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Abstract
We consider the determination of optimal sample sizes to estimate the concentration
of organisms in ballast water via a semiparametric Bayesian approach involving a
Dirichlet process mixture based on a Poisson model. This semiparametric model
provides greater flexibility to model the organism distribution than that allowed by
competing parametric models and is robust against misspecification. To obtain the
optimal sample size we use a total cost minimization criterion, based on the sum of a
Bayes risk and a sampling cost function. Credible intervals obtained via the proposed
model may be used to verify compliance of the water with international standards
before deballasting.
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1 Introduction

The D-2 standard of the International Maritime Organization (IMO) requires that
deballasted water should contain fewer than 10 viable organisms (zooplankton and
phytoplankton, referred to simply as organisms in the remainder) with maximum
dimension 10 and 50 lm per mL, among other restrictions. Such concerns with
ballast water discharges are related to the possible introduction of invasive species in
new environments and to the reduction of water quality in sensitive environments,
causing diverse environmental, public health and economic problems. Given the
amount of ballast water carried by large ships, compliance with such regulation must
be verified via sampling processes that account for the inherent heterogeneous nature
of the organism concentration in the ballast water tank (Murphy et al. 2002).
Recently, Costa et al. (2015, 2016) proposed frequentist methods based on negative
binomial models for such purposes. With the same objective, Costa et al. (2021) also
used negative binomial models under a Bayesian approach to compute sample sizes
controlling summaries of the credible intervals. The advantage of the Bayesian
approach is that one may incorporate (if available) prior knowledge about the ballast
water origin (coastal, oceanic or riverine), time of the water residence in the tank, etc
(Aguirre-Macedo et al. 2008). This prior information can be obtained from
preliminary analyses of ballast water taken at the port of origin and before its
discharge at the destination.

Suppose that we collect n aliquots of ballast water with volume w and that the
number of organisms in the i-th aliquot is Xi. Suppose additionally that the organism
concentration in the region of the tank from which the i-th aliquot is sampled is ki, so
that we expect to find wki organisms in the i-th aliquot. For i ¼ 1; . . .; n, suppose that,
given ki, Xi follows a Poisson distribution with mean E Xijki½ � ¼ wki and that ki is
governed by a probability measure F, partially or entirely unknown. Note that the
model proposed in Costa et al. (2021) corresponds to the case where all ki are equal
to a quantity (namely, the organism concentration) and assumes a gamma prior
distribution for this quantity.

To allow greater flexibility in the modeling and robustness against misspecifica-
tion of a parametric form for F, we consider random probability measures (RPM),
which are distributions in the space of probability measures (here, in Rþ). A popular
RPM is based on the Dirichlet process introduced by Ferguson (1973) as a possible
solution for the problem of prior specification in a nonparametric Bayesian approach,
where the prior space is a set of probability distributions defined on a given space.
For details, see Phadia (2016). Specifically, the parameters ki are considered
independent and identically distributed with an unknown distribution Fð�Þ that in a
third level follows a Dirichlet process. This prior process may be defined through a
precision parameter a and a mean distribution F0ð�Þ, here specified by a gamma
distribution. In Sect. 2 we describe this semiparametric Bayesian model with more
detail and the methodology required to obtain posterior distributions by simulation.

Under the light of the above considerations, our objective is to compute the
number of aliquots (sample size), according to some optimality criterion, to estimate
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the mean concentration of organisms (zooplankton and phytoplankton) in ballast
water tanks with reduced knowledge about their distribution in the tank.

An approach to the problem of determining an optimal sample size is to consider it
as a decision problem (Müller and Parmigiani 1995; Lindley 1997; Parmigiani and
Inoue 2009; Islam and Pettit 2014). Under this approach it is necessary to specify a
loss function encompassing the parameter of interest and a decision dn based on a
sample X1; . . .;Xn. In an interval inference problem, a decision is specified by the
lower and upper limits of a credible interval for the parameter of interest. Once the
proper interval based on the optimal n is determined and real data is ensued, the
terminal decision on compliance or not of a ship with the D-2 standard is established.
Criteria and methodology for sample size determination and alternative loss
functions are presented in Sections 3 and 4. We conclude with a discussion along
with an illustration in Section 5.

2 The semiparametric Bayesian model and its simulation

Suppose that F follows a Dirichlet process with parameters a and F0, symbolically,
F �DPða;F0Þ. Under this setting, we have E FðAÞ½ � ¼ F0ðAÞ and
Var½FðAÞ� ¼ F0ðAÞ½1� F0ðAÞ�=ðaþ 1Þ, where A is an element of the r-field
associated to the parameter space of ki, namely K. In this setup, F0 is the base-
distribution and a is a precision parameter. For comparison with results obtained
under parametric approaches, we consider F0 to be a gamma distribution function
with mean k0 and shape parameter h0, both known, so that that the corresponding

variance is k20=h0. Noting that the Dirichlet process is the prior assigned to the
unknown distribution of the mean concentrations associated with the conditional
Poissonian observations, we may write the model hierarchically as

Xijki �indPoissonðwkiÞ; i ¼ 1; 2; . . .; n; ð1Þ

kijF �iid F; i ¼ 1; 2; . . .; n; ð2Þ

F �DPða;F0Þ: ð3Þ
Given a random sample xn ¼ ðx1; . . .; xnÞ of counts and according to the Pólya urn
representation of the Dirichlet process, the joint posterior distribution of the ki is

mðdknjxnÞ /
Yn
i¼1

gðxijkiÞ aF0ðdkiÞ þ
Xi�1

j¼1

dkiðdkjÞ
" #

;

where kn ¼ ðk1; . . .; knÞ, gð�jkÞ is the probability function of a Poisson distribution
with mean wk and dkið�Þ is the degenerate distribution with point mass at ki
(Blackwell and MacQueen 1973; Escobar and West 1998).

Taking the discrete nature of the Dirichlet process into account, we may have
identical values of ki for different i due to the inherent clustering of these quantities
(Escobar and West 1998; Müller et al. 2015). We group the ki into n�ð� n� 1Þ
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distinct values k�j , and let nj denote the number of ki taking this common value k�j ,
j ¼ 1; . . .; n�. For example, consider n ¼ 5 and the concentrations ki, i ¼ 1; . . .; 5. If
k1 ¼ k2 and k3 ¼ k4 ¼ k5, it follows that k�1 ¼ k1, k

�
2 ¼ k3, n1 ¼ 2, n2 ¼ 3 and

n� ¼ 2.
Given this clustering property, we may use the following full conditional

probability distribution to draw samples of mðdknjxnÞ using a Gibbs sampler (Escobar
and West 1998, Section 1.3.1)

mðdkijkð�iÞ; xnÞ / q0gðxijkiÞF0ðdkiÞ þ
Xn�
j¼1

njq
�
j dk�j ðdkiÞ; ð4Þ

where kð�iÞ ¼ fkjjj 6¼ i; j ¼ 1; . . .; ng with

q0 / a
Z
K
gðxijkiÞF0ðdkiÞ and q�j / gðxijk�j Þ;

such that q0 þ
P

j njq
�
j ¼ 1. In our problem q0 is a mixture of a Poisson distribution

by a gamma distribution, i.e., a negative binomial distribution. Escobar and West
(1998) comment that when we use the above conditional distribution in a Markov
chain Monte Carlo algorithm, there may occur problems if the sum of the q�j becomes

very large relatively to q0 on any iteration. In order to prevent this problem it is
helpful to “remix” the k�j ’s after every step. The cluster structure is defined by the set

s ¼ fs1; . . .; sng and the nj ¼ #fsi ¼ jg observations in cluster j that share the
common value k�j . Conditioning on n�, consider si ¼ j if ki ¼ k�j so that, given si ¼ j

and k�j , Xi � Poissonðwk�j Þ. Define Jj as the index set of the observations in cluster j,

i.e., Jj ¼ fijsi ¼ jg. Let xðjÞ ¼ fxijsi ¼ jg be the corresponding cluster of observa-
tions. Then, we use the following posterior distribution to “remix” the k�j in the Gibbs
sampler

hðk�j jxn; s; n�Þ ¼ hðk�j jxðjÞ; s; n�Þ ¼
Y
i2Jj

gðxijk�j ÞF0ðdk�j Þ;

for j ¼ 1; . . .; n�. In particular, we have

hðk�j jxn; s; n�Þ / ðk�j Þ
h0�1þ

P
i2Jj

xi
exp � nj þ h0

k0

� �
k�j

� �
; ð5Þ

which is a gamma distribution. To draw samples from mðdknjxnÞ we use (4) in a
Gibbs sampling process and (5) to “remix” the k�j . Algorithm 1 designed for such

purposes is outlined in the Appendix.
The parameter of interest is the mean of the unknown true concentration

distribution in the tank, F, defined by the functional

k: ¼ kðFÞ ¼
Z
K
uFðduÞ:

When a Dirichlet process prior is considered for F, this random variable enjoys some
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known features. For instance, the mean and variance of k regarding DPða;F0Þ are,
respectively, the mean of F0 and the variance of F0 multiplied by 1=ðaþ 1Þ (Walker
and Mallick 1997). For details on the probability distribution function of functionals
of the Dirichlet process and its properties, the reader is referred to Cifarelli and
Regazzini (1990), Cifarelli and Melilli (2000), James et al. (2008), Regazzini et al.
(2002), among others. In our case we do not need to specify the probability distri-
bution function of the functional; it is sufficient to know how to draw samples from

the distribution of k and this is possible by accounting for the stick-breaking rep-
resentation (Müller et al. 2015; Phadia 2016) of the DPða;F0Þ. In effect, we may
write

F ¼d Bdn þ ð1� BÞF;
where the notation ‘¼d’ means “follows the same distribution as”, B denotes a
random variable following a Betað1; aÞ distribution and dn is the degenerate prob-
ability measure at n�F0. This implies the distributional equation

kðFÞ ¼d Bnþ ð1� BÞkðFÞ; ð6Þ

because kðdnÞ ¼ n and under the condition that E logð1þ jnjÞ½ �\1 (Hjort and
Ongaro 2005). Given that we assume F0 is a gamma distribution, this condition

follows from Jensen’s inequality. The terms B, n and k in (6) are distributionally

independent. The simulation strategy for estimating k is based on (6) and on a
Markov chain of the form

kt ¼ Btnt þ ð1� BtÞkt�1; t� 2: ð7Þ
Here we use the algorithm proposed by Guglielmi et al. (2002), which consists of
simulating the following upper (u) and lower (‘) chains over time

k
u
t ¼ Btnt þ ð1� BtÞkut�1; t� 2; ð8Þ

and

k
‘

t ¼ Btnt þ ð1� BtÞk‘t�1; t� 2: ð9Þ

The algorithm is initiated by choosing k
u
1 and k

‘

1 for t ¼ 2. Guglielmi et al. (2002) set
these quantities as the upper and lower bounds of the space parameter, respectively.
For an unbounded parameter space as in the case under investigation, they suggest to

set k
u
1 as the largest internal bit value of the computer being employed. We update

these quantities using (8) and (9) until the difference is small, i.e., jkut � k
‘

t j\�, for a
small �[ 0. Given that E logð1þ jnjÞ½ �\1, then according Guglielmi & Tweedie

(2001, Theorem 1) kt is geometrically ergodic and its limiting distribution is the

distribution of k. Thus, we may draw from the distribution of k through (7) for a large
t. The corresponding procedure is outlined in Algorithm 2 in the Appendix.
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Given a random sample xn ¼ ðx1; . . .; xnÞ of counts we may update the knowledge

about k. Consider the posterior random mean given by

k
ðnÞ ¼

Z
K
uFðnÞðduÞ;

with FðnÞ denoting the posterior distribution for F defined by

Fjxn �
Z
Kn

DPðaþ n;GnÞmðdknjxnÞ;

where Gn ¼ ðaF0 þ
Pn

i¼1 dkiÞ=ðaþ nÞ. We may use the following representation to

draw samples from the distribution of k
ðnÞ

(Hjort and Ongaro 2005, Eq. 5.3)

k
ðnÞ ¼d B�

Xn
i¼1

DiZi þ ð1� B�Þk; ð10Þ

where B� �Betaðn; aÞ, Di, i ¼ 1; . . .; n are the elements of a vector with multivariate
uniform distribution and ðZ1; . . .; ZnÞ� mðdknjxnÞ. Taking all these features into

account we are able to draw samples from the distribution of k
ðnÞ
. We may implement

this process via Algorithm 3 outlined in the Appendix.

3 Sample size determination

An approach to the problem of determining the optimal sample size is to consider it
as a decision problem (Müller and Parmigiani 1995; Lindley 1997; Parmigiani and
Inoue 2009; Islam and Pettit 2014). Under this approach it is necessary to specify a

loss function Lðk; dnÞ based on a sample X1; . . .;Xn and a decision dn. In the problem
of interval inference, a decision corresponds to the determination of two quantities,
the lower [say, a ¼ aðxnÞ] and upper [say, b ¼ bðxnÞ] limits of a credible interval for

the parameter of interest k. A ship is declared not compliant with the D-2 standard
mentioned in Sect. 1 if aðxnÞ[ 10 or compliant, if bðxnÞ\10. Otherwise, if
aðxnÞ\10\bðxnÞ, more data are needed to make a decision. In this context, the
posterior Bayes risk may be written as

rðFðnÞ; dnÞ ¼
Z
Xn

E½Lðk; dnÞjxn�gðxnÞdxn; ð11Þ

where gðxnÞ is the marginal distribution of the data. The decision d�n which mini-

mizes rðFðnÞ; dnÞ among all the possible decisions dn is the so-called Bayes rule.
Then, the optimal sample size is the one which minimizes the total cost defined as

TCðnÞ ¼ rðFðnÞ; d�nÞ þ cn;

where c is the cost of sampling an aliquot. It is not always possible to compute
rðFðnÞ; d�nÞ analytically. We use Monte Carlo simulations to estimate rðFðnÞ; d�nÞ, for
each n in a set of specified sample sizes, by drawing samples of xn, computing the
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expected value in (11) applied to d�n and taking the mean of these values. With the

estimates of rðFðnÞ; d�nÞ for each n we fit the following curve, inspired from the one
used in Müller and Parmigiani (1995)

TCðnÞ ¼ E

ð1þ nÞH þ cn;

which may be linearized and viewed as a linear regression equation as follows

log½TCðnÞ � cn� ¼ logE � H logð1þ nÞ: ð12Þ

This function leads to a closed form for the estimators of logE and H, and fits the
data well, as indicated in Figure 1. The optimal sample size is the closest integer to

bE bH
c

 !1=ðbHþ1Þ
�1; ð13Þ

where bE and bH are the estimates of E and H, respectively, obtained via fitting the
linear regression (12) (by least squares, for example).

An algorithm for the determination of the optimal sample size, say no, and for the
decision with respect to D-2 standard follows.

1.

(a) Fixing a value for n, simulate a dataset xn ¼ ðx1; . . .; xnÞ from the prior
predictive distribution

gðxnÞ ¼
Yn
i¼1

gðxijkiÞmðkiÞdki;

with Xijki � PoissonðwkiÞ and mð�Þ the DP prior for F parameterized by
aF0.
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Fig. 1 Example with computed estimates of TC(n) with the fitted curve (in blue) and the optimal sample
size indicated in the red line for loss functions (14) and (15), respectively
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(b) Given xn, simulate m samples ZðkÞ ¼ ðZðkÞ
1 ; . . .; ZðkÞ

n Þ, k ¼ 1; . . .;m from
the posterior distribution of ðk1; . . .; knÞ, say mð�jxnÞ, via Algorithm 1 in the
Appendix.

(c) Let kk be a value sampled from the prior distribution of the random mean
of F (generated via Algorithm 2 in the Appendix), BðkÞ be a value

simulated from a Betaða; nÞ distribution and DðkÞ ¼ ðDðkÞ
1 ; . . .;DðkÞ

n Þ be a
vector of the symmetric Dirichlet distribution D n�1ð1; . . .; 1Þ. Then,

k
ðnÞ
k ¼ BðkÞkk þ ð1� BðkÞÞ

Xn
i¼1

DðkÞ
i ZðkÞ

i ; k ¼ 1; . . .;m;

is a m-tuple sample of the posterior distribution of the random mean of F
(accounting for its stochastic representation).

(d) For a fixed decision rule dn (e.g., a credible interval for k),

LðnÞk ¼ LðkðnÞk ; d�nÞ, k ¼ 1; . . .;m; is the corresponding sample of the loss

function L. The average of LðnÞk is an estimate of the posterior expected
loss.

2. Repeat the steps in 1 a large number of times and take the empirical mean of

every average of LðnÞk . This represents an estimate of the posterior risk rðFðnÞ; d�nÞ
for the fixed n.

3. Repeat steps 1 and 2 for a range of different values for n.
4. Compute the total cost TCðnÞ ¼ rðFðnÞ; d�nÞ þ cn, and fit (12) via least squares to

the points fðn;TCðnÞÞg obtaining estimates of E and H. This allows us to get the
optimal n from the minimum of the corresponding approximation for TCðnÞ via
(13).

5. Once chosen the optimal n, say no, collect the real data xno ¼ ðx1; . . .; xnoÞ and
determine the corresponding Bayes credible interval ½a�ðxnoÞ; b�ðxnoÞ�, from
which the terminal decision on compliance with the intended standard is made.
Use the credible interval limits to decide for compliance with the D-2 standard as
follows: declare compliance if b�ðxnoÞ\10, or non-compliance if a�ðxnoÞ� 10.
Otherwise, if a�ðxnoÞ\10\b�ðxnoÞ, more data are required to make a decision.

We use the loss functions described in the following section and for simplicity of
notation, we drop the argument xn in the limits aðxnÞ and bðxnÞ of the required
credible intervals.

We implemented the algorithms and the required functions using R (R Core Team
2016). For the adopted model parameters, the running time to compute optimal
sample sizes varied from 1.4 to 13 hours, depending on the setting. The running time
may increase or decrease depending on the simulation settings and the number of
core computers used; both are specified in the implemented functions. The computers
that have been used have the following characteristics: (i) OS Linux Debian 11,
RAM 216 GB and processor Intel Xeon CPU E5645 @2.40GHz; and (ii) OS Linux
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Ubuntu 20.04, RAM 7.7 GB, processor AMD PRO A8-8600B. The functions
implemented in R may be obtained from the authors upon request.

4 Loss functions

The first loss function is

Lðk; dnÞ ¼ qsþ ða� kÞþ þ ðk� bÞþ; ð14Þ
where 0\q\1 is a weight, s ¼ ðb� aÞ=2 is the half-width of the interval, the
function xþ is equal to x if x[ 0 and equal to zero, otherwise and a decision
dn ¼ dnða; bÞ corresponds to determination of the credible interval limits. Note that

the loss function (14) is a weighted sum of two terms, s and ða� kÞþ þ ðk� bÞþ,
with weights q and 1, respectively. In this context, Rice et al. (2008) argue that the
second term of the loss function must receive the largest weight, i.e., q\1. The
corresponding Bayes rule are the quantiles associated to probabilities q=2 and 1�
q=2 of the posterior distribution of k

ðnÞ
(Rice et al. 2008). For this loss function

applied to the Bayes decision, we have

E LðkðnÞ; d�nÞ
h i

¼ E k
ðnÞ
d
k
ðnÞ ðAb� Þ

h i
� E k

ðnÞ
d
k
ðnÞ ðAa� Þ

h i
;

where Ab� ¼ ½b�;1Þ, Aa� ¼ ð0; a��, a� and b� are the corresponding bounds of the

Bayes decision d�n . The expected value is taken under the distribution of k
ðnÞ
, which

is a mean functional computed over the posterior distribution Fjxn.
In Tables 1 and 2 we present optimal sample sizes computed using the total cost

minimization criterion and loss function (14) with the weights q ¼ 0:05 and
q ¼ 0:25, respectively.

The second loss function is

Lðk; dnÞ ¼ csþ ðk� mÞ2=s; ð15Þ
where c[ 0 is a fixed constant and m ¼ ðaþ bÞ=2 is the center of the credible
interval. The first term involves the half-width of the interval and the second, the
square of the distance between the parameter of interest and the center of the interval,
which is divided by the half-width to maintain the same measurement unit of the first
term. The weights attributed to each term are c and 1, respectively. If c\1, we
attribute the largest weight to the second term; if c[ 1, the situation is reversed and
if c ¼ 1 the two terms have the same weight. In this case, the Bayes rule corresponds
to the quantities which form the interval ½a�; b�� ¼ ½m� sdc;mþ sdc�, where

ðm; sdcÞ ¼ E k
ðnÞh i

; c�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kðnÞ�

q� �
. For more details see Rice et al. (2008).

Under this loss function we have
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E LðkðnÞ; d�nÞ
h i

¼ 2c1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½kðnÞ�

q
;

where the expected value and the variance of k
ðnÞ

are computed under the same
conditions considered for the previous loss function. In Table 3 we present opti-
mal sample sizes computed using the total cost minimization criterion and loss
function (15).

To visualize the idea of the total cost minimization criterion, in Fig. 1 we present
an example with estimates of TC(n) and the corresponding fitted curve using this loss
function (14) with a ¼ 0:5, k0 ¼ 10, h0 ¼ 1, w ¼ 0:5, c ¼ 0:005 and q ¼ 0:05; loss
function (15) with a ¼ 0:5, k0 ¼ 10, h0 ¼ 10, w ¼ 1, c ¼ 0:005 and c ¼ 1.

5 Discussion and illustration

According to international regulations, the ballast water of ships should be sampled
and analysed to estimate the mean concentration of viable organisms in the ballast
tank as a means of ascertaining the compliance with specified standards.

Although compliance with the D-2 standard may be viewed as a hypothesis testing
problem, we decided to attack it via a credible interval approach for two main

Table 1 Optimal sample size
(no) computed with q ¼ 0:05
under the Poisson/Dirichlet
process (1)–(3) model with F0

corresponding to a gamma
distribution with mean k0 ¼ 10
and shape parameter h0 and loss
function (14)

Aliquot Aliquot a Shape parameter (h0)

volume (w) cost (c) 1.0 2.5 5.0 7.5 10.0

0.5 0.005 0.5 20 16 14 13 10

1.5 22 18 15 13 12

2.5 23 17 14 12 11

5.0 21 15 12 10 9

10.0 17 12 9 7 6

0.010 0.5 12 10 9 8 8

1.5 14 11 9 8 7

2.5 14 10 8 7 6

5.0 13 9 7 6 5

10.0 10 7 5 4 3

1.0 0.005 0.5 19 15 13 12 11

1.5 22 17 14 12 11

2.5 22 17 13 12 11

5.0 20 15 12 10 9

10.0 17 12 9 7 7

0.010 0.5 12 10 8 7 7

1.5 14 10 9 8 7

2.5 14 10 8 7 6

5.0 13 9 7 6 5

10.0 10 7 5 4 4
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reasons. First the credible intervals may be employed to test the hypothesis that

k� 10 with the same spirit outlined in Costa et al. (2021), namely, the ship will be
declared compliant with the D-2 standard if the upper limit of the posterior credible
interval is smaller than 10 or non-compliant if the corresponding lower limit is larger
than 10; otherwise, more data will be needed to make a decision. Second, the

posterior credible interval accounts for the magnitude of the mean concentration k
and this may help regulators to establish more or less stringent remedial measures or
compensation for possible environmental damage.

For planning and inference purposes, we propose a DP mixture of independent
Poisson distributions for estimation of the quantity of interest, which is a mean
functional of the unknown distribution, say F. Such estimation is accomplished from
simulated values algorithmically generated through appropriate stochastic represen-
tations of these random quantities, with particular relevance for the posterior random
mean of F.

The determination of no (optimal number of aliquots of ballast water to be
collected) follows criteria based upon decision rules corresponding to credible
intervals. The related loss functions defined as weighted combinations of precision
and bias measures and their respective Bayes intervals are determined from simulated
samples of the posterior random mean distribution for each fixed value of n and each
marginally generated vector of observations xn. The no is obtained by minimizing the

Table 2 Optimal sample size
(no) computed with q ¼ 1=4 ¼
0:25 under the Poisson/Dirichlet
process (1)–(3) model with F0

corresponding to a gamma
distribution with mean k0 ¼ 10
and shape parameter h0 and loss
function (14)

Aliquot Aliquot a Shape parameter (h0)

volume (w) cost (c) 1.0 2.5 5.0 7.5 10.0

0.5 0.005 0.5 38 33 29 27 26

1.5 46 37 32 28 26

2.5 47 37 30 27 25

5.0 45 34 27 23 20

10.0 38 28 20 17 15

0.010 0.5 25 21 18 18 17

1.5 29 23 19 18 16

2.5 29 23 18 16 15

5.0 28 20 16 14 12

10.0 22 16 12 10 8

1.0 0.005 0.5 35 31 26 25 23

1.5 45 35 30 26 25

2.5 46 36 29 26 24

5.0 45 34 27 23 21

10.0 39 27 21 17 15

0.010 0.5 23 19 17 16 15

1.5 28 22 19 17 15

2.5 29 22 18 16 15

5.0 27 20 16 14 12

10.0 22 16 12 10 9
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Table 3 Optimal sample size
(no) computed under the
Poisson/Dirichlet process (1)–(3)
model with F0 corresponding to
a gamma distribution with mean
k0 ¼ 10 and shape parameter h0,
and loss function (15)

Aliquot Aliquot c a Shape parameter (h0)

volume (w) cost (c) 1.0 2.5 5.0 7.5 10.0

0.5 0.005 1 0.5 108 92 83 78 74

1.5 133 106 92 84 79

2.5 138 109 92 83 77

5.0 138 106 85 76 69

10.0 126 92 72 61 54

1/4 0.5 69 59 53 49 47

1.5 83 67 58 52 49

2.5 86 68 57 50 47

5.0 84 64 52 45 41

10.0 75 55 42 35 31

0.010 1 0.5 69 59 53 49 47

1.5 84 67 57 52 49

2.5 86 68 57 51 47

5.0 85 64 51 45 41

10.0 75 54 42 36 31

1/4 0.5 45 37 33 31 30

1.5 53 42 36 32 30

2.5 54 42 35 31 28

5.0 52 39 31 27 24

10.0 45 32 24 20 18

1.0 0.005 1 0.5 103 85 75 70 66

1.5 128 100 85 77 72

2.5 135 104 87 77 72

5.0 135 102 82 73 66

10.0 125 91 71 61 55

1/4 0.5 67 54 48 44 42

1.5 82 64 54 49 45

2.5 85 65 54 48 44

5.0 84 62 50 44 40

10.0 74 53 42 36 32

0.010 1 0.5 66 54 47 44 42

1.5 81 64 53 48 45

2.5 85 65 53 48 44

5.0 84 63 50 44 40

10.0 75 53 41 36 32

1/4 0.5 43 34 30 28 27

1.5 52 40 33 30 28

2.5 53 41 33 30 27

5.0 52 38 30 26 24

10.0 44 32 25 21 19
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sum of the cost of collecting all aliquots with the minimum Bayes risk estimates for
fixed values of n, and fitted by a function wholly specified by a minimizing linearized
regression structure.

The optimal sample size is directly affected when we vary h0 with a fixed, or vary
a with h0 fixed (Tables 1, 2 and 3). This change in no is more evident when loss
function (15) is considered. In general, the sample sizes obtained via loss function
(14) are smaller than those obtained via loss function (15) (see Tables 1, 2 and 3). A
possible justification is that the Bayes rule associated with loss function (15) depends
on the expected value and on the variance of the posterior distribution, whereas with
loss function (14), the Bayes rule is based on the quantiles of the posterior
distribution, which may provide wider intervals and therefore smaller sample sizes.
From Tables 1 and 2, we may observe that no increases as q increases. In this case, as
q increases the fixed posterior probability decreases, which may provide intervals
with shorter lengths but with smaller credibilities.

From Tables 1, 2 and 3, we may also observe that for a fixed h0 the sample size
increases with a until a certain value and then decreases, which is more evident in
loss function (15). This may be explained by two facts: (i) Sethuraman and Tiwari
(1982) showed that DPða;F0Þ ! dkðk0Þ in distribution as a ! 0, where k0 �F0, i.e.,
all the ki are equal to a quantity k0 with probability 1. In this sense, the model (1)–(3)
approaches to the model of Costa et al. (2021); (ii) as a ! 1 the Dirichlet process
tends to concentrate around F0, which in our problem is a gamma distribution, i.e.,
the model (1)–(3) approaches to the following full parametric model:

Xijki � PoissonðwkiÞ; i ¼ 1; . . .; n; ð16Þ

ki �F0; i ¼ 1; . . .; n; ð17Þ
where F0 is a gamma distribution with mean k0 and shape parameter h0. Taking these
features into account, it seems that the no is smaller for extreme values of a because
these situations correspond to models with only parametric components.

Also note that for h0, a and c fixed, the value of the aliquot volume w does not
considerably affect no, suggesting that one may choose smaller aliquot volumes w in
order to decrease the total volume and the cost of sampling. On the other hand, when
the cost c of obtaining an aliquot increases, no decreases, which is more evident in
loss function (15).

A practical concern with the use of a Dirichlet process for modeling observed data
and for determining optimal sample sizes is the setting of the parameter a. Walker &
Mallick (1997, pg. 475) stated that a coherent prior choice for a is the quotient
between the prior guess for the mean of the random variance defined asZ

K
u2FðduÞ � k

2
;

and the prior guess for the variance of k. If we consider the same prior guess for these

two quantities we obtain a ¼ 1. In addition, a non-informative setup for k is achieved
by allowing Var½n� ! 1, where n�F0. Since we considered a gamma distribution

for F0 in our model, it follows that Var½n� ¼ k20=h0.
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As an illustration, we consider a hypothetical data set to mimic a scenario with a
vertical ballast tank like the one described in Murphy et al. (2002, Fig. 2), where
there are two incomplete barriers forming almost three strata of water. To determine
no in a non-informative setup, we fix k0 ¼ 10, the limit of the IMO standard, and
h0 ¼ 1 so that Var½n� ¼ 100 and consider loss function (15) with w ¼ 1, c ¼ 0:010,
c ¼ 1=4 and a ¼ 1:5, leading to a sample size no ¼ 52 (see Table 3). Given that
Murphy et al. (2002) indicate that for some organisms the concentration decreases as
the tank depth increases, we consider two scenarios for the concentration in the
strata: (i) concentrations of 20, 15 and 8, with overall mean of 14:33[ 10; (ii)
concentrations of 12, 7, and 4, with overall mean of 7:67\10. Using three gamma
distributions with the respective concentration means and shape parameter of 300, we
simulated samples of 17 aliquots from two strata and 18 aliquots from the remaining
one, in each scenario, and given the concentrations, we drew the number of
organisms according to a Poisson distribution. The generated counts are displayed in
Table 4. In Fig. 2, we depict an estimate of E Fjxno½ � for the generated counts in each
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Fig. 2 Estimate of E Fjxno½ � for each case
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case. These estimates are clearly non-continuous distribution functions, as expected
from the stratified concentration scenarios considered, and suggests that a
semiparametric approach should be preferred to analyze this data.

For case 1 we drew 1000 values from the distribution of k
ð52Þ

, and using them, we
computed the required interval according to the Bayes rule based on the loss function
(15), i.e., m	 sdc with c ¼ 1=4, obtaining [12.10, 15.38] which contains the true
value 14.33 with credibility of 0.955. For case 2, we obtain the interval [6.90, 9.16]
which contains the value 7.67 with credibility of 0.952. The histograms of the

sampled values of k
ð52Þ

for each case are presented in Fig. 3. These histograms,

Table 4 Simulated counts for case 1 with strata concentrations 20, 5 and 8; and for case 2 with strata
concentrations 12, 7 and 4. In each case the numbers in each line represent the simulated counts from the
respective stratum

Case Counts

1 14 9 25 8 25 32 20 18 23 19 16 16 22 21 26 13 18 21

17 16 7 13 10 15 11 12 11 10 13 19 14 14 18 17 19

10 10 7 8 7 13 6 6 15 9 9 4 7 6 9 7 6

2 7 14 5 13 20 14 11 14 12 8 11 15 10 16 17 10 10 12

9 8 8 10 3 5 8 5 7 10 4 8 8 8 6 5 5

3 3 9 3 5 4 2 5 8 3 9 6 2 4 6 3 3
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Fig. 3 Histogram of the sampled values of k
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for each case
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constructed with no ¼ 52, do not show large asymmetry. This might not be true for
smaller sample sizes. However, construction of credible intervals based on small
sample sizes might not be appropriate for the decision process under consideration. If
on the other hand we consider a ¼ 1000, which may be considered as an
approximation to the full parametric model (16), (17), we obtain the intervals [9.63,
10.90] with 0.946 credibility and [9.43, 10.59] with 0.958 credibility, respectively for
cases 1 and 2, which do not contain the overall mean. This suggests that the
semiparametric approach may be a better alternative when little information is
available on the heterogeneous organism distribution and/or the number of strata
concentrations in the ballast water tank, given that the Dirichlet process embedded in
the model (1)–(3) will naturally incorporate this lack of information. Details
concerning the heterogeneity of this distribution are described in Murphy et al.
(2002).

Even though the D-2 standard was proposed in 2004, only recently (2017) it has
been enforced (Casas-Monroy et al. 2020). Data regarding details on the size and
type of possible invasive organisms contained in ballast water as well as on their
distributions in ballast water tanks which have different configurations are still
scarce. Therefore estimation of the mean concentration of such organisms should be
conducted with caution. We proposed an extremely flexible model that may take such
features into account, although at the price of larger sample sizes. We believe that
alternative and more specific models may be considered as more data become
available.

Appendix A

Algorithm 1: Drawing samples from the joint posterior distribution of the ki.
Step 1. Simulate initial values for ki, i ¼ 1; . . .; n from F0;
Step 2. Under a Gibbs sampling scheme, update ki, i ¼ 1; . . .; n using (4);
Step 3. Update the values obtained in Step 2 using (5);
Step 4. Repeat steps 2-3 a number of times as a burn-in; the values

obtained in the last iteration are the required values.

Algorithm 2: Drawing samples of the random mean k.
Step 1. Set a value for �, set k

‘

1 ¼ 0 and take k
u
1 as the largest internal bit

value of the computer being employed (in our case, 1:79
 10308);
Step 2. Update the upper and lower quantities using (8) and (9);
Step 3. If the absolute difference between the two quantities is smaller

than �, the required value k may be taken as either k
u
t or k

‘

t .
Otherwise, return to step 2.

Algorithm
3:

Drawing samples from the distribution of k
ðnÞ
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Step 1. Simulate B� from a Betaðn; aÞ distribution;
Step 2. Simulate k using Algorithm 2;
Step 3. Simulate Di, i ¼ 1; . . .; n from a multivariate uniform distribution;
Step 4. Simulate ðZ1; . . .; ZnÞ from mðdknjxnÞ using Algorithm 1;
Step 5. Obtain the required value using the quantities generated in steps 1-4

and (10) of the article.
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