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Abstract
In many longitudinal studies, information is collected on the times of different kinds
of events. Some of these studies involve repeated events, where a subject or sample
unit may experience a well-defined event several times throughout their history. Such
events are called recurrent events. In this paper, we introduce nonparametric methods
for estimating the marginal and joint distribution functions for recurrent event data.
New estimators are introduced and their extensions to several gap times are also
given. Nonparametric inference conditional on current or past covariate measures is
also considered. We study by simulation the behavior of the proposed estimators in
finite samples, considering two or three gap times. Our proposed methods are applied
to the study of (multiple) recurrence times in patients with bladder tumors. Software
in the form of an R package, called survivalREC, has been developed, imple-
menting all methods.

Keywords Censoring · Gap times · Kaplan–Meier · Multiple events · Recurrent
events

1 Introduction

In many longitudinal studies, subjects can experience recurrent events (Cook and
Lawless 2007). This type of data has been frequently observed in medical research,
engineering, the economy, and sociology. In medical research, recurrent events could
be multiple occurrences of hospitalization for a group of patients, multiple recurrence
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episodes in cancer studies, recurrent upper respiratory and ear infections, repeated
heart attacks, or multiple relapses from remission for leukemia patients (Byar 1980;
Pepe and Cai 1993; Wei et al. 1989). The analysis of such data can be focused on
time-between-events (gap times) or time-to-event models. In time-to-event models,
the events of concern usually represent different states in the disease process (e.g.,
alive and disease-free, alive with disease, and dead) and they are modeled through
their intensity functions (Andersen et al. 1993; Meira-Machado et al. 2009; Meira-
Machado and Sestelo 2019). In these models, the estimation of these quantities is
essential for long-term survival prognosis. For instance, in cancer studies, one could
consider the time to recurrence and the time to death for recurrent patients as the gap
times. Under this setting, many other medical contexts can be found in the literature,
such as asthma, HIV/AIDS, heart disease, dementia, Alzheimer’s disease, etc.
Though the proposed methods can be used in both settings, in this paper, we consider
that the events are of the same nature and focus on time-between-events. This line of
research has received much attention recently. Among others, they were investigated
by Campbell (1981), Burke (1988), Lin et al. (1999), Van Keilegom (2004), Peña
et al. (2001), de Uña- Álvarez and Meira-Machado (2008), de Uña- Álvarez and
Amorim (2011) and Moreira et al. (2017) whose interest was focused on the
estimation of the bivariate distribution of the gap times. In other cases, the interest
was more focused on the distribution of the gap times, such as the estimation of the
joint gap times, the gap time survival functions, or the conditional survival function
of the gap times (Meira-Machado et al. 2016; Meira-Machado and Sestelo 2016).
Among others, these issues were investigated by Tsai et al. (1986), Prentice and Cai
(1992), Lin and Ying (1993), van der Laan et al. (2002), Wang and Wells (1998),
Wang and Chang (1999), Prentice et al. (2004) and Schaubel and Cai (2004). These
approaches are focused on a pair of gap times corresponding to two consecutive
events, and the extension to cope with a vector of k gap times may not be obvious.
Furthermore, the proposed methods do not account for the influence of covariates. In
addition, the implementation of several of the aforementioned methods will be
difficult in practice due to the lack of user friendly software. The present paper aims
to fill this gap. We consider the nonparametric estimation of the multivariate
distribution functions of the gap times under univariate random right censoring
conditionally (or not) on current or past covariate measures. New estimators for
K� 2 gap times are introduced and their performances and limitations are discussed.
One set of estimators considers a subsampling approach—which we term landmark
(de Uña-Álvarez and Meira-Machado 2015)—where a selection is made of the data
consisting of subjects occupying a given state at a particular time. Alternative
weighted cumulative hazard estimators are also proposed. The idea is to use an
adaptation of the nonparametric estimator presented by Wang and Wells (1998)
which is constructed using the cumulative hazard of the total time given a first time
but where each observation has been weighted using the information of the first
duration. The proposed methods can also be used to obtain conditional probabilities
such as those provided in the plots shown in section 4 that provide useful
interpretation. We also introduce a feasible estimation method for the multivariate
distribution function, conditionally on covariate measures. The proposed method
follows the ideas of Meira-Machado et al. (2015) in which the authors use kernel
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weights and the principle of ‘inverse probability of censoring weighting’ (IPCW) (to
estimate these quantities conditionally on a continuous covariate. Finally, a tutorial
for analyzing such types of data using an R package in which all methods are
implemented.

It is worth mentioning that there are several modelling techniques for analyzing
the effect of covariates in recurrent time-to-event data. To that end, extensions of the
proportional hazards model, such as the Andersen and Gill model (AG) (Andersen
and Gill 1982), the Prentice, Williams, and Peterson (PWP) model (Prentice et al.
1981), and Wei, Lin, and Weissfeld (WLW) (Wei et al. 1989), have been proposed for
analyzing recurrent event data. An overview of these methods can be seen in the
paper by Amorim and Cai (2015) and they are outside the scope of this paper.

This article is organized as follows. The next section presents the notation and
introduces the estimators. The finite sample properties of the estimators are studied
by simulation in Sect. 3. In Sect. 4 we give a brief overview of the survivalREC
R package developed by the authors. We illustrate how these methods can be used for
data exploration by applying them to a data set on bladder cancer. Main conclusions
and discussion are reported in Sect. 5.

2 Estimators

2.1 Notation

In the context of recurrent event data, each individual may go through a well-defined
event several times in his history. Assume that each study subject can potentially
experience K consecutive events at times T1\T2\ � � �\TK , which are measured
from the start of the follow-up. We are primarily interested in the gap times Y1 :¼ T1,
Y2 :¼ T2 � T1; . . .; Yk :¼ Tk � Tk�1, k ¼ 2; . . .;K. Then, Tk ¼ Y1 þ � � � þ Yk is the
time to the kth event, TK is the total time and ðY1; Y2; . . .; YKÞ is a vector of gap times
of successive events, which we assume to be observed subjected to (univariate)
random right-censoring. Let C be the right-censoring variable, assumed to be
independent of ðT1; T2; . . .; TKÞ. Because of this, the observed data consists of

ðeY1i; . . .; eYKi;D1i; . . .;DKiÞ, 1� i� n, which are n independent replications of

ðeY1; . . .; eYK ;D1; . . .;DKÞ, where eY1 ¼ Y1 ^ C, D1 ¼ IðY1 �CÞ, eY2 ¼ Y2 ^ C2, D2 ¼
IðY2 �C2Þ with C2 ¼ ðC � Y1ÞIðY1 �CÞ the censoring variable of the second gap

time and eYk ¼ Yk ^ Ck , Dk ¼ IðYk �CkÞ with Ck ¼ ðC � Yk�1ÞIðYk�1 �CÞ. Obvi-
ously, Dk ¼ 1 implies D1 ¼ � � � ¼ Dk�1 ¼ 1. Define also eTk ¼ T ^ C. Here and
thereafter, a ^ b ¼ minða; bÞ and Ið�Þ is the indicator function.

Let Fk denote the distribution function of the kth event time Tk and FH
k denote the

distribution function of the kth gap time Yk . Due to the independence assumption
between C and ðT1; . . .; TKÞ, the marginal distribution of the kth event time can be

consistently estimated by the Kaplan–Meier estimator based on the ðeTK ;DKÞ’s. Note
that, since the variables T1\T2\ � � �\TK are recorded successively and are subject
to censoring, we only observe the kth gap time if all previous failure times are
uncensored. In practice this will imply that for k[ 1, Yk and Ck will be in general
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dependent, which will make difficult the estimation of the marginal distribution of
the kth gap time, as well as the estimation to the joint distribution function
F1...kðy1; . . .; ykÞ ¼ PðY1 � y1; . . .; Yk � ykÞ.

2.2 Estimators for the bivariate distribution function

In this section we will present different approaches for estimating the bivariate
distribution function of ðY1; Y2Þ, F12ðy1; y2Þ ¼ PðY1 � y1; Y2 � y2Þ. The generaliza-
tion to K[ 2 gap times will be given in a later section.

2.2.1 Inverse probability of censoring weighted estimators

In the absence of censoring, the bivariate distribution function can be empirically

estimated by bF12ðy1; y2Þ ¼ 1
n

Pn
i¼1 IðeY1i � y1; eY2i � y2Þ. To handle right censoring,

inverse probability of censoring weighting (IPCW) can be used (see, for example,
Moreira et al. (2017) for further details).

The idea of IPCW was used by Lin et al. (1999) to introduce an estimator for the
bivariate distribution function. Their estimator is based on the relation
PðY1 � y1; Y2 � y2Þ ¼ PðY1 � y1Þ � PðY1 � y1; Y2 [ y2Þ where the first quantity in
the right-hand side of the equation can be consistently estimated using the Kaplan–
Meier estimator Kaplan and Meier (1958) of the distribution function of the first

event time T1 (i.e., based on the pairs ðeT1i;D1iÞ’s) which we denote by bF1. The idea
to estimate the second term follows from the following relation

E½IðY1 � y1; Y2 [ y2Þ� ¼ E½IðY1 � y1;Y2 [ y2ÞIðC[ T1þy2Þ
GðT1þy2Þ � ¼ E½IðeY1 � y1;eY2 [ y2Þ

GðeT1þy2Þ
�. From this,

it follows that

bF LIN
12 ðy1; y2Þ ¼ bF1ðy1Þ � 1

n

Xn
i¼1

IðeY1i � y1; eY2i [ y2ÞbGðeY1i þ y2Þ
ð1Þ

where bG stands for the Kaplan–Meier estimator of the censoring distribution which is

computed using the ðeT2i; 1� D2iÞ’s.
Later, de Uña- Álvarez and Meira-Machado (2008) proposes an alternative

estimator which is defined in terms of multivariate ‘Kaplan–Meier integrals’ with
respect to the marginal distribution of T2. The idea behind their estimators is to
weight the bivariate data using the Kaplan–Meier estimator of T2 as shown below.

bF KMW
12 ðy1; y1Þ ¼

Xn
i¼1

WiIðeY1i � y1; eY2i � y2Þ: ð2Þ

where Wi is the Kaplan–Meier weight attached to eT2i when estimating the marginal

distribution of T2 from ðeT2i;D2iÞ’s (equal to minus the jump at eT2i of the Kaplan–
Meier estimator of survival of the total time; see de Uña- Álvarez and Meira-
Machado (2008) for more details).
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Estimator (2) (labeled as KMW) can also be expressed using IPCW (see de Uña-
Álvarez and Meira-Machado 2008) being somehow related (although not equal) to
that proposed by Lin et al. (1999). The two estimators labeled by KMW and LIN deal
with right censoring using an appropriate reweighting of the chosen summands, and
the differences between them are somewhat subtle. The KMW estimator only puts
mass on observations that are completely uncensored, whereas Lin’s estimator puts
mass on observations that were uncensored till a given time. In practice, this means
that LIN estimator will show estimated curves with more jump points. The estimates
produced via the KMW estimator produce a valid bivariate distribution since it does
guarantee that the bivariate distribution function is monotone. In contrast, the specific
reweighting of the data that is used in Lin’s estimator does not ensure this property.
Their estimators do not attach positive mass to each pair of recorded gap times,
which may lead to problems of interpretation. A proper estimator for the bivariate
distribution function could be obtained by keeping the estimator constant until it
starts decreasing again. However, this approach provides a downward-biased
estimator. These features can be seen in our application section. The two estimators
are consistent whenever y1 þ y2 is smaller than the upper bound of the support of the
censoring time.

2.2.2 Estimators based on conditional probabilities

In this section, we propose estimators for the bivariate distribution function that
consider the relation PðY1 � y1; Y2 � y2Þ ¼ PðY2 � y2jY1 � y1ÞPðY1 � y1Þ, where the
second term in the right-hand side of the equation can be estimated using the Kaplan–
Meier product-limit estimator of the distribution function of the first event time. Two
different estimation methods are proposed below to estimate the first term on the
right-hand side of the equation shown above.

A simple estimator for the bivariate distribution function considers that the first
term can be estimated using a subsampling approach. This approach, which we also
term as landmarking (van Houwelingen 2007), is obtained by considering specific
subsamples or portions of the data at hand. In this case, for estimating the conditional
probability PðY2 � y2jT1 � y1Þ, the analysis is restricted to those individuals with a
first gap time (equivalently, the first event time) less or equal to y1. To formalize

things, let n1 be the cardinal of S ¼ i : eY1i � y1
n o

. Then,

bF LDMðy2jY1 � y1Þ ¼
Xn1
i¼1

W y1ð Þ
i IðeY2i � y2Þ: ð3Þ

where W y1ð Þ
i are the Kaplan–Meier weights of the distribution of T2 computed from

the subsample S.
Any of the estimators proposed above (LIN, KMW and LDM) may reveal some

problems in the right tail where uncensored observations are scarce. Below, we
propose an estimator that may deal more efficiently with those situations. The
proposed estimator is constructed using the cumulative hazard of the total time given
a first time but where each observation has been weighted using the information of
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the first duration. This estimator (WCH—weighted cumulative hazard) follows the
ideas by Wang and Wells (1998) in which a product-limit estimator for the second
gap time is used: bF WCH

12 ðy1; y2Þ ¼ bFHWCH
2 ðy2jY1 � y1ÞbF1ðy1Þ ð4Þ

where bF1ðy1Þ is the Kaplan–Meier estimator and bFHWCH
2 ðy2jY1 � y1Þ ¼ 1�Q

v� y2
ð1� bKY2jY1 � y1ðdvÞÞ for which

bKY2jY1 � y1ðdvÞ ¼
Pn

i¼1 IðeY1i � y1; eY2i ¼ v;D2i ¼ 1Þ=bGðbY1i þ vÞPn
i¼1 IðeY1i � y1; eY2i � v;D1i ¼ 1Þ=bGðbY1i þ vÞ

:

One interesting topic in the analysis of recurrent event data is the estimation of the
marginal distribution of the gap times (FH

j ðyÞ ¼ PðYj � yÞ). The problem of esti-

mating these functions has not been discussed explicitly in the literature, giving the
impression that the Kaplan–Meier estimator is still the estimator of choice. This is not
true for j[ 1. Indeed, since T2 and C2 are expected to be dependent, the Kaplan–

Meier estimator of FH
2 based on the ðeY2i;D2iÞ’s will be in general inconsistent. An

estimator for the marginal distribution of the second gap time can be obtained from
proposed estimators of the bivariate distribution function since
FH
2 ðyÞ ¼ PðY2 � yÞ ¼ F12ðþ1; yÞ. To estimate this quantity, we suggest using the

WCH, where the corresponding estimator is a simple adaptation of bFHWCH
2 . An alter-

native approach would be using the KMW method, bFHKMW
2 ðyÞ ¼ Pn

i¼1 WiIðeY2i � yÞ
where Wi are the Kaplan–Meier weights attached to eT2 when estimating the marginal
distribution of T2.

2.3 Extension to the general case of K gap times

In this section we extend the results (estimators) proposed in Sect. 2.2 to the case of
K gap times.

Let ðY1; Y2; . . .; YKÞ denote a vector of K ordered gap times and let F1...K denote
the joint distribution function of ðY1; Y2; . . .; YKÞ. The estimator proposed by de Uña-
Álvarez and Meira-Machado (2008) can easily be extended to provide a valid
estimator for the joint distribution function of ðY1; Y2; . . .; YKÞ. Their estimator is
given by

bF KMW
1...Kðy1; . . .; yKÞ ¼

Xn
i¼1

WiIðeY1i � y1; . . .; eYKi � yKÞ ð5Þ

where Wi is the Kaplan–Meier weight attached to eTKi when estimating the marginal

distribution of TK from ðeTKi;DKiÞ’s.
Lin’s estimator Lin et al. (1999) can be easily extended to the general case of K

gap times. Since PðY1 � y1; . . .; YK � yKÞ ¼ PðY1 � y1; . . .; YK�1 � yK�1Þ �
PðY1 � y1; . . .; YK�1 � yK�1; YK [ yKÞ, an obvious estimator for the second term is
given by
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1

n

Xn
i¼1

IðeY1i � y1; . . .; eYðK�1Þi � yk�1; eYKi [ yKÞbGKðeTðK�1Þi þ yKÞ
ð6Þ

where bGK stands for the Kaplan–Meier estimator of the censoring distribution based

on the ðeTKi; 1� DKiÞ’s. The first term can be estimated recursively using the same
approach.

The extension of the landmark estimator (LDM) to K gap times is a consequence of
Bayes’ theorem,bF LDM

1...Kðy1; . . .; yKÞ ¼ bFKðyK j Y1 � y1; . . .; YK�1 � yK�1Þ
� bFK�1ðyK�1 j Y1 � y1; . . .; YK�2 � yK�2Þ
� � � � � bF2ðy2 j Y1 � y1ÞbF1ðy1Þ

where bFjðyjY1 � y1; . . .; Yj�1 � yj�1Þ is estimated using the Kaplan–Meier estimator

based on ðeTj;DjÞ’s restricted to those individuals in

S ¼ i : eY1 � y1; . . .; eYj�1 � yj�1

n o
.

The extension of the weighted cumulative hazard estimator (WCH) to K gap times
follows from the following relation,

PðY1 � y1; . . .; YK � yKÞ ¼ 1� P YK [ yK jY1 � y1; . . .; YK�1 � yK�1ð Þð Þ
� P Y1 � y1; . . .; YK�1 � yK�1ð Þ;

where the first term in the right-hand side of the equation is estimated usingbP YK [ yK jY1 � y1; . . .; YK�1 � yK�1ð Þ ¼ 1�Q
v� yK

ð1� bKYK jY1 � y1;...;YK�1 � yK�1
ðdvÞÞ

and the second term in the right-hand side of the equation is estimated recursively
using the ideas explained in Sect. 2.2.

2.4 Estimators conditionally on current or past covariate measures

In this section, we will explain how we may introduce nonparametric estimators for
the conditional distribution function, F12ðy1; y2 j X Þ. In particular, we are interested
in estimating these functions for any time y1 and y2, but conditional on a given
continuous covariate X that could either be a baseline covariate or a current covariate
that is observed for an individual during the follow-up. Discrete covariates can also
be included by splitting the sample for each level of the covariate and repeating the
procedures described in the previous sections for each subsample.

To account for covariate effects, one standard method is to consider estimators
based on Cox’s model (Cox 1972), with the corresponding baseline hazard function
estimated by the Breslow’s method (Breslow 1972). Flexible nonparametric effects
of the covariates on the bivariate distribution function, as those shown in our
example of application, can be obtained using an alternative approach which
introduces local smoothing by means of kernel weights based on local constant
(Nadaraya–Watson) regression (Nadaraya 1965). The proposed method is introduced
in a regression setup based on the inverse probability of censoring weighting.

123

Nonparametric estimation of the distribution of gap times... 109



Assume that we have two consecutive gap times ðY1; Y2Þ and that X denotes a
continuous covariate. Then, the estimation of these functions can be performed via
estimating general conditional expectation of type E u Y1; Y2ð Þ j X ¼ x½ �, where u is a
general function defined over Y1 and Y2. For instance, in our setting, for the bivariate
distribution function, uu;vðY1; Y2Þ ¼ IðY1 � u; Y2 � vÞ while for the bivariate survival
function uu;vðY1;Y2Þ ¼ IðY1 [ u; Y2 [ vÞ.

In the absence of censoring, to estimate these quantities nonparametrically, we
may use kernel smoothing techniques by calculating a local average of the u Y1; Y2ð Þ,
that is, as follows:

bE u Y1; Y2ð ÞjX ¼ x½ � ¼
Xn
i¼1

W ðx;Xi; hÞu Y1i; Y2ið Þ;

where W(x, Xi, h) is a weight function which corresponds to the Nadaraya–Watson
estimator as follows:

W ðx;Xi; hÞ ¼ k ðx� XiÞ=hð ÞPn
j¼1 k ðx� XjÞ=h

� �
where k is a known probability density function (the kernel function) and h is the
bandwidth.

To handle right censoring, inverse probability of censoring weighting can be used.
Since,

E IðY1 � u; Y2 � vÞ½ � ¼ E IðeY1 � u; eY2 � vÞD2=GX ðT2ÞjX
h i

where GX denotes the conditional survival function of the censoring time C given the
covariate X, that is, GX¼xðtÞ ¼ PðC[ tjX ¼ xÞ which may be estimated using
Beran’s estimator (Beran 1981),

bGxðtÞ ¼
Y

eT2i � t;D2i¼0

1� W ðx;Xi; hÞPn
j¼1 IðeT2j � eT2iÞW ðx;Xj; hÞ

" #
ð7Þ

where W ðx;Xi; hÞ are the Nadaraya–Watson weights.
Based on this, we propose the following nonparametric estimator of the

conditional bivariate distribution function:

bF12ðy1; y2jX ¼ xÞ ¼
Xn
i¼1

Wiðx;Xi; hÞ Ið
eY1i � y1; eY2i � y2ÞD2ibGxðeT2iÞ

ð8Þ

where G0
X stands for an estimator of the conditional distribution C j X , for example

Beran’s estimator (of the censoring survival function) based on the

ðeY1i; 1� D1i;XiÞ’s.
Though these methods can be extended to a vector of covariates using multivariate

kernels and a generalization of Beran’s estimator, some problems arise with the
generalization to higher dimensions.
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3 Simulation studies

In this section, we compare by simulations the estimators introduced in Section 2. We
consider two simulated scenarios, the first scenario aims to compare the estimators
introduced in Sect. 2.2. More specifically, estimators for the bivariate distribution
function (F12ðy1; y2Þ) labeled as LIN, KMW, WCH and LDM. The second scenario aims
to compare the extensions of the same estimators for three gap times.

3.1 Scenario 1: two gap times

Simulating data in longitudinal recurrent survival data requires the joint modeling of
two or more random variables (Meira-Machado and Faria 2014). Copulas provide a
useful method for deriving joint distributions given the marginal distributions,
especially when the variables are non-normal as in the case of time-to-event variables
(Soutinho and Meira-Machado 2020).

For the first scenario, we consider the Fairlie–Gumbel–Morgenstern (FGM)
system of bivariate distribution with a joint cumulative distribution function of the
form:

F12ðy1; y2Þ ¼ F1ðy1ÞF2ðy2Þ 1þ d 1� F1ðy1Þf g 1� F2ðy2Þf g½ �
where F1 and F2 are the marginal cumulatives which follow a standard exponential
and where jdj � 1 controls the amount of dependency between the two gap times. It
has been shown that in this setting, the correlation of the FGM varies between 0
(independent gap times) for d ¼ 0 and 0.25 for d ¼ 1. The FGM was also used in the
papers by Lin et al. (1999) and Moreira et al. (2017) Moreira and Meira-Machado
(2012).

The follow-up time C was chosen to be uniformly distributed between 0 and an
upper limit. In practice, this limit controls the amount of censored observations. An
independent uniform censoring time C�U ½0; 4� resulted in 25% of censoring on the
first gap time Y1, and in 46% of censoring on the second gap time Y2, for those
individuals with d ¼ 1. A second model with C�U ½0; 3� increases these censoring
levels to 32% and about 60%, respectively. In each simulation, 1000 samples were
generated, each with sample sizes of n ¼ 100 and n ¼ 250.

Table 1 reports the true values of F12ðy1; y2Þ where y1 and y2 take values 0.2231,
0.5108, 0.9163 and 1.6094 corresponding to marginal survival probabilities of 0.8,
0.6, 0.4 and 0.2. At each time point ðy1; y2Þ we computed the mean squared errors for
the four estimators. Table 2 reports these values for model C�U ½0; 3� with a sample
size of n ¼ 250 and correlated gap times (d ¼ 1). Our results show that all estimators
perform quite well, with reasonable low values for the mean square error. All
estimators obtained low values for the bias (not shown) and a worst performance in
the right tail (i.e., higher values of y1 and y2) where the censoring effects are stronger.
Though not shown here, the results for different sample sizes and different censoring
percentages reveal that an increase in the sample size results in smaller variance and
therefore a smaller mean square error. Besides, by increasing the censoring
percentage, the standard deviation achieved larger values. The standard deviation
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(and consequently the mean square error) increased with y1 and with y2. All these
facts were expected. The performance of the four estimators for the bivariate
distribution function is dominated by the variability of the estimators, with a small
advantage for the weighted cumulative hazard estimator and the estimator based on
Kaplan–Meier weights, labeled as WCH and KMW, respectively.

Table 2 Mean square errors
(�100) for the estimators of the
bivariate distribution function

y2 y1

0.2231 0.5108 0.9163 1.6094

KMW estimator

0.2231 0.0278 0.0447 0.0603 0.0699

0.5108 0.0467 0.0803 0.1073 0.1316

0.9163 0.0659 0.1049 0.1382 0.1807

1.6094 0.0814 0.1364 0.1744 0.2981

Lin’s estimator

0.2231 0.0330 0.0497 0.0628 0.0659

0.5108 0.0531 0.0895 0.1145 0.1272

0.9163 0.0741 0.1216 0.1608 0.1959

1.6094 0.1057 0.1679 0.2358 0.4443

LDM estimator

0.2231 0.0280 0.0445 0.0580 0.0627

0.5108 0.0527 0.0847 0.1068 0.1222

0.9163 0.0833 0.1356 0.1611 0.1977

1.6094 0.1030 0.1930 0.2505 0.4453

WCH estimator

0.2231 0.0281 0.0444 0.0575 0.0621

0.5108 0.0465 0.0781 0.1003 0.1125

0.9163 0.0653 0.1018 0.1321 0.1555

1.6094 0.0810 0.1328 0.1665 0.2409

Gap times generated from Gumbel’s bivariate distribution function,
with censoring times generated from model U[0, 3] and a sample size
of n ¼ 250

Table 1 True values of the
Fairlie–Gumbel–Morgenstern
distribution for two dependent
gap times with exponential
marginal distribution functions
with rate parameter 1

y2 y1

0.2231 0.5108 0.9163 1.6094

0.2231 0.0656 0.1184 0.1584 0.1856

0.5108 0.1184 0.2176 0.2976 0.3584

0.9163 0.1584 0.2976 0.4176 0.5184

1.6094 0.1856 0.3584 0.5184 0.6656
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3.2 Scenario 2: three gap times

In the second scenario, we consider two Archimedean copulas to generate data for a
model with three recurrent events (leading to three consecutive gap times): the
multivariate Clayton copula and the multivariate Frank copula (Nelsen 2006). In the
first setting, the successive gap times Y1; Y2; Y3ð Þ are simulated according to the the
trivariate Clayton copula. The trivariate Clayton copula is given by

Cðy1; y2; y3Þ ¼ ½P3
i¼1 yi

�a � 2��1=a, a 2 ½�1;1½ n0. We consider the Clayton
copula with exponential margins with rate parameter 1 and a ¼ 2. The follow-up
time was subjected to right censoring, C, according to uniform models U 0; 3½ � and
U 0; 6½ �. The first model results in 32% of censoring on the first gap time Y1, 55% of
censoring on the second gap time Y2 and 68% of censoring on the third gap time Y3.
The second model decreases these censoring levels to 17%, 32% and about 46%,
respectively. Because of space limitation, we only present the results for the first
model.

Table 3 True values of the trivariate distribution of the gap times for the Clayton copula

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.1170 0.1358 0.1403 0.1420

0.5108 0.1358 0.1678 0.1767 0.1802

0.9163 0.1403 0.1767 0.1871 0.1912

1.6094 0.1420 0.1802 0.1912 0.1956

y1 ¼ 0:5108

0.2231 0.1358 0.1678 0.1767 0.1802

0.5108 0.1678 0.2443 0.2744 0.2879

0.9163 0.1767 0.2744 0.3193 0.3412

1.6094 0.1802 0.2879 0.3412 0.3682

y1 ¼ 0:9163

0.2231 0.1403 0.1767 0.1871 0.1912

0.5108 0.1767 0.2744 0.3193 0.3412

0.9163 0.1871 0.3193 0.3974 0.4420

1.6094 0.1912 0.3412 0.4420 0.5062

y1 ¼ 1:6094

0.2231 0.1420 0.1802 0.1912 0.1956

0.5108 0.1802 0.2879 0.3412 0.3682

0.9163 0.1912 0.3412 0.4420 0.5062

1.6094 0.1956 0.3682 0.5052 0.6100
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In a third setting, the successive gap times Y1; Y2; Y3ð Þ are simulated according to

the the trivariate Frank copula. The trivariate Frank copula is given by Cðy1; y2; y3Þ ¼

� 1
a ln½1þ

Q3

i¼1
ðe�ayi�1Þ

ðe�a�1Þ2 � with a 2 R n0. We consider the Frank copula with exponen-

tial margins with rate parameter 1 and a ¼ 2. Again, censoring was generated
according to uniform models U 0; 3½ � and U 0; 2½ �. The first model results in 25% of
censoring on the first gap time Y1, 50% of censoring on the second gap time Y2 and
68% of censoring on the third gap time Y3. The second model increases these
censoring levels to 43%, 69% and about 80%, respectively.

The true values of F123ðy1; y2; y3Þ are reported in Tables 3 and 4. Tables 5, 6, 7, 8,
9, 10, 11 and 12 report the mean square error and standard deviations for the four
estimators. All four methods have worst performance in the right tail, where the
censoring effects are stronger. Results shown in Table 11 suggest that the WCH
estimator leads to better results for estimating the trivariate distribution
F123ðy1; y2; y3Þ for higher values of y1 while neither one seems to be uniformly the
best for estimating this quantity for small of mid valued of y1. In these cases, the

Table 4 True values of the trivariate distribution of the gap times for the Frank copula

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0246 0.0417 0.0536 0.0617

0.5108 0.0417 0.0718 0.0930 0.1077

0.9163 0.0536 0.0930 0.1212 0.1411

1.6094 0.0617 0.1077 0.1411 0.1649

y1 ¼ 0:5108

0.2231 0.0417 0.0718 0.0930 0.1077

0.5108 0.0718 0.1264 0.1666 0.1956

0.9163 0.0930 0.1666 0.2229 0.2645

1.6094 0.1077 0.1956 0.2645 0.3166

y1 ¼ 0:9163

0.2231 0.0536 0.0930 0.1212 0.1411

0.5108 0.0930 0.1666 0.2229 0.2645

0.9163 0.1212 0.2229 0.3048 0.3683

1.6094 0.1411 0.1645 0.3683 0.4524

y1 ¼ 1:6094

0.2231 0.0617 0.1077 0.1411 0.1649

0.5108 0.1077 0.1956 0.2645 0.3166

0.9163 0.1411 0.2645 0.3683 0.4524

1.6094 0.1649 0.3166 0.4524 0.5697
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KMW estimator seems to be a good alternative. The WCH estimator is among the
four alternative methods the one that deals more efficiently at points for which y1, y2
and y3 are higher.

For the second scenario (Frank copula), we show in Fig. 1 the boxplots of the
estimates of the trivariate probabilities for eight different points (x, y, z), corre-
sponding to combinations of the percentiles 20%, 40%, 60% and 80% of the
marginal distributions of the gap times. Results are based on 1000 Monte Carlo
replicates for the four estimators, with a sample size of n ¼ 250. The plots shown in
this figure were obtained for the censoring level of C�U ½0; 3�. The boxplots shown
in this figure reveal some results which agree with our findings reported in the
previous scenario (Clayton copula). From these plots, it can be seen that all methods
have small biases and confirm the good performance of the proposed estimators. The
KMW and WCH methods are the methods with less bias and variability.

Table 5 Mean square error (�100) for the KMW estimator

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0442 0.0509 0.0576 0.0592

0.5108 0.0491 0.0632 0.0700 0.0712

0.9163 0.0516 0.0664 0.0758 0.0824

1.6094 0.0625 0.0690 0.0737 0.0819

y1 ¼ 0:5108

0.2231 0.0513 0.0687 0.0693 0.0697

0.5108 0.0602 0.0992 0.1120 0.1198

0.9163 0.0698 0.1094 0.1317 0.1504

1.6094 0.0752 0.1158 0.1564 0.1781

y1 ¼ 0:9163

0.2231 0.0571 0.0735 0.0739 0.0753

0.5108 0.0632 0.1068 0.1080 0.1530

0.9163 0.0770 0.1324 0.1636 0.2454

1.6094 0.0787 0.1454 0.2472 0.4863

y1 ¼ 1:6094

0.2231 0.0579 0.0763 0.0768 0.0842

0.5108 0.0704 0.1152 0.1510 0.1809

0.9163 0.0711 0.1676 0.2316 0.3974

1.6094 0.0795 0.1841 0.4675 0.9039

Trivariate Clayton copula with censoring times generated from model U[0,3] and a sample size of n ¼ 250
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4 survivalREC structure and functionality

To provide biomedical researchers with an easy-to-use tool for obtaining estimates
and corresponding plots of the multivariate distributions in recurrent event data, we
developed an R package called survivalREC. This software enables users to
implement all nonparametric estimators discussed in Sect. 2, including the estimators
conditionally on current or past covariates. The package, available at the CRAN
repository at https://cran.r-project.org/web/packages/survivalREC/ comprises 15
functions, which are summarized in Table 13. Briefly, there are two main types of
functionalities: (i) to estimate bivariate distribution functions in recurrent events with
the KMWdf, LDMdf, LINdf, WCHdf and IPCWdf functions; and (ii) the corre-
sponding extension for the estimation with three gap times with KMW3df, LDM3df,
LIN3df and WCH3df. Plots for each method are also displayed using a “multidf”
object, which can be obtained through the multidf function. Finally, the remaining
auxiliary functions, Beran, KM, KMW and NWW, are included inside the previous
functions.

Table 6 Standard deviation for the KMW estimator

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0210 0.0226 0.0240 0.0243

0.5108 0.0222 0.0251 0.0265 0.0267

0.9163 0.0227 0.0258 0.0272 0.0287

1.6094 0.0250 0.0263 0.0275 0.0286

y1 ¼ 0:5108

0.2231 0.0227 0.0263 0.0262 0.0264

0.5108 0.0245 0.0315 0.0335 0.0346

0.9163 0.0264 0.0331 0.0363 0.0387

1.6094 0.0274 0.0339 0.0396 0.0421

y1 ¼ 0:9163

0.2231 0.0239 0.0270 0.0272 0.0274

0.5108 0.0251 0.0327 0.0328 0.0390

0.9163 0.0277 0.0364 0.0403 0.0496

1.6094 0.0281 0.0382 0.0498 0.0684

y1 ¼ 1:6094

0.2231 0.0241 0.0276 0.0277 0.0291

0.5108 0.0266 0.0338 0.0389 0.0425

0.9163 0.0267 0.0410 0.0481 0.0621

1.6094 0.0282 0.0429 0.0667 0.0774

Trivariate Clayton copula with censoring times generated from model U[0,3] and a sample size of n ¼ 250
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4.1 Application to bladder cancer study data

Bladder cancer is one of the most common genitourinary malignant disease being
more common in men than in women. Prognosis of this disease is, in most cases,
related to risk factors that include smoking, family history, frequent bladder
infections, and exposure to certain chemicals. Another significant prognostic factor
for these patients’ overall survival is the presence of a recurrence. In fact, bladder
cancer is a disease with a high percentage of patients who have superficial tumors,
which tend to recur, but which are generally not fatal.

The bladder cancer study data set (Byar 1980) includes 118 patients that entered
the study with superficial bladder tumors. Tumors were removed transurethrally and
patients were assigned to one of three treatments (placebo, pyridoxine, or thiotepa)
and followed until the end of the study. The time period under consideration is over
four years since the entry of the first subject (48 months). Many of these patients had
multiple recurrences of tumors during the study, and new tumors were removed at

Table 7 Mean square error (�100) for the Lin’s estimator

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0434 0.0485 0.0563 0.0621

0.5108 0.0544 0.0751 0.0948 0.1055

0.9163 0.0685 0.0866 0.1316 0.1981

1.6094 0.0864 0.1293 0.2168 0.6677

y1 ¼ 0:5108

0.2231 0.0487 0.0605 0.0595 0.0675

0.5108 0.0648 0.1070 0.1032 0.1348

0.9163 0.0817 0.1114 0.1693 0.3179

1.6094 0.1018 0.1752 0.3643 1.0826

y1 ¼ 0:9163

0.2231 0.0545 0.0658 0.0662 0.0607

0.5108 0.0676 0.1096 0.1209 0.1623

0.9163 0.0836 0.1217 0.1793 0.5178

1.6094 0.0902 0.2006 0.4194 1.3850

y1 ¼ 1:6094

0.2231 0.0536 0.0620 0.0753 0.0740

0.5108 0.0701 0.1008 0.1555 0.1703

0.9163 0.0846 0.1596 0.2834 0.2950

1.6094 0.0980 0.2279 0.3990 1.0970

Trivariate Clayton copula with censoring times generated from model U[0,3] and a sample size of
n ¼ 250
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each visit. The time between tumor recurrence and death or censoring was recorded
for each patient. The maximum observed number of recurrences is 9.

In this subsection, we will use data on the 85 subjects with nonzero follow-up who
were assigned to either thiotepa or placebo, with respective sizes of 47 and 38.
Summary statistics for the two treatments are given in Table 14. Among the 85
patients, 47 relapsed at least once, among these, 29 had a second recurrence, 22 had a
third recurrence and 14 had four or more recurrences (16.5%). Thus, in our study
only the first three recurrence times T1, T2 and T3 (or the corresponding gap times Y1,
Y2 and Y3) are considered. Data sets considering two, three and four recurrences are
available in the survivalREC package. To illustrate our methods we will use data
with only the first three recurrences for any patient. Bellow, is an excerpt of the data.
frame with one row per individual.

Table 8 Standard deviation for the Lin’s estimator. Trivariate Clayton copula with censoring times gen-
erated from model U[0,3] and a sample size of n ¼ 250

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0208 0.0220 0.0237 0.0249

0.5108 0.0233 0.0274 0.0308 0.0325

0.9163 0.0261 0.0294 0.0363 0.0446

1.6094 0.0294 0.0359 0.0465 0.0760

y1 ¼ 0:5108

0.2231 0.0221 0.0245 0.0244 0.0260

0.5108 0.0254 0.0327 0.0322 0.0367

0.9163 0.0286 0.0334 0.0412 0.0564

1.6094 0.0319 0.0418 0.0604 0.0913

y1 ¼ 0:9163

0.2231 0.0234 0.0257 0.0257 0.0246

0.5108 0.0260 0.0331 0.0348 0.0403

0.9163 0.0289 0.0349 0.0423 0.0717

1.6094 0.0301 0.0448 0.0645 0.0921

y1 ¼ 1:6094

0.2231 0.0232 0.0249 0.0275 0.0272

0.5108 0.0265 0.0317 0.0393 0.0413

0.9163 0.0291 0.0400 0.0530 0.0506

1.6094 0.0313 0.0478 0.0603 0.0687
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The movement among the recurrent events is given by the variables yi and di, with
i ¼ f1; � � � ; 4g, which represent, respectively, the four gap times and their
corresponding censoring indicators (1 for an event and 0 for censoring). The other

Table 9 Mean square error (�100) for the LDM estimator

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0471 0.0523 0.0552 0.0644

0.5108 0.0994 0.0975 0.0992 0.0968

0.9163 0.2795 0.2457 0.1777 0.1533

1.6094 0.5425 0.4548 0.3341 0.2402

y1 ¼ 0:5108

0.2231 0.0500 0.0622 0.0658 0.0722

0.5108 0.0728 0.1101 0.1252 0.1440

0.9163 0.1919 0.2109 0.2390 0.2585

1.6094 0.6387 0.5895 0.6354 0.5870

y1 ¼ 0:9163

0.2231 0.0561 0.0666 0.0684 0.0685

0.5108 0.0712 0.1067 0.1297 0.1666

0.9163 0.1315 0.1464 0.2198 0.3296

1.6094 0.6115 0.4615 0.6247 1.0611

y1 ¼ 1:6094

0.2231 0.0538 0.0668 0.0789 0.0755

0.5108 0.0680 0.1054 0.1454 0.1616

0.9163 0.1133 0.1492 0.1967 0.4431

1.6094 0.5136 0.3332 0.6386 1.9065

Trivariate Clayton copula with censoring times generated from model U[0,3] and a sample size of n ¼ 250
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three variables are the patient id (“id”), the type of treatment (“rx”, 1 = placebo and 2
= thiotepa), and the size (cm) of the largest initial tumour (“size”).

One important goal of these studies is to evaluate the effect on future prognosis of
a locoregional recurrence (LR), since it is well known that the increased risk after a
recurrence decreases significantly with increasing time since LR. In bladder cancer
studies, a LR is called an early recurrence if the cancer comes back 6 to 12 months
after treatment, and a late recurrence otherwise. The curves depicted in the first row
of Fig. 2 show the results for the four proposed methods for the bivariate distribution
function (F12ðx; yÞ) when x ¼ 6 or x ¼ 12 are fixed. With the exception of the LIN
estimator, all the remaining three methods shown in these plots report roughly the
same estimates. In fact, a specific issue with the LIN estimator is visible at the top-
right of these two figures, because the displayed curves are not monotonically
decreasing in y. This is a consequence of the specific reweighting of the data that is
used in this approach, which may lead to problems of interpretation at the right tail of
the distribution. The remaining plots in Fig. 2 (second and third rows) are intended to
demonstrate the behavior of the four different methods for estimating the trivariate
distribution (F123ðx; y; zÞ when different values of x, y, and z are used). The analysis
of these plots revealed that, besides the LIN method, the LDM method also has the

Table 10 Standard deviation for
the LDM estimator

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0215 0.0224 0.0233 0.0253

0.5108 0.0235 0.0252 0.0269 0.0281

0.9163 0.0249 0.0241 0.0264 0.0270

1.6094 0.0239 0.0236 0.0236 0.0273

y1 ¼ 0:5108

0.2231 0.0223 0.0248 0.0255 0.0268

0.5108 0.0264 0.0322 0.0341 0.0355

0.9163 0.0332 0.0346 0.0395 0.0417

1.6094 0.0358 0.0404 0.0466 0.0484

y1 ¼ 0:9163

0.2231 0.0237 0.0258 0.0262 0.0262

0.5108 0.0265 0.0326 0.0359 0.0404

0.9163 0.0336 0.0345 0.0422 0.0525

1.6094 0.0426 0.0499 0.0580 0.0681

y1 ¼ 1:6094

0.2231 0.0232 0.0258 0.0281 0.0274

0.5108 0.0259 0.0324 0.0376 0.0390

0.9163 0.0327 0.0373 0.0424 0.0567

1.6094 0.0482 0.0490 0.0627 0.0799

Trivariate Clayton copula with censoring times generated from model
U[0,3] and a sample size of n ¼ 250
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drawback of occasionally providing estimated curves that are clearly non-monotone
for the trivariate distribution function and, therefore, their practical use could be less
recommended. The WCH method and the method based on the Kaplan–Meier weights
(KMW) both show plausible curves.

The WCH method provides a nice approach that can be used to estimate the
conditional distribution function of the second gap time (time to second recurrence)
conditional on the first gap time (time to the first recurrence). The plot shown in
Fig. 3 depicts the estimates of PðY2 � yjY1 � 12Þ and PðY2 � yjY1 [ 12Þ using the
WCH method. The estimated curves reveal that patients with a late recurrence (after
12 months) have a reduced risk of developing a second recurrence.

In what follows, we explain how to use the survivalREC package to get
estimates and plots for the bivariate distribution and for the distribution functions
with three gap times. For illustration purposes, we will consider the WCH method, and
the first (top left) and last (bottom right) plots shown in Fig. 2. First, to get the
corresponding plots for the bivariate distribution function we need to transform the
original data set into a “multidf” format class. This can be done using the multidf
function that has as arguments time1, time, event1 and status. These

Table 11 Mean square error
(�100) for the WCH estimator

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0424 0.0465 0.0514 0.0580

0.5108 0.0500 0.0598 0.0696 0.0757

0.9163 0.0559 0.0618 0.0764 0.0832

1.6094 0.0575 0.0687 0.0734 0.0990

y1 ¼ 0:5108

0.2231 0.0479 0.0587 0.0587 0.0652

0.5108 0.0633 0.0932 0.0951 0.1025

0.9163 0.0701 0.0966 0.1247 0.1432

1.6094 0.0741 0.1143 0.1738 0.2062

y1 ¼ 0:9163

0.2231 0.0542 0.0642 0.0644 0.0618

0.5108 0.0646 0.0969 0.1126 0.1252

0.9163 0.0697 0.0960 0.1396 0.1795

1.6094 0.0700 0.1364 0.2146 0.3473

y1 ¼ 1:6094

0.2231 0.0522 0.0620 0.0698 0.0694

0.5108 0.0640 0.0953 0.1259 0.1234

0.9163 0.0724 0.1240 0.1531 0.2427

1.6094 0.0739 0.1433 0.2479 0.4994

Trivariate Clayton copula with censoring times generated from model
U[0,3] and a sample size of n ¼ 250
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arguments correspond to the soujorn time in the initial state and the global time, as
well as their corresponding censoring indicator variables.

To obtain the nonparamentric estimates for bivariate distribution, we have the
functions KMWdf, LDMdf, LINdf and WCHdf.

As an example, suppose we are interested in obtaining the estimates for F12ðx ¼
6; y ¼ 20Þ for the method WCH. The input codes for this case are the following:

It is also possible to show the estimated curves of the bivariate distribution
function given a specific value for the first gap time. This can be done through the

Table 12 Standard deviation for
the WCH estimator

y2 y3

0.2231 0.5108 0.9163 1.6094

y1 ¼ 0:2231

0.2231 0.0206 0.0216 0.0227 0.0241

0.5108 0.0224 0.0245 0.0264 0.0275

0.9163 0.0237 0.0248 0.0276 0.0289

1.6094 0.0240 0.0262 0.0271 0.0314

y1 ¼ 0:5108

0.2231 0.0219 0.0242 0.0242 0.0255

0.5108 0.0252 0.0305 0.0309 0.0320

0.9163 0.0264 0.0311 0.0353 0.0379

1.6094 0.0272 0.0337 0.0417 0.0447

y1 ¼ 0:9163

0.2231 0.0233 0.0253 0.0254 0.0249

0.5108 0.0254 0.0311 0.0336 0.0354

0.9163 0.0264 0.0309 0.0372 0.0424

1.6094 0.0265 0.0370 0.0464 0.0570

y1 ¼ 1:6094

0.2231 0.0228 0.0249 0.0264 0.0263

0.5108 0.0253 0.0309 0.0352 0.0351

0.9163 0.0269 0.0351 0.0391 0.0493

1.6094 0.0272 0.0378 0.0498 0.0690

Trivariate Clayton copula with censoring times generated from model
U[0,3] and a sample size of n ¼ 250
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plot function for “multidf” objects. The following input codes show how to obtain
the graphic for method WCH in which the first gap time (t1) takes value 6.

The procedures to extend the estimation to three gap times are quite similar to the
bivariate case. First, we must create a new object using the multidf function,
called for this example, b4state. As we can see, the b4state object gives us the
cumulative gap times time1, time2 and time, as well as, the corresponding
censoring indicators (event1, event2 and status). Finally, to obtain estimates,
the WCH3df function can be used by adding a new parameter, z, to the third gap
time.

5 Conclusions and final remarks

There have been several contributions to the estimation of the marginal and joint
distributions in the context of recurrent events. The methods based on the inverse
probability of censoring weights introduced by Lin et al. (1999) and the method
based on Kaplan–Meier weights (de Uña- Álvarez and Meira-Machado 2008) are
among the best ones for estimating the bivariate distribution function.

In this paper, we introduce new nonparametric methods for the estimation of these
quantities. Simulations show that most of the proposed estimators for the bivariate
distribution function are virtually unbiased. The extension of these methods to
several gap times is also discussed.

To provide biomedical researchers with an easy-to-use tool, we have also
developed the survivalREC package, which is available at the CRAN repository,
which enables one to implement all proposed methods. Details on the usage of its
functions and main functionalities are also introduced in the paper through an
illustrative example of the analysis of recurrence events in a bladder cancer study.

Another issue of practical interest that is studied in this paper is the estimation of
these quantities conditionally on current or past covariate measures. A feasible
nonparametric solution to this problem is proposed. The proposed method is based
on local smoothing by the means of kernel weights that are either based on a local
constant (i.e., Nadaraya–Watson) or a local linear regression.

Fig. 1 Boxplots of the M ¼ 1000 estimates of the trivariate distribution function of the four estimators,
with a sample sizes of 250. Data from Frank copula with unit correlated exponential distributions.
Censoring times were generated from an uniform distribution on [0,3]. Horizontal solid red line
corresponds to the true value

b
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Fig. 2 Estimates of the bivariate (first row) and trivariate (second and third rows) distribution using the
four proposed methods. Bladder recurrence cancer data
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Fig. 3 Estimates of the distribution of the second gap time (time to second recurrence) conditional on the
time to the first recurrence. Estimated curves based on the WCH approach. Bladder recurrence cancer data

Table 13 Summary of functions in the survivalREC package

Function Description

multidf Create a multidf object

KMWdf Estimation of the bivariate distribution function based on Kaplan–Meier Weights

LDMdf Estimation of the bivariate distribution function based on landmarking

LINdf Estimation of the bivariate distribution function using Lin’s estimator

WCHdf Estimation of the bivariate distribution function based on the Weighted Cumulative
Hazard estimator (WCH)

KMW3df Estimation of distribution with three gap times. Method based on Kaplan–Meier
Weights

LDM3df Estimation of distribution with three gap times. Method based on landmarking

LIN3df Estimation of distribution with three gap times. Method based on the extension the
Lin’s estimator

WCH3df Estimation of distribution with three gap times. Method based on the extension of the
Weighted cumulative hazard estimator (WCH)

IPCWdf Estimation of the bivariate distribution function based on the Inverse Probability of
Censoring Weighting estimator (IPCW)

plot.multidf Plot for an object of class multidf

Beran Computes the conditional survival probability of the response, given the covariate
under random censoring

KM Computes the Kaplan–Meier product-limit of survival

KMW Returns a vector with the Kaplan–Meier weights

NWW Returns a vector with the Nadaraya–Watson weights
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