxiÞp:

The confidence interval at level 1� a for the predictions can be computed as:

C1�aðYiÞ ¼ F	ðxiÞ þ qa=2ðxiÞ; F	ðxiÞ þ q1�a=2ðxiÞ
� �

:

Performances of this interval-building procedure are assessed in practice in the

application of Sect. 3 and on the toy-examples of Appendix B.

3 Estimation of the Italian Value-Added Tax (VAT) gap

The reference population under analysis is composed of all the Italian individual
firms that were included in Tax Register for the fiscal period 2007-2014. Tax

auditing is performed yearly within every fiscal period on the same set of audited

units, which usually spans a 7 years time. Since the analysis here performed dates

back to 2018, we will be referring to the most recent year available at the time,

which was 20116.

The whole population consists of N ¼ 2:3 millions individual firms, where only

the 0:82% have been audited (see Table 2). About 159 different features are

available in the Tax Register, all concerning various area of information about the

owner and its firm: personal data; economic sector of operation; taxable income and

tax by type; revenues, expenses incurred, taxable base, gross and net tax;

presumptive turnover provided by Business Sector Studies. A summary of the areas

and categories of the available covariates organized by source is reported in Table 1.

Unfortunately, a more detailed list cannot be provided for under the signed non-

disclosure agreement.

The whole analysis is carried out using the open-source software R, exploiting the

tidyverse logic for an easy and efficient data wrangling and management (Wickham

et al. (2015), Wickham (2016)). Data in the Tax Register Database are extremely

’sensitive’ and were analyzed under strict processing conditions. Only one personal

computer was allowed to interface with the database and download the data, which

6 An unavoidable delay occurs between the availability of the audit data and the fiscal year of reference.

There is a lag between the fiscal (audited) year and the year in which the control is performed and the

auditing process performed by the IRA requires (on average) two years to produce final data from the raw

ones. Estimates on a specific tax year are usually available within six to seven years from the fiscal year of

reference.
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could not be moved in any case to external virtual machines. Therefore, the analysis

has been performed on a single laptop with particularly limited computing

capabilities7. This has no direct effect on the predictive performances, but has

significantly slowed down the fitting time and, most importantly, has not allowed

the contemporary consideration of the whole dataset of individual firms8. Therefore

we consider only a sub-sample of all the not-audited units, stratified controlling for

three main demographic variables: fiscal regime, regions and branch of economic

activity (ATECO). All the audited units (low in numbers) have been included in the

analysis. The final composition of the sample is reported in the second column of

Table 2.

Sub-sampling on the not-audited taxpayers shall directly affect only first step of the

modeling approach (Sect. 2.2), while impacts the second one only indirectly (i.e.

estimation of inclusion probability could be less accurate and affect the selection bias

correction). Nevertheless, the under-sampling of the majority class (Chawla 2009; He
and Garcia 2009; Fernández et al. 2018) is one of the most common strategies to

handle imbalanced classification tasks. Given the great imbalance between audited

and not-audited taxpayers in our population, the necessary sub-sampling could be

beneficial to the overall classification performances (Lee 2014; More 2016).

The aim of this paper is to verify the comparative performances of the 2-step GB
(introduced in Sect. 2) and the standard Heckman model (currently adopted by the

IRA) for the estimation of individual potential tax bases BIT. Conclusions will

naturally extend to the evaded tax bases (BIND) and the overall VAT gap. This

straight-up comparison does not allow to single out whether it is the Gradient
Boosting or the 2-step strategy to mostly affect the final performances. Let us stress

how our work is mainly motivated by the adoption of the Gradient Boosting. The
2-step correction is adopted as a tool to account for the sample selection bias in this

alternative setting, and we expect it to have a minor impact. One of the reviewers

keenly observed that performing further comparisons with semi-parametric versions

of the Heckman model (Li and Racine 2007; Newey 2009; Wojtyś and Marra 2015;

Wojtyś et al. 2016) would allow dissolving this doubt. This point is indeed relevant

and deserves further investigation.

The flow of the analysis for both models is resumed in Fig. 2.

The raw data have undergone a common pre-processing step. This encompassed

joining the information derived from different sources, cleaning the uninformative

variables (i.e. variables with unary values or high proportion (more than 80%) of

missingness), and imputing the missing values for the remaining ones (using mean-

subsitution). Further data manipulation (e.g. standardization, log-transforms, etc.),

currently adopted by the IRA to favor the performances of the Heckman model, has

been considered also in our setting. Let us point out that it has not sensibly affected

the performances of our model9.

7 Processor: Intel Pentium dual-core E1040; RAM: 4gb.
8 RAM was too limited.
9 The Gradient Boosting is not highly affected by the same data criticism that plagues the standard linear

regression setting, e.g. multicollinearity, skewness, deviations from Normality assumptions, etc. (Efron

and Hastie 2016).
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This version of the dataset is then provided as an input to our method.

Observations have been split in a 70%=30% proportion between train set and test

set, controlling for the audited and not-audited variable (see Table 3).

On the other hand, the cleaned version of the dataset provided as an input to the

Heckman model contains only a subset of all the available features as selected by

the IRA). Unfortunately, we are not allowed to disclose what and how many

variables are actually considered, but we can share the IRA guidance on the feature-

selection process. First, a comprehensive set of relevant variables is selected by

considering different criteria: prior knowledge on the phenomenon (i.e. some

variables are kept because presumed to be important for economic reasons); bi-

variate dependence and correlation scores between the feature and the target (chi-

square test, t-test, F-test, etc.); multivariate selection based on variable importance

(decision trees). Second, the Variance Inflation Factors (VIF) of a probit and a

linear regression coefficients are checked in order to control for multi-collinearity

and drop additional features.

At this point, observations are split in train and test according to the same seed,

so that the Heckman model is trained and tested on the same units of the 2-steps GB

and results are comparable.

3.1 2-steps GB fitting and uncertainty assessment

The procedure outlined in Sect. 2.2 involves the subsequent application of two

different CART-based gradient boosting algorithms: a classification model targeting

the auditing probabilities pi and a weighted regression model targeting the potential

tax base BITi. These have been implemented in the software R using functions from

the package gbm (Ridgeway 2007). In particular, the function gbm from the

homonym package fits the model to a train set and gives control over a variety of

arguments.

A very important role is played by the bag.fraction, i.e. the fraction of

randomly selected train set observations used to propose the next tree in the

expansion. A value lower than 1 introduces randomnesses into the model fitting and

prevents overfitting or getting stuck in local maxima10. The user can pick different

regularization strategy to evaluate the loss function at each iteration. If

bag.fraction is lower than 1, then out-of-bag validation (bagging (Breiman

1996)) gets feasible; alternatively, one may select a train.fraction lower than

1 (proportion of units in the train set) and perform hold-out validation; finally, one
may set a number of cv.fold [ 2 to split the train set in different folds and

perform a complete cross-validation. As by default, our implementation exploits the

out-of-bag validation as a good compromise between speed and accuracy. The

bag.fraction value has been set to 0.5 for both steps.

Finally, the fit of any CART-based GB depends on some major tuning

parameters. The most relevant are: the number of iterations n.iter, the depth of each

single tree d, the minimum number of observations in the final nodes of each tree,

and the learning parameter k. They are not directly estimated in the fitting process,

10 This is a non-parametric implementation of the stochastic gradient descent.
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Table 1 Summary of the main covariates obtained from the Tax register and the Tax audits, organized by

category

Source Category Features

Tax register Personal data Age (individual)

Gender (individual)

Fiscal regime (individual)

Branch of economic activity (firm)

Region (firm)

IRAP Amortization

Operating costs

IRAP total revenues

IRAP total tax

Net production value

Revenues

PIT Personal Income Tax

Labour cost (amount of)

Negative components of income (costs and expenses)

Revenues from activities

Gross income

Income

Total remuneration

Tax deductions

Input/Output Tax

Other incomes

Total expenses

Profit

VAT Operations generating VAT

Value Added Tax

Purchases and imports

Total VAT credit

Volume of business (BID)

Input/Output Tax

Taxable transactions

Tax audits Audit Potential volume of business (BIT)

Undeclared volume of business (BIND)

Assessment indicator variable

Table 2 Total and sampled

population of individual firms
Fiscal audits Total population Sub-sample

Frequency Percentage Frequency Percentage

Not-audited 202750219 99:18% 450489 70:85%

Audited 180718 0:82% 180718 29:15%

202930937 100% 640207 100%
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but must be fixed before running the algorithm. An accurate choice of these

parameters is key to avoid over-fitting and get good out-of-sample predictive

performances. Typically, a fixed grid of different parameters combinations is built,

and the combination returning the best performances (according to some metric) is

chosen. The refinement and extension of the grid must take into account the

computational time to fit and validate all the alternatives. Given the computational

limitations, we had to limit the tuning to a very rough grid in both steps. The

performances for different combinations have been validated using a naive (but

efficient) hold-out logic.
First step. The classification model of the first step consider the whole sub-

sampled population of 640207 units, with the audited/not-audited variable as target

(450489 not-audited and 180718 audited). The final outcomes are approximations

p̂if gNi¼1 to the inclusion probabilities Pði 2 sÞf gNi¼1 of each unit. The number of

minimum observations in each final node has been fixed to the default value of 10,

while the tested n.iter, d and k belonged to the following sets:

n:iter 2 f30; 40; . . .; 1000g; d 2 f2; 3g; k 2 f0:01; 0:02; . . .; 0:1g

The metric chosen to evaluate the model performance in this step is the Area Under
the Curve (AUC, Fawcett (2006)) score on the test set . The optimal choice returned

an AUC value of 0.8 and was associated to the set of parameters:

fn:iteropt ¼ 1000; dopt ¼ 2; kopt ¼ 0:1g :

The gbm function automatically returns variables scores of their importance in the

fitting process (roughly speaking, the percentage of splits they determined). The

Fig. 2 Different steps of the analysis starting from the raw data up to the implementation and
performance comparison between the two models

Table 3 Train and Test set sizes
Train set Test set Total

Not-audited 310836 130653 450489

Audited 130064 50654 180718

440900 190307 640207
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variables detected as most discriminating are the declared tax base (BID), the

activity branch, the dimension, and the incomes of the firm. This pattern is evident

also by performing some basic descriptive analysis on the available data. For

instance, Table 4 reports some distribution summaries of the BID separated in

audited and not-audited units. The difference between two groups is really signif-

icant (t-test 1850295:75 vs 920834:80; p\0; 001). The tax-audit selection criteria is

skewed toward taxpayers with high value of the BID and highlights the inclination

of the IRA to audit firms with larger business volumes.

Second step. The regression model of the second step considers the 180718
audited units, with the BITi as target variable. Each observation in the train set is

weighted by the inverse of the predicted inclusion probability resulting from the

previous step. This can be done by utilizing the argument weights in the gbm
function. In practice, when computing the loss function, the error on each unit is

weighted by:

mi ¼
1

p̂i
; 8 i 2 s:

The optimal parameters have been chosen by minimazing the Mean Squared Error
(MSE) index on the test set. For a clearer interpretation of the results, the MSE can

be divided by the variance of the test-set and subtracted to 1. This yields a pseudo-

R2 measure of goodness of fit:

eR2 ¼ 1�MSE

r2yte
;

where eR2 � 1 implies a perfect fit, eR2 � 0 (or \0) denotes a bad fit. The best value

obtained for the eR2 on the testing set is 0.828, with tuning parameters:

fn:iteropt ¼ 380; depthopt ¼ 2; kopt ¼ 0:1g

The predictive performances of the 2-step GB and the Heckman model (fitted on the

same train set) are visually compared in Fig. 3. The largest errors committed by the

2-step GB are lie in the bottom-right section of the left plot in Fig. 3. These are

characterized by a substantial underestimation of the true potential tax base for firms

with unexpectedly large BIT. These errors are in common with the standard

Heckman model, as the same points are clearly visible also in the bottom right

section of the right plot in Fig. 3. Apparently, the large BIT of those units cannot be

explained in terms of the available covariates by neither of the two models. At the

same time, the Heckman model shows an evident overestimation pattern that is

absent in the 2-step GB. This behavior is typical of when the linearity assumption is

violated or the trend changes at different sections of the covariates space. This

impacts the bias and variance of the final prediction function, that lacks the suffi-

cient flexibility to accommodate any of the two behaviors.

The accuracy of the predictions of both models are compared also (and most

especially) on the test set (see Table 5). While the aggregate estimates of the total

BIT are very close to each other, it is possible to notice strong differences in terms
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of individual accuracy. Indeed, the eR2 of the Heckman model is equal to 0.657,

which is sensibly lower value than the one 0.828 achieved by the 2-step GB.

It is thus evident how the non-linearity of the CART-based GB is extremely

beneficial to better capture the complex patterns relating the covariates and the

outcome. A possible halfway solution would be to consider an Heckman model with

non-linear effects, such as local polynomials, smoothing splines, or Generalized
Additive Models (Li and Racine 2007). These have already been successfully

considered in other contexts (Newey 2009; Marra and Radice 2013; Wojtyś and

Marra 2015), and future research efforts shall be devoted to investigate their merits

and to compare them with our proposal.

Interval estimates. Interval estimates for observations in the train and test sets

have been produced following Sect. 2.3 on the second step of the procedure, while

keeping the first step fixed. This choice has been driven by the need to reduce the

overall computational cost, which was especially high for the classification task.

The number of bootstrap samples has been set to B ¼ 100, each with size

nB ¼ 130064. Two alternative models for the bias and sampling error tðxiÞ ¼
BF	 ðxiÞ þ �i have been considered. The first assumes that the distribution of tðxiÞ ¼
ti is independent of xi, implying constant bias over the whole set of units. The

Table 4 Descriptive statistics on

the distribution of the BID for

audited and not-audited units

Not-audited Audited

Mean 920834:80 1850295:75

Median 420176 730362

Standard deviation 2300980:72 3870869:98

Percentiles 25 190736 300532:75

50 420176 730362

75 880589 1690942:50

Fig. 3 Comparison of observed and predicted values of the BIT for the 2-step GB (left) and the Heckman
model (right), on all the audited units
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second allows the conditional mean of ti on xi to depend on the predicted value

F	ðxiÞ:

E ti j xi½ � ¼ b0 þ b1 � F	ðxiÞ;

where b0 and b1 can be estimated through Ordinary Least Square (OLS). Confi-

dence intervals for the conditional mean E ti j xi½ � can then be directly derived in the

OLS setting.

Let us denote the prediction intervals at level a ¼ 0:95 as

C0:95ðxiÞ ¼ l̂0:95ðxiÞ; û0:95ðxiÞ
	 


. Comparative performances of the resulting inter-

vals are compared on the whole set of audited units s, on the train set str, and on the

test set ste. The relevant metrics are the coverage and the average width, defined
respectively as:

Cov0:95 ¼
X

i

I l̂0:95ðxiÞ; û0:95ðxiÞð Þ yið Þ

�W0:95 ¼
1

N

X

i

û0:95ðxiÞ � l̂0:95ðxiÞ
	 


Results are summarized in Table 6. Both approaches provide a satisfying coverage,

which is really close to the nominal level of 0.95. The linear model on ti presents
slightly lower coverage in all sets, but this is more than compensated by the greatly

improved performances in terms of average width. It is also interesting to notice

how performances are very similar across all the sets considered (all the audited,

only the train set, only the test set). This is reassuring in terms of the transferability

of the same performances on the non-audited set (which cannot be tested because of

the unobserved true outcome). While the results are more than satisfactory, high-

lighting a good robustness of this technique, it is strongly suggested to consider both

steps in the interval building procedure. This would propagate the uncertainty up to

the final estimates, and potentially recover the 2 nominal coverage points lost in the

bias linear model.

It may be of primary interest obtaining an interval estimate for the overall BIND,

verifying if the observed value on the test set is contained within the interval

bounds. However, there is no way to quantify the aggregate model bias and
sampling error on one single observation. We thus account only for the model

variance, and obtain the intervals as they are reported in Table 7. The observed

Table 5 Observed and estimated values of the total undeclared tax base BIND and the potential tax base

BIT (in millions) on the test set (1st and 2nd rows); eR2 (3rd row)

Observed 2-step GB Heckman

BIND 314.364 292.400 340.375

BIT 10315:864 10293:901 10341:875

eR2 0.828 0.657
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value of the BIND, either in the train, test and complete set, is within the estimated

bounds.

In terms of computational burden, the complete bootstrapping procedure took

approximately 18 hours (with B ¼ 100) on the considered hardware. Greater values

of B can only improve the interval approximations, with theoretical justification on

the optimal choice of B in Hall (1986), but require more computational power (or

time). Generally speaking, increasing the size of B is not a big deal: the

computational time increases linearly with B and it could be drastically reduced by

using a better performing processor, or by parallelizing the procedure on a

reasonable number of cores.

3.2 An estimate of the revenue loss and VAT evasion intensity

The two models are then used to produce predictions for all the units in the not-

audited population.

We here focus on the results from the 2-step GB, being the one with better

performances in all metrics. Given the stratified structure of the sample, we trust

that these estimates will reflect properly the behaviour in the general population.

The predicted VAT gap turnover ^BIND ¼ ^BIT� BID is of about 3.36Bln of euro

(3036009300741€), with an interval of [3.03Bln €, 3.56Bln €].
Another quantity of interest is the so-called VAT evasion intensity, here defined

on the line of the evasion intensity used in Braiotta et al. (2015). A synthetic

measure p of it is defined as the ratio between the undeclared tax base and potential

tax base:

Table 6 Intervals evaluation

metrics for the two proposed

approaches: constant bias VS

bias increasing linearly with the

prediction value

Metric Bias model Set

Audited Train set Test set

Cov0:95 Constant 0.960 0.961 0.957

Linear 0.93 0.931 0.928

�W0:95 Constant 224’961 224’977 224’924

Linear 163’091 220’081 162’120

Table 7 Intervals for BIND and respective true observed value, in Millions

Parameter Set

Audited Train set Test set

BIND 1’041.415 727.051 314.364

C0:95 (932.371, 1’064.755) (655.418, 757.978) (278.110, 317.081)
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p ¼
PN

i¼1 BINDi
PN

i¼1 BITi

:

If values at the individual level are available, it is also possible to compute the unit

specific evasion intensity as:

pi ¼
BINDi

BITi
; i ¼ 1; . . .;N:

Low values of the ratio indicate a compliant behaviour, and viceversa.

The observed VAT evasion intensity on the audited taxpayers is of p ¼ 23:09%.

The estimated p̂ on the audited set obtained from the 2-step GB and the Heckman

models are 22:12% and 25:89%, respectively. The former provides a result way

closer to reality than the latter Using the predictions on the entire sub-sample of

taxpayers, the estimated intensity p̂ is 30:40% for the 2-step GB and 29:77% for the

Heckman model. These estimates are in line with the quantification of the Tax Gap

built using top-down approaches by the Italian Ministry of Economics and Finance

for the same years, as reported in MEF (2014), OECD (2016). It is very interesting

to notice how the evasion intensity is estimated to be larger on the whole sample

than on the set of audited units. At the same time, the observed average evaded by

the audited taxpayers amounts to 550637:09, while the average evaded in the whole

sample estimated by the GB is equal to 520345:24. This suggests that the Italian

Revenue Agency is not selecting the individuals with the larger evasion intensity.

Apparently, the Italian Revenue Agency favors the auditing of individual firms with

large business volume and hence the larger potential to evade large amounts (in

absolute terms). It is less interested in individual firms with small business volume,

even supposing they present a large evasion intensity. This is probably because each

single small individual firm, even if non-compliant, represent only a small

percentage of the total revenue loss.

Individual level predictions allow also the estimation of the evasion intensity of

specific group of taxpayers pc. They may be used to identify classes of individuals at

high-risk of evasion, and may be of help in the selection procedure of future fiscal

audit. The intensity related to a specific class of individuals c is straightforwardly

estimated as:

p̂c ¼
P

i2c
^BINDi

P
i2c ^BITi

; c 2 P 1; . . .;Nf gð Þ;

where P 1; . . .;Nf gð Þ is the power set of the the population indices.

Unfortunately, description of the results is limited by the confidential nature of

the information. We are allowed to show the results related to the intensity by age

class, just as an example. The observed intensity on the audited taxpayers highlights

a decreasing trend by age. The 2-step GB returns results that are coherent with the

observed values, both in terms of magnitude and direction. The Heckman model

over-estimates the intensity in all classes and, most importantly, does not recover

the true age trend in the older classes (see Table 8). Table 9 shows how the

estimated pattern on the whole sub-sample of taxpayers mimics the one on the
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audited set. In particular, the 2-step GB emphasizes differences between classes: the

7 points gap between the youngest and the oldest class estimated by the Heckman

model becomes a 15 points gap using the 2-step GB.

4 Concluding remarks

This work presents a technique for the bottom-up estimation of the Italian Value-

added tax (VAT) gap. It draws from the class of non-parametric Machine Learning

models and embeds a solution to correct for the selection bias due to the not-random

auditing strategy. The method most widely used in tax evasion estimates with risk-

based audit data is the standard Heckman model, currently implemented in lot of

countries all around the world (including Italy). The form currently adopted by the

IRA relies on linear models to describe both the selection mechanism of audits and

the individual potential tax base. This limits the covariates’ basin that this model

can consider, but most especially hinders its predictive performances. Real data

collected for administrative purposes often exhibit complex behaviors and

dependence patterns, which are hardly matched by the linearity assumptions or

Gaussianity. National agencies could leverage more recent techniques and a larger

portion of their data to detect high value tax evasion behaviors, define new tax

evasion patterns, and identify organized tax evasion networks. The OECD

guidelines of these last few years (see http://www.oecd.org/going-digital/ai/ and

Chapter 5 of OECD (2018)) continuously encourages the use of innovative machine

Table 8 Observed and estimated evasion intensity by age classes on the audited taxpayers

Age Size Observed Gradient Boosting Heckman

BIT
Bln

BIND
Bln

Prop BIT
Bln

BIND
Bln

Prop BIT
Bln

BIND
Bln

Prop

½18� 25Þ 270 0.06 0.02 25:24% 0.06 0.01 23:97% 0.07 0.02 28:55%

½25� 45Þ 7876 1.71 0.43 24:91% 1.69 0.41 23:92% 1.76 0.48 26:98%

½45� 65Þ 9275 2.35 0.52 22:25% 2.32 0.49 21:28% 2.42 0.59 24:71%

over 65 1297 0.39 0.08 19:84% 0.38 0.07 18:69% 0.43 0.12 27:67%

Total 18718 4.51 1.05 23:09% 4.45 0.98 22:12% 4.68 1.21 25:89%

Table 9 Estimated evasion intensity by age classes in the not-audited taxpayers

Age Size Gradient Boosting Heckman

BIT
Bln

BIND
Bln

Prop BIT
Bln

BIND
Bln

Prop

½18� 25Þ 976 0.13 0.05 39:07% 0.13 0.04 36:71%

½25� 45Þ 28250 4.26 1.45 34:10% 4.11 1.30 31:61%

½45� 65Þ 30496 5.64 1.60 28:45% 5.64 1.60 28:37%

Over 65 4485 1.02 0.25 24:65% 1.08 0.32 29:28%

Total 64207 11.05 3.36 30:40% 10.95 3.26 29:77%
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learning and AI methods to face these challenges. This does not necessarily mean

replacing the traditional approaches, but integrating the two in order to get a wider

horizon of possibilities to improve on policy-making.

The 2-step GB we are proposing drives toward this direction. It is based on the

CART-based Gradient Boosting algorithm, a powerful ensemble machine learning

technique that proved to perform very well over a wide variety of datasets. It can

detect non-linear and complex patterns in the data, it does not rely on strict

distributional assumptions, and it can exploit covariates of any size and nature. We

combined it with a re-weighting strategy to non-parametrically correct for the

selection bias of tax-audits, and we showed how it can substantially improve on the

predictive performances of a standard Heckman model (despite our computing

limitations).

As far as our application is concerned, the 2-step GB provided a better account of

variability in the observed potential tax base. The current standard (i.e. standard

Heckman model), on the contrary, flattened out most of the individual differences.

The potential predictive ability on the non-audited set could not be verified on the

real set of data, as the outcome on not-audited units is unknown. Therefore, we

proposed a toy example with a simulated non-random selection in Appendix B. The

proposed method was able to retrieve information from the artificially biased train

set and sensibly outplayed the Heckman model in terms of predictions on the un-

selected (unobserved) set of data.

The improved predictive power of the proposed method is extremely relevant

from many perspectives. The more accurate individual predictions can be used to

efficiently target potential evaders. For instance, deriving accurate evasion intensity

scores for all the taxpayers can help in the detection of units who are likely to hide a

large part of their incomes. This can be used to drive future selection audits,

simplifying the recover of the TAX revenue loss. Furthermore, it can help to frame

the significant challenges and opportunities facing tax administrations to better

manage compliance. As an example, the diagnostic of the 2-step Gradient Boosting

decision rules highlighted how the audit selection process performed by the Italian

Revenue Agency seems to not favor the selection of the less-compliant individuals
in relative terms, but in absolute terms. This choice looks reasonable in light of the

limited resources of tax administration offices and the consequent possibility to

check only a small portion of the whole population. However, it consistently

neglects the (potentially very large) portion of population of small-evaders that do

not report the most of their incomes.

Section 2.3 built upon established literature to propose a strategy for building

confidence intervals in the considered setting. This provided more than satisfying

results in terms of coverage (on the audited units) and interval width, which is

sufficiently small as compared to the magnitude of the predicted values.

Reassurance about the goodness of performances on the not-audited units are

obtained in the toy example of Appendix B.

The possible further developments of this work are various and promising. As

pointed out by one of the reviewers, National institutions like Bank of Italy or Istat

are recently leveraging Machine Learning to exploit the rich sources of unstructured

data (e.g. free text) available in the Big Data era. These can be profitably used to
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draw relevant insights on various social and economics aspects (i.e. consumers

behavior, population in general, macro-economic figures, etc.), but their use has

been so far hindered by the limitations of classical modeling in many application

fields. The adoption of machine learning techniques can favor the employment of

such unstructured data in this context, where useful patterns characterizing firms at

higher risk of evasion could be found in the auditors written report, on the web,

social media, etc.

Let us recall that the analysis exposed in this work has been performed only on a

small subset of all the available observations because of hardware limitations. We

are confident that way better results may be achieved by analyzing the whole set of

data. The improved computational power would allow the application of a complete

k-fold cross-validation, possibly on finer grids of parameters, and find a better

combination.

This work shows how linearity is a too strict assumption for achieving good

predictive performances in complex data such as those resulting from tax-audits.

We proposed one possible method to overcome this issue, but there are many others

that could achieve the same objective. Future studies may consider alternative non-

parametric learners for one or both steges of the 2-step method (such as Random
Forests, Extreme Gradient Boosting, Support Vector Machines, Neural Networks
etc.). Or, as mentioned in the main text, they could investigate the potential of the

semi-parametric Heckman model, i.e. with a mean term modeled as a Polynomial
and Spline regression (Newey 2009; Marra and Radice 2013; Wojtyś et al. 2016) or

Generalized Additive Models (Wojtyś and Marra 2015; Hastie and Tibshirani 2017).

It would be extremely interesting to compare the performances of the 2-step method

with these latter alternatives, as they parametrically embed a Heckman-style

correction. This could shed light on the comparative merits of the alternative sample

bias correction methods in this specific context.

A The Gradient boosting algorithm

The Gradient Boosting is a very powerful algorithm that allows building predictive

models for both the classification and regression tasks. It is an ensemble algorithm

that relies on the concept of boosting, which is a technique for reducing bias and

variance in supervised learning, firstly introduced in the seminal paper of Schapire

(1990). The Gradient in front of the term Boosting refers to a very flexible

formulation of the boosting, firstly proposed by Friedman (2001). This particular

version exploits the Gradient Descent in order to robustify and hasten the

optimization procedure on the loss function.

Let us consider the usual set of covariates X ¼ fx1; :::; xNg 2 X and the response

variable Y 2 Y. The final aim of any supervised learning algorithm is to train itself

on a set of data Xi; Yif gNi¼1 whose covariates and response variables are known, and

then produce an approximation F	ðxÞ to the function FðXÞ : X ! Y that generally

relates X and the expected value of Y|X. The approximation is obtained in such a

way that the expected value of a pre-specified loss function L(Y, F(X)) is minimized

with respect to the joint distribution of all the observed pairs (X, Y). In practice, the
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algorithm learns from the examples provided to it in the form of a train set and it

looks for that approximation F	 such that:

F	ðXÞ ¼ argmin
F

EY ;XLðY ;FðXÞÞ ¼ argmin
F

EX ½EyðLðY;FðXÞÞÞjX�:

The choice of the loss function depends on the nature of the problem and of the

outcome variable. For instance, in the case of the regression task, the usually

adopted loss function L(Y, F(X)) is the Mean Squared Error. The peculiarity of the

boosting procedure is that it approximates F(X) using a function of the form:

F	ðXÞ ¼
XM

m¼0

bmhmðXÞ

where hmðXÞ are functions known as Base Learners and bmf gM0 are real coefficients.

The base learners are functions of X derived from another, simple, learning algo-

rithm and the b’s are expansion coefficients used to combine the base learners

outcomes. Either the base learners and the expansion coefficients are estimated

using the data from the train set using a forward-stagewise procedure. As any

recursive algorithm, it starts from an initial guess F0ðXÞ and then the new set of

coefficients and learner are derived as:

ðbm; hmÞ ¼ argmin
b;h

XN

i¼1

LðYi;Fm�1ðXiÞ þ bhðXiÞÞ 8 m ¼ 1; :::;M ð8Þ

and

FmðXÞ ¼ Fm�1ðXÞ þ bmhmðXi; aÞÞ

Unfortunately, choosing the best pair ðbm; hmÞ at each step for an arbitrary loss

function is a computationally infeasible optimization problem in general. This is

where the gradient descent plays a key role, leading to the Gradient Boosting
algorithm. It solves the optimization problem in Eq. 8 through an approximation

that is legitimate whenever the loss function L(Y, X) is differentiable. At each step
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m ¼ 1; . . .;M, the base learner h(X) is chosen according to the best fit on the pseudo-

residuals eYi;m

� �N
i¼1

, deriving from the previous step:

hm ¼ argmin
h

XN

i¼1

L eYi;m � hðXiÞ
	 


;

where:

eYi;m ¼ Yi � qFm�1ðXÞ; i ¼ 1; . . .;N; q 2 Rþ:

The pseudo-residual values eYi;m

� �N
i¼1

play the role of the gradient, driving the

optimization procedure towards the right direction step after step. In this simplified

framework, given the base learner hmðXÞ, the best value b for bm can be obtained as:

bm ¼ argmin
b

XN

i¼1

LðYi;Fm�1ðXiÞ þ bhðXiÞÞ:

A very common modification to the standard gradient boosting algorithm includes a

shrinkage parameter k, which modifies the update rule in the following way:

FmðXÞ ¼ Fm�1ðXÞ þ kbmhmðXi; aÞÞ; m ¼ 1; . . .;M; k 2 ½0; 1�:

This parameter controls the learning rate of the algorithm and while introducing

some bias, allows for the regularization of the procedure and avoids over-fitting

(Efron and Hastie 2016). The whole algorithm is resumed in the pseudo-code

Algorithm 1.

The most common version of the Gradient Boosting uses fixed-size CART

(usually small, with low number of branches and/or splits) as base learners, whose

predictive ability is strongly enhanced by their boosting combination (Efron and

Hastie 2016). Either the shrinkage parameter and the parameters that define each

single random tree (number of splits, number of branches, etc.) are not estimated

during the procedure. In the Machine Learning context they are known as tuning
parameters and they need to be chosen in advance and stay fixed. Typically, they

are selected via searching procedure based on the cross-validation in order to avoid

over-fitting (Hastie et al. 2009).

B Toy example: houses to rent

We want to verify comparative performances of the Heckman model and the

proposed 2-step GB on a set of data in which we artificially induce a selection bias.
The considered dataset has been downloadeded from Kaggle11 and it contain

various information about houses to rent in different cities in Brazil (Rubens 2020).

It contains 100962 records, each with thirteen variables: two about the location of the
house (city and area), six house-specific features (number of rooms, bathrooms, ...),

11 https://www.kaggle.com.
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and five economic amounts (homeowners association tax, rent amount, property

tax).

We will consider the property tax, that is to say the annual tax the landlord should

pay on the considered property, as our outcome variable of interest. It has been

converted to the log-scale so that the Heckman linear predictor could respect its

natural domain. The same log-transform has been considered also for the 2-step GB

in order to guarantee the fair comparison of the two methods.

A preliminary exploratory data analysis and a brief data cleaning step is required

in order to favor proper fitting of both the models. The variable area has been

excluded from the analysis because it presents too many modalities (exactly 514), of

which many only have 1 or 2 observations. The variable floor is not available in the

23% of the records and its value has been imputed using by mean substitution

(complete average). The property tax is not available for 1596 observations and,

being this the outcome variable, such records have been omitted from the analysis.

Finally, all the economic features present some very extreme outliers, which can be

probably attributed to recording errors. In order to detect in an automatic way such

values, all these variables have been converted to the log-scale and all instances

trespassing the q0:75 þ 1:5
 IQR threshold (17 records) have been deleted12.

The resulting version of the dataset counts 9079 records. Now, we need to select

a sub-sample of observations to play the role of the audited taxpayers (both

covariates and outcome known), while the remaining the role of not-audited
taxpayers. The latter can be used to test the predictive abilities of the two models on

the set where the outcome is indeed unknown. This selection must be performed in a

way as similar as possible to how the Italian Revenue Agency selects the taxpayer to

audit, i.e. by trying to maximize the selection of units with the highest outcome

according to the available information. To this end, we realized that the Homeowner
Association Tax (HOA) is a good proxy for the property tax (PT). This association is
visible in the data, which show a correlation of � 0:55 on a linear scale and of

� 0:67 on the log-scale. We decided to pick a cut-off point, let’s say the 90th

percentile of the HOA, and audit all the units with HOA greater than the selected

cut-off point plus a small sample of units selected at random (5% of the total). The

HOA is then eliminated from the dataset. The two final groups are respectively

composed of 10304 (audited) and 70775 (not audited) records. Figure 4 shows how

our covariate-based selection mechanism induced a strong selection bias on the

outcome of interest.

In order to test the performance of the final predictive models also on the

‘‘audited’’ units, only the 70% of those are used in the training process while the

remaining 30% are kept out as testing set.

The Heckman model is fitted to the data through the function heckit from the

sampleSelection package available on the CRAN, which provides estimation

routines for a variety of tobit-like models. The 2-step GB is fitted through the

function gbm from the gbm package available on the CRAN. 5-folds cross-

validation (argument cv.folds of the gbm function) has been performed on the

same grid of the original application introduced in Sect. 3.

12 IQR is the interquartile range: q0:75 � q0:25.
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The final prediction accuracy has been measured in terms ofMean Squared Error
(MSE) on the test portion of the ‘‘audited’’ units and on all the ‘‘not-audited’’ units.

In order to re-scale by the prediction difficulty of each set, also a measure of

Relative Mean Squared Error (RelMSE) is provided, where the MSE is divided by

the variance of the observations in the test-set:

RelMSE ¼ MSE

r2yte
:

Results are summarized in Table 10.

We can clearly notice how the Gradient Boosting largely outperforms the

Heckman model, producing sensibly lower errors (especially on the set of not-

audited units). A graphical comparison of the prediction accuracy on the audited test

set and not-audited units is provided in Figs. 5 and 6, respectively. The Heckman

model predictions on the not-audited set seem to be strongly biased. It estimated

completely flawed coefficients for some variables, as they provided good fit on the

audited set but not on the not-audited set. Table 11 shows some of the most flawed

coefficients as they are compared with the ones we would have got with a standard

linear model on the whole set of units (audited and not-audited together). The 2-step

GB, thanks to its more flexible structure, is instead able to adapt to the behavior at

the borders of the observed covariates domain and keep more robust performances

in the two sets.

We also verify the ability of the proposed confidence interval construction to

guarantee the nominal coverage for both the ‘‘audited’’ and the ‘‘not-audited’’ units.

In particular, intervals are built assuming constant bias and their performances are

resumed in Table 12. Metrics are slightly better for the audited group, but coverage

is close to the nominal level in both cases. The average interval width is satisfactory

as compared to the magnitude of the outcome (�ynsel ¼ 4:95 and �ynsel ¼ 6:3).
We can then conclude that the non-linearity and distribution free-ness of the

Gradient Boosting, combined with proper weighting to account for the non-random

selection of the training units, provides a significant improvement in predictive

performances. This is especially true whenever it can be reasonably assumed an
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Fig. 4 Distribution of the outcome variable in the ‘‘audited’’ and ‘‘not-audited’’ groups on the linear (left)
and log (right) scales
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Table 10 Error metrics of the

two considered models on the

not-audited set (all out-of-

sample) and the audited test-set
units, in terms of MSE and

RelMSE

Model Not-audited Audited test set

MSE RelMSE MSE RelMSE

Heckman 9.696 6.32 0.759 0.379

2-step GB 0.794 0.439 0.730 0.365
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Fig. 5 Comparison of observed and predicted values for the 2-step GB (left) and the Heckman model
(right) on the audited units test set
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Fig. 6 Comparison of observed and predicted values for the 2-step GB (left) and the Heckman model
(right) on the not-audited units
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indirect correlation between the outcome of interest and the selection mechanism,

which is driven by (unknown) criteria depending on the available covariates.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s10260-022-
00643-4.
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Särndal CE, Lundström S (2005) Estimation in surveys with nonresponse. John Wiley & Sons, Hoboken

Särndal CE, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer Science &

Business Media, Berlin

Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227

Shrestha DL, Solomatine DP (2006) Machine learning approaches for estimation of prediction interval for

the model output. Neural Netw 19(2):225–235

Stine RA (1985) Bootstrap prediction intervals for regression. J Am Stat Assoc 80(392):1026–1031

Stolzenberg RM, Relles DA (1997) Tools for intuition about sample selection bias and its correction. Am

Sociol Rev, pp 494–507

Teramoto R (2009) Balanced gradient boosting from imbalanced data for clinical outcome prediction.

Statistical applications in genetics and molecular biology 8(1)

Tobin J (1952) A survey of the theory of rationing. Econom J Econom Soc, pp 521–553

Toder E et al (2007) What is the tax gap? Tax Notes 117(4):367–378

Werding M (2005) Survivor benefits and the gender tax gap in public pension schemes: observations from

germany. CESifo Working Paper Series (1569)

Wickham H (2016) Package ‘tidyr’

Wickham H, Francois R, Henry L, Müller K et al (2015) dplyr: a grammar of data manipulation. R

package version 04:3
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