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Abstract
This paper proposes a linear approximation of the nonlinear Threshold

AutoRegressive model. It is shown that there is a relation between the autore-

gressive order of the threshold model and the order of its autoregressive moving

average approximation. The main advantage of this approximation can be found in

the extension of some theoretical results developed in the linear setting to the

nonlinear domain. Among them is proposed a new order estimation procedure for

threshold models whose performance is compared, through a Monte Carlo study, to

other criteria largely employed in the nonlinear threshold context.

Keywords Linear approximation � Threshold model � L2 norm � AIC

Mathematics Subject Classification 37M10 � 47A58

1 Introduction

The complexity of nonlinear time series models often makes it difficult to analyze

the main features of their dynamics, the derivation of their statistical properties and

the identification and estimation of the models. In this case the issues developed in

the linear domain cannot be further adapted and new tools need to be introduced.

We herein propose a bridge between the linear AutoRegressive Moving Average

(ARMA) model and the nonlinear Self-Exciting Threshold AutoRegressive

(SETAR) model (Tong and Lim 1980; Tong 1990). We introduce a linear

approximation of the threshold model that offers the opportunity to investigate the

dynamics of the generating process.
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II, 132, 84084 Fisciano, SA, Italy

123

Statistical Methods & Applications (2023) 32:27–56
https://doi.org/10.1007/s10260-022-00638-1(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-4220-4277
http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-022-00638-1&amp;domain=pdf
https://doi.org/10.1007/s10260-022-00638-1


In more detail, we show that the proposed linear approximation of the nonlinear

SETAR process is given by an ARMA model. Even though one might expect that

this approximation is given by an autoregressive (AR) process, we show that there is

also a moving average (MA) component.

The linear approximation is obtained using the best (in L2 norm) one-step-ahead

predictor of the SETAR process, and the corresponding coefficients of the ARMA

approximation are theoretically derived.

Then, leveraging these results which allow us to derive the ARMA model that

best approximates the threshold structure, we introduce a new procedure by which

to estimate the order of the SETAR process, in what can be considered one of the

potential applications of the proposed linear approximation.

Before going into the details of our proposal and to better introduce our

contribution, we need to clarify the distinction between linear representation and

linear approximation of a nonlinear process. The linear representation of nonlinear

models was extensively presented in Francq and Zakoı̈an (1998), and in the

references therein. It is based on a new parametrization of the nonlinear model that

leads to a weak ARMA representation, where the adjective weak relates to the fact

that the assumptions, usually given on the noises of the ARMA model (such as

independence), are not satisfied by the linear ARMA representation. (For an

example of linear representation of the subdiagonal bilinear model, see Pham 1985).

In this domain, more recently, Kokoszka and Politis (2011) used the definition of

weak linear time series, and even showed that Autoregressive Conditional

Heteroscedasticity-type and Stochastic Volatility-type processes do not belong to

this class.

The definition of linear approximation of Xt is instead based on different issues.

The aim is to introduce of an approximation that allows one to distinguish two

components in the process Xt:

Xt ¼ XL
t þ Yt

with XL
t the linear approximation and Yt the nonlinear component, where XL

t is given

by the linear causal process:

XL
t ¼

X1

j¼0

wjet�j; ð1Þ

with w0 ¼ 1,
P1

j¼0 jwjj\1 and fetg a sequence of independent and identically

distributed (i.i.d.) random variables, with E½et� ¼ 0 and E½e2t � ¼ r2.
The derivation of the linear approximation XL

t is associated in the literature with

the use of the Volterra series expansion of Xt, where X
L
t is obtained considering the

first-order term of the expansion of Xt. (For an example of the bilinear model, see

Priestley 1988, p. 58.)

The spirit of the Volterra expansion has inspired various contributions to linear

approximation, with applications in many domains (among others see Huang et al.

2009 and Schoukens et al. 2016).
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In this study we obtain a linear approximation of Xt by borrowing the definition

of the best mean square one-step-ahead predictor (see among others Brockwell and

Davis 1991, Sect. 2.7).

The first results are presented in Proposition 1, whereas the elements included in

XL
t are further discussed in Remark 1 that leads to the proposed linear approximation

of Xt. Moreover, we show that the proposed linear approximation is an ARMA

process and we use this result in the order estimation of the threshold process, thus

confining the computational effort needed to estimate the order of a nonlinear

process to the linear domain.

In particular, in Sect. 2 we establish the conditions under which a linear

approximation of Xt can be obtained. In Sect. 3 the linear approximation is used to

implement a new order estimation procedure whose consistency property is shown;

in Sect. 4 some extensions of the linear approximation are given after removing

some conditions fixed in the previous pages, and the role played by the SETAR

parameters in the approximation is discussed; in Sect. 5 the order estimation

procedure is evaluated and compared to other information criteria, through a Monte

Carlo study. Some final comments are given at the end, and all proofs are given in

the Appendix.

2 Linear approximation of the SETAR process: main results

Let fXtgt2Z be a SETAR nonlinear process, given by:

Xt ¼
Xk

j¼1

/ðjÞ
0 þ

Xpj

i¼1

/ðjÞ
i Xt�i

 !
I Xt�d 2 Rj

� �
þ et; ð2Þ

where fetg is a sequence of continuous i.i.d. R-valued random variables with mean

zero and E½e2t � ¼ r2e\1, Ið�Þ is the indicator function, k is the number of regimes,

pj is the order of the autoregressive regimes, Xt�d is the threshold variable, d is an

integer representing the threshold delay, pj is a nonnegative integer, k and d are

positive integers, Rj ¼ ðrj�1; rj� for j ¼ 1; . . .; k � 1 with

�1 ¼ r0\r1\. . .\rk�1\rk ¼ 1, and Rk ¼ ðrk�1;þ1Þ are subsets of the real

line such that R ¼
Sk

j¼1 Rj.

In the following, to find a stochastic linear approximation of the process Xt, we

use the L2 norm given by kXt � XL
t jI t�1kL2 ¼ E ðXt � XL

t Þ
2jI t�1

h i1=2
, with I t�1 the

set of information on Xt available up to time t � 1.

To show the theoretical results, we take advantage of an alternative represen-

tation of the threshold process that, to avoid heavy notation (which would not help

in understanding the issues), is assumed to have k ¼ 2 regimes (the case with k[ 2

is discussed in Sect. 4.3) and null intercepts (/ðjÞ
0 ¼ 0, for j ¼ 1; 2; . . .; k). This

guarantees the following form to process (2):
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Xt ¼ U1Xt�1IðXt�d � r1Þ þU2Xt�1 1� IðXt�d � r1Þ½ � þ et; ð3Þ

where

Xt
ðp�1Þ

¼
Xt

. . .

Xt�pþ1

2
64

3
75; Uj

ðp�pÞ
¼ /ðjÞ

1 . . . /ðjÞ
p�1 /ðjÞ

p

Ip�1 0

" #
; et

ðp�1Þ
¼

et
0

� �
ð4Þ

with I the identity matrix, 0 the null vector, and the autoregressive order p (the

assumption that the two regimes have the same autoregressive order simplifies the

presentation of results and can be easily met including null coefficients in the model

(see Sect. 4.2)). Without loss of generality, we can suppose that d ¼ 1 and r1 ¼ 0

(these assumptions will be further discussed in Sect. 4.1); then, the process (3) can

be written as

Xt ¼ AIt�1
Xt�1 þ et; ð5Þ

where

AIt�1
¼

U1 if Xt�1 � 0

U2 if Xt�1 [ 0:

�
ð6Þ

Note that all results given in the following are based on the assumptions of strict

stationarity (refereed to as stationarity in the next pages) and ergodicity of the

process. In the threshold domain the milestone in this framework is given by

Petruccelli and Woolford (1984), who state a set of sufficient and necessary con-

ditions for the stationarity and ergodicity of a SETAR(2;1) model; sufficient con-

ditions for the more general SETAR(2;p) process, are given in Chan and Tong

(1985) and Bec et al. (2004).

There are at least two difficulties inherent in obtaining the linear approximation

of the SETAR model; these make this model different from other nonlinear models,

such as Markov Switching structures (Hamilton 1989). First, the SETAR process (5)

has stochastic coefficients that depend on the process Xt itself: it implies, among

others things, that it is not easy to obtain its moments (whose sufficient conditions

for their existence are given in Lemma 2 in the Appendix). Second, the SETAR

process does not fulfil many regularity conditions that can assist in obtaining the

linear approximation. (For example, the first derivative of Xt, carried out to derive

the coefficients of the first-order Volterra expansion (see Priestley 1988, p. 26), may

not exist when the skeleton of the process assumes a value equal to the threshold

value.)

Starting from these two points, to derive a linear approximation of a

SETAR(2; p) process, we need to introduce an additional notation that simplifies

the presentation.

Let Xt ¼ eT1Xt be the SETAR(2;p) process (5), with e1 a ðp� 1Þ vector with 1 as

its first element and all remaining ðp� 1Þ elements are zero, whereas A> is the

transpose of A. Further, let
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p ¼
p

ð1� pÞ

� �
� Ip and P ¼

p11 p12
p21 p22

� �
ð7Þ

be two matrices where p is a ð2p� pÞ matrix, with p ¼ PrðXt � 0Þ, Ip is an identity

matrix of order p and � is the Kronecker product, whereas P is a ð2� 2Þ matrix,

with pij ¼ PrðXt 2 RjjXt�1 2 RiÞ, for i; j ¼ 1; 2 and R1 ¼ ð�1; 0�, R2 ¼ ð0;1Þ.
Moreover, consider the following matrix:

K ¼
U1 0

0 U2

� �
P� Ip
� �

; ð8Þ

with Ui, for i ¼ 1; 2, defined in (4).

Given the previous notation, we can now introduce the linear approximation of

Xt. Let Xtð1Þ be the best (in L2 norm) one-step-ahead predictor for the SETAR(2;p)
process, Xtð1Þ ¼ E½XtjI t�1�; we can now state the following results.

Proposition 1 Let Xt, t 2 Z, be a stationary and ergodic SETAR(2;p) process with

Eðe2t Þ\1 and c2\1 (with c2 given in Lemma 2 in the Appendix); then, given the

linear process XL
t as in (1), we have the following results in L2 norm:

(i) argminfgjg jjXt � XL
t jI t�1jj2L2 ¼ gjðI t�1Þ ¼ eT1

Qj�1
s¼0 AIt�1�s

e1; 8j� 1, -

that is, the minimizer - say, XL
tjt�1, is given by XL

tjt�1 ¼
P1

j¼1 gjðI t�1Þet�j;

(ii) Xtð1Þ ¼
P1

j¼1 gjðI t�1Þet�j,

where I t�1 ¼ fXt�1;Xt�2; . . .g and the subscript t � 1 in XL
tjt�1 is due to the

conditional set I t�1.

Proof See the Appendix.

The result of Proposition 1 is twofold. First it gives, for the SETAR(2; p) model,

a representation of the optimal one-step-ahead predictor, Xtð1Þ, which is a

generalized linear process with coefficients gjðI t�1Þ that relate to the process itself.

Second, this optimal predictor corresponds to XL
tjt�1 when the minimization is done

with respect to the linear process XL
t .

Now we need to emphasize the following key remark.

Remark 1 Proposition 1 gives a representation of the best one-step-ahead predictor

for the SETAR(2;p) process. However, the quantities gjðI t�1Þ are not easly

managed because they are nonlinear functions of the observations. An easy way to

derive a linear process, as defined in (1), is to consider the expectation of gjðI t�1Þ -
that is

g0 ¼ 1; g
ð2Þ
j ¼ E gjðI t�1Þ

� �
¼ E eT1

Yj�1

s¼0

AIt�1�s
e1

 !
; j� 1: ð9Þ
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If we suppose that c1\1 (see Lemma 2) and use the same arguments as in the

proof of Lemma 2, we have that g
ð2Þ
j ¼ Oðcj1Þ, 8j� 1. So, it follows that

P1
j¼0 jg

ð2Þ
j j\1. Then, we have the following linear approximation of the

SETAR(2;p) process

X
ð2Þ
t ¼ et þ

X1

j¼1

g
ð2Þ
j et�j: ð10Þ

h

Further note that Proposition 1 gives the best (in L2 norm) one-step-ahead

predictor for the SETAR(2;p) process, whereas the linear process in (10) is a

projection of the SETAR(2;p) predictor in the space of the linear predictors. Many

features of this linear process will be analysed in the following; the extension to the

SETAR(2;p1; p2) case, with p1 6¼ p2, is discussed in Sect. 4.2.

First of all, we provide an example to illustrate the linear approximation in (10).

Example 1 Let Xt be a stationary and ergodic SETAR(2;1) process given by

Xt ¼ /1Xt�1IðXt�1 � 0Þ þ /2Xt�1ð1� IðXt�1 � 0ÞÞ þ et:

To simplify the computations, we suppose that the transition matrix P ¼ 0 1

1 0

� �
,

which implies that p ¼ 1=2 and that the two parameters /1 and /2 are negative.

Moreover, the matrix K, defined in (8), is

K ¼
/1 0

0 /2

� �
P ¼

0 /1

/2 0

� �
:

By (9) and (27), we have that

g
ð2Þ
1 ¼ 1

2
ð1; 1Þ

/1

/2

� �
and g

ð2Þ
2 ¼ 1

2
ð1; 1ÞK

/1

/2

� �
¼ /1/2:

Set j ¼ 2u and j ¼ 2u� 1 for even and odd cases of j, respectively. Since

K2u ¼ /1/2ð ÞuI2 and K2u�1 ¼ /1/2ð Þu�1K;

it follows that

g
ð2Þ
2u ¼ /1/2ð Þu and g

ð2Þ
2u�1 ¼ /1/2ð Þu�1g

ð2Þ
1 8u� 1:

Finally, note that the coefficients g
ð2Þ
j derived through Proposition 1 and Remark 1

exhibit the same ergodic conditions given in Petruccelli and Woolford (1984). �

The next theorem shows a more precise characterization of the linear

approximation (10) of the SETAR(2;p) process.
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Theorem 1 Let Xt, t 2 Z, be a stationary and ergodic SETAR(2;p) process with

Eðe2t Þ\1 and c2\1; then the linear approximation (10) is the ARMA(2p, 2p)
process.

Proof See the Appendix.

What is stated in Theorem 1 allows us to make some interesting remarks.

Remark 2 The assumptions in Theorem 1, Eðe2t Þ\1 and c2\1, are sufficient to

have a finite second moment, EðX2
t Þ\1 (see Lemma 2 in the Appendix). Further,

cr given by cr ¼ pkU1kr þ ð1� pÞkU2kr is always less than one when the two

regimes are also stationary, with kU1k\1 and kU2k\1; in the other cases,

however, this condition needs to be verified case by case. h

Remark 3 Theorem 1 provides the linear approximation of the SETAR(2;p)
process, given by the ARMA(2p,2p) model. Looking at the proof of Theorem 1 in

the Appendix (Eq. (30)) we have the exact expression of the linear process X
ð2Þ
t in

(10) that even allows to theoretically derive the coefficients of the ARMA(2p,2p)
model. For simplicity, suppose that the matrix K, in (8), has different eigenvalues -

say k1; . . .; k2p. By (30) and after some easy but long algebra, we have two

polynomials of degree 2p related to the autoregressive and moving average

component of X
ð2Þ
t whose coefficients are given respectively by:

ai ¼ð�1Þi�1
X

jvj¼i

Y2p

u¼1

kvuu ; i ¼ 1; . . .; 2p;

bj ¼� aj þ ð�1Þj�1
X2p

k¼1

ck
X

jv�k j¼j�1

Y2p

u ¼ 1

u 6¼ k

kvuu

0

BBBBB@

1

CCCCCA
; j ¼ 1; . . .; 2p;

ð11Þ

with jvj ¼
P2p

u¼1 vu, jv�kj ¼
P2p

u ¼ 1

u 6¼ k

vu for vu 2 f0; 1g and where the sums in (11)

are made with respect to all different i and j� 1 groups of ones in the vectors v and

v�k, respectively. h

To emphasize the issues in Theorem 1 and illustrate how the coefficients (11) can

be used, consider the following example.

Example 2 Let Xt be a stationary and ergodic SETAR(2;1) process with the

matrices of the coefficients U1 ¼ f/1g and U2 ¼ f/2g.
The matrix K in (8) becomes

K ¼
/1 0

0 /2

� �
p11 p12
p21 p22

� �
:

For simplicity, suppose that the matrix K has two different eigenvalues - say k1 and
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k2. Write K ¼ CDC�1 and set PT
1 ¼ pTC and P2 ¼ C�1 /1

/2

� �
as in the proof of

Theorem 1. Let ck, k ¼ 1; 2, be the component-wise product of the elements in the

vectors P1 and P2. By Theorem 1, we have that the linear approximation of Xt is

given by an ARMA(2,2) model - that is,

X
ð2Þ
t � a1X

ð2Þ
t�1 � a2X

ð2Þ
t�2 ¼ et þ b1et�1 þ b2et�2; ð12Þ

where a1 ¼ k1 þ k2, a2 ¼ �k1k2, b1 ¼ �a1 þ c1 þ c2, and b2 ¼ �ða2 þ c1k2 þ
c2k1Þ by using (11) in Remark 3. �

Furthermore note that from Remark 1 it follows that the coefficients of the

approximation (10) are based on the expectation (9) that makes X
ð2Þ
t a suboptimal

linear approximation, in the sense that it is not the best linear one-step-ahead

predictor of Xt (see Proposition 1). Moreover, it has the great advantage of

establishing a clear correspondence between the ARMA and SETAR orders, as

stated in Theorem 1. This correspondence is the key element that overshadows the

need to evaluate how X
ð2Þ
t approximates Xt, which becomes only a theoretical issue

lacking any empirical application in identifying the SETAR model (as discussed in

Sect. 3).

Another key remark needs to be introduced to discuss the order of the ARMA

approximation.

Remark 4 The order 2p of the ARMA approximation is the maximum value of the

AR and MA components, and this correspondence between the order of the ARMA

approximation and the order of the autoregressive regimes of the SETAR process

could be used to estimate the autoregressive order of the threshold process (usually

left to information criteria). h

To emphasize this last remark and to give empirical evidence that 2p is the

maximum order of the ARMA approximation (where 2p could be greater than the

‘‘true’’ ARMA order), consider the following example.

Example 3 Let Xt 	 SETAR(2;1) with coefficients /ð1Þ
1 ¼ /ð2Þ

1 ¼ /1, with j/1j\1.

It is easy to note that this last equality implies the degeneration of the SETAR(2;1)

model to an AR(1) structure, and that this degeneration needs to be found even in

(10). This can be verified because, in this case, the transpose of the vector p in (7)

becomes (1, 0) (or (0, 1)), whereas P ¼ I2 and then K ¼ /1I2. From (27) it follows

that g
ð2Þ
j ¼ /j

1 for j ¼ 1; 2; . . .; and so:

X
ð2Þ
t ¼ et þ

X1

j¼1

/j
1et�j;

which is the MA(1) representation of the AR(1) process. �
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The result given in Example 3 leads to an important evaluation: when Xt is a

linear autoregressive process then X
ð2Þ
t is identically equal to Xt and is no longer an

approximation.

Another important consequence of the result of Theorem 1 and Remark 4 is the

fact that we can build a SETAR(2;p) process whose linear approximation is null.

This is important for two reasons. First we can subtract from Xt the linear

approximation, and then we can mainly focus on the structure of the residuals.

Second, by a proper parametrization, we can find a SETAR(2;p) process whose

linear approximation (10) is null.

This last evaluation is summarized in the following Corollary.

Corollary 1 Let Xt, t 2 Z, be a stationary and ergodic SETAR(2;p) process. Under
the assumptions of Theorem 1, there exists a SETAR(2;p) process such that its linear

approximation (10) is null - that is g
ð2Þ
j ¼ 0, 8j� 1.

Proof See the Appendix.

To illustrate the result of this Corollary consider the following example.

Example 4 Let Xt be an ergodic SETAR(2;1) process. As shown in the proof of

Corollary 1, a sufficient condition to obtain a SETAR(2; p) process with null linear

approximation, is given by /1 ¼ �/2, with p11 ¼ p22 ¼ 0:5. To give empirical

evidence of this result, we generated n ¼ 200 artificial data from a SETAR(2;1)

model with autoregressive coefficients /1 ¼ �0:58 and /2 ¼ 0:58. The correlo-

gram on the left side of Fig. 1 clearly shows the absence of the linear component

whereas the correlogram of X2
t on the right side, gives evidence of nonlinearity in

the generating process. �

Corollary 1 also plays an important role in the order estimation presented in the

next section, because if we have a SETAR(2;p) model with p[ 0, it can happen that

the linear approximation in Theorem 1 is a white noise, and then the 2p order of the

ARMA process will not match that of the SETAR(2;p) model (as discussed in

Remark 4). This implies that in this case, the results of Theorem 1 cannot be used in

the order estimation. To manage this problem and broadly use the results of

5 10 15 20

−0
.1

5
0.

00
0.

10

ACF Xt

Lag

AC
F

5 10 15 20−0
.1

5
0.

00
0.

15

ACF Xt
2

Lag

AC
F

Fig. 1 Plot of the autocorrelation function of Xt (left) and X2
t (right)
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Theorem 1 to estimate the autoregressive order of the threshold model, some

additional conditions need to be added (see Theorem 2).

In the following Remark we give a bound for the residual part, coming out from

the proposed linear approximation, X
ð2Þ
t , in L2 norm.

Remark 5 First, for simplicity, suppose that X
ð2Þ
t ¼ et, that is the linear approx-

imation is null. Otherwise, we can always consider the process Xt � X
ð2Þ
t . So, we

have to evaluate the following quantity

Xt � etk k2L2 : ð13Þ

By using the representation of the SETAR process as in Lemma 1, if c4\1 the main

upper bound (in the sense that we take into account the series of the squared terms)

of (13) is

CeT1p
T I2p �K2

� ��1 U2
1

U2
2

 !
e1;

for some positive constant C, K2 ¼ U2
1 0
0 U2

2

� �
P� Ip
� �

whereas the other

quantities correspond to those defined in (8). This result follows by using the same

arguments as in the proof of Theorem 1. �

Then, by focusing on the proposed linear approximation, the threshold

autoregressive order can be consistently estimated, thus restricting attention to the

linear time series domain. As will be discussed in Sect. 3, this has remarkable

advantages not only from a theoretical point of view but even empirically, because

the computational burden of the order estimation procedure of a nonlinear time

series model is restricted to its linear (and less complex) approximation.

3 Order estimation

Identify the time series models is a crucial step in the ‘iterative stages in the

selection of a model’ (Box and Jenkins 1976) that needs to preserve the parsimony

of the model and makes a heavy impact on the computational effort needed to

estimate the parameters.

In the linear domain, and in particular in the ARMA context, the identification

has well-established results based on the relation between the ARMA parameters

and the total/partial autocorrelation (at different lags) of the generating process.

As expected, these results - which relate strictly to the linear dependence - cannot

be extended to the nonlinear domain. The complexity of the nonlinear time series

structures has led to the model selection and identification largely discussed in the

literature, which often focuses on information criteria and their performance (see

Psaradakis et al. 2009; Emiliano et al. 2014; Rinke and Sibbertsen 2016). If we

focus on order estimation in the SETAR domain, we find it looks different:

Kapetanios (2001) proposes a consistent information criterion by which to estimate
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the lag order of the autoregressive regimes; Wong and Li (1998) introduce a

correction to the Akaike Information Criterion (AIC; Akaike 1974) to correct its

bias in the presence of SETAR models; and De Gooijer (2001) proposes cross-

validation criteria to select the autoregressive order of these nonlinear structures.

Galeano and Peña (2007), modifying the model selection criteria introduced by

Hurvich et al. (1990), propose the inclusion of a determinant term related to the

estimated parameters of each regime; furthermore, more recently, Fenga and Politis

(2015) evaluated a bootstrapped version of the AIC in the SETAR domain, and

defined the procedure step by step.

The results given in Sect. 2 could be used in this context to introduce a new

approach to estimating the autoregressive order of the threshold regimes. For

simplicity, assume that both regimes have the same order. (As noted before, this is

not a limitation because zeroes could be included in the vector of parameters.) The

proposed procedure is based on the linear approximation of the SETAR model as

given in Theorem 1. We call this procedure Linear AIC (L-AIC) and it is based on

the two main steps that are discussed below and summarized with the pseudo-code

in Algorithm 1.

Let Xt be a stationary SETAR(2; p) process. The first step starts by fixing the

maximum order for p (pmax) and then for each p ¼ 1; 2; . . .; pmax:

(1:a) estimate the parameters of the SETAR(2; p) model;

(1:b) compute the eigenvalues of the matrix K in (8)

(1:c) compute the estimates of the autoregressive parameters - say âj - for

j ¼ 1; 2; . . .; 2p, of the linear approximation

X
ð2Þ
t ¼ a1X

ð2Þ
t�1 þ . . .þ a2pX

ð2Þ
t�2p þ et; ð14Þ

using the results in (11).

Given the pmax-estimated SETAR models, the second step is based on a parametric

bootstrap approach with B bootstrap replications. In particular, for b ¼ 1; . . .B:

(2:a) generate the bootstrap independent innovations fe
t g, t ¼ 1; . . .; nþ 2pmax,

from a random variable with mean 0, variance r2, and with n the time series

length;

for i ¼ 1; . . .; pmax run the steps 2.b) and 2.c):

(2:b) generate the artificial time series from the AR(2i) models by using the

innovations fe
t g in 2.a) and the coefficients estimated in 1.c). Then we have

X

ð2Þ
t as

X

ð2Þ
t ¼ â1X


ð2Þ
t�1 þ . . .þ â2iX


ð2Þ
t�2i þ e
t ; ð15Þ

(2:c) for each artificial time series i, select the autoregressive order p̂
ðiÞ
b such that

p̂
ðiÞ
b ¼ arg min

j2f1;...;2ig
AICðjÞ, with j the order of the autoregressive process fitted
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to X

ð2Þ
t , whose coefficients are obtained through the Yule-Walker

estimators;

(2:d) using the p̂
ðiÞ
b obtained from steps 2.b) and 2.c), estimate the autoregressive

order of the SETAR(2; p̂b) model such that:

p̂b ¼ maxfi : jp̂ðiÞb � p̂
ðiþ1Þ
b j 6¼ 0g; for i ¼ 1; 2; . . .; pmax � 1:

Given the B selected orders (one for each bootstrap replication), the SETAR model

has autoregressive order p̂ such that

p̂ ¼ arg max
p̂b2f1;...;pmaxg

f#p̂bg; ð16Þ

with #p̂b being the empirical frequency of p̂b.
Note that: in step 1.b), given the ergodicity of the process Xt, the probabilities

included in the matrix P of (8) can be consistently estimated using the empirical

frequencies nij ¼
Pn

t¼2 I Xt 2 RijXt�1 2 Rj

� �
, for i; j ¼ 1; 2, such that p̂ij ¼

nij=
P2

j¼1 nij (see among others Anderson and Goodman 1957); in step 1.c)) and

all the elements included in the second step of the procedure, only the linear AR

model is involved; this is because, given the results of Theorem 1 and Remark 3, the

AR and MA components have the same order 2p. Moreover, the AR part of the

ARMA approximation shares all the elements used in order estimation. Therefore,

to simplify the procedure, we can only choose the AR component. (The extension to

SETAR models with different autoregressive order is discussed in Sect. 4.2.)

Further, from the computational point of view, the use of theoretical issues

related to linear models (instead of to nonlinear ones) in the second step, makes the

algorithm quite fast.
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This procedure has two important aspects. First, the linear approximation

process, X
ð2Þ
t , is not observable, and so it is a sort of latent process. For this reason,
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in step 2.a) we generate for each p a sequence of i.i.d. innovations (for example,

from the standard Gaussian distribution) and we estimate the parameters of the

linear approximation by using (11). In this way, we build the process in (15) that is

always a well-defined AR(2i) for each i; this is the key point for using the selection

rule in step 2.d).

Moreover, our procedure is motivated by two main considerations. First, when

we estimate a linear model in the SETAR(2;p) data generating process, the residuals

are not a sequence of i.i.d. random variables, because they also capture the nonlinear

structure of the SETAR process. Second, even if we could estimate the parameters

of the linear approximation by using the results in Francq and Zakoı̈an (1998), it is

not easy to derive the variance-covariance matrix of the estimators, in which case,

the results (11) should be preferred.

Before stating the next results about the consistency of the L-AIC procedure, we

need to report some regularity assumptions that refer to the Assumptions of

Theorem 1 of Chan (1993).

Assumptions (H1). Let Xt be a nondegenerate SETAR(2;p) process where the

coefficients of the two regimes are not equal and 0\p\1. Moreover,

(1) the process Xt is stationary and ergodic (see Chan and Tong 1985; Bec et al.

2004);

(2) there exists the univariate density function of Xt with respect to its invariant

distribution, which is positive everywhere. h

Finally, starting with the AIC behaviour in Shibata (1976), we define an

asymptotically type-AIC consistent procedure if the asymptotic distribution of the

chosen order is

lim
n!1

Prðp̂ ¼ pÞ ¼ 0 if p\p0;

lim
n!1

Prðp̂ ¼ pÞ[ 0 if p� p0;

with p0 the true order and p̂ the estimator of the autoregressive order that depends on

the series length n.

Theorem 2 Let Xt, t 2 Z, be a stationary and ergodic SETAR(2;p0), defined in (2).

Under Assumptions (H1) and if p11 6¼ p, Eðe2t Þ\1 and c2\1, then p̂ in (16) is

type-AIC consistent.

Proof See the Appendix.

Note that the assumption p11 6¼ p in Theorem 2 is relevant because it guarantees

that the autoregressive process in Theorem 1 is exactly of order 2p (see Remark 4)

and then what stated in Corollary 1 is prevented.

The proposed procedure and its consistency were empirically evaluated in a

Monte Carlo study (see Sect. 5) that considers various SETAR models characterized

by various degrees of complexity and nonlinearity.
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4 Extensions

In this section we examine the proposed linear approximation of the SETAR process

and evaluate three different aspects. First, we show the role of the threshold and

delay parameters in this linear approximation. Second, we study the case where

regimes have different orders. Third, we generalize the result of Theorem 1 when

the number of regimes is more than two.

4.1 Threshold and delay parameters

To write the linear approximation for any values of the threshold and delay

parameters, we consider the results in Sect. 2 presented for the case of two regimes

with the same order. For simplicity, we consider only the AR part of the linear

approximation. So, the matrix K in (8) becomes

Kr;d ¼
U1 0

0 U2

� �
Pr;d � Ip
� �

;

where the threshold and delay parameters are r and d, respectively. The matrix Pr;d

is defined as

Pr;d ¼
pðdÞ11;r pðdÞ12;r

pðdÞ21;r pðdÞ22;r

0
@

1
A;

with pðdÞij;r ¼ Pr Xt 2 RjjXt�d 2 Ri

� �
, i; j ¼ 1; 2 and R1 ¼ ð�1; r�, R2 ¼ ðr;þ1Þ.

All the other quantities are the same as in (8).

First, note that the delay parameter has the role of the order for the transition

probabilities in Pr;d. It follows that Pr;d ¼ Pr;1

� �d
. Then, the matrix Kr;d can be

written as

Kr;d ¼
U1 0

0 U2

� �
Pr;1

� �d�Ip

	 

:

Now, looking at the form of the matrix Kr;d, we can note that:

1. the parameters r and d involve only the probabilities in the matrix Pr;d;

2. in general, assuming that the SETAR model does not degenerate into an AR

process, the rank of the matrix Kr;d depends only on the matrices of the

coefficients U1 and U2;

3. the procedure for the order estimation (proposed in Sect. 3) needs only evaluate

the difference between two successive orders. Then, it mainly depends on the

matrices of the coefficients and not on the matrix Pr;d.

By using the previous considerations, we can argue that our procedure for the order

estimation is independent of the threshold and delay parameters. This means that in
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identifying the SETAR model, we can separate the estimation of the threshold and

delay parameters from the order estimation of the regimes.

4.2 Different orders in the regimes

Suppose that we have a SETAR model with two regimes with two different

autoregressive orders - say p1 and p2. Moreover, suppose that the threshold and

delay parameters are zero and one, respectively. Set p0 ¼ maxfp1; p2g. Let p1\p2
and p2 ¼ p1 þ m. Then, the matrix K is the same as in (8), except that matrix U1

becomes:

U1 ¼
/ð1Þ
1 . . . /ð1Þ

p1
0m�1 0

Ip0�1 0

 !
:

In this case, K is a 2p0 matrix with a2p0 ¼ a2p0�1 ¼ . . . ¼ a2p0�mþ1 ¼ 0 by (11) and

using the fact that the matrix K has m eigenvalues equal to zero. This means that the

AR part of the linear approximation is ARðp1 þ p2Þ.
Note that the transition probabilities in the matrix P are well defined in the sense

that the irreducibility property of the Markov Chain with respect to the two regimes

is still valid.

In this case, the procedure for the order estimation (see Sect. 3) is applied

properly, changing Algorithm 1. The first step is modified by fixing a grid of

candidate values for p1 and p2 such that p1 ¼ 1; . . .; p1;max and p2 ¼ 1; . . .; p2;max. In

the second step, the p1;max � p2;max estimated SETAR models are used to carry out

the bootstrap replications, with p1;max þ p2;max innovations in row 13. A double

cycle given by i ¼ 1; . . .p1;max and s ¼ 1; . . .p2;max is considered in row 14, whereas

i is replaced by iþ s in row 16. All these changes imply that the maximum in row

17 becomes:

ðp̂b1 ; p̂b2Þ ¼ maxfi; s : jp̂ði;sÞb � p̂
ði
;s
Þ
b j 6¼ 0g

for i ¼ 1; 2; . . .; p1;max � 1, s ¼ 1; 2; . . .; p2;max � 1 and with i
 � i, s
 � s, such that

at least i
 or s
 is strictly greater than the corresponding i or s value. Finally, the
computation of the empirical frequencies of ðp̂b1 ; p̂b2Þ allows to conclude the

algorithm.

4.3 More regimes

Suppose that we have k regimes with k� 2. For simplicity, assume that all regimes

have the same order - say p. Moreover, suppose that the delay is d ¼ 1 and the

thresholds are ri, for i ¼ 1; . . .; k � 1, with �1\r1\. . .\rk�1\1. Then, the

quantities in (7), become
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p ¼
p1

..

.

pk

0
BB@

1
CCA� Ip and P ¼

p11 . . . p1k

..

. ..
. ..

.

pk1 . . . pkk

0
BB@

1
CCA;

with
Pk

i¼1 pi ¼ 1. The matrix K in (8) becomes

K ¼

U1 0 . . . 0

0 U2 . . . 0

..

. ..
. ..

. ..
.

0 0 . . . Uk

0
BBBB@

1
CCCCA

P� Ip
� �

;

where Ui, i ¼ 1; . . .; k are the matrices of coefficients of each regime.

Repeating the proof of Theorem 1, we get the expression in (30) as the sum of

k � p quantities instead of 2p. This implies that we have as a linear approximation the

ARMA(k � p; k � p) process. Finally, in this case the procedure for the order

estimation can be applied by replacing 2p with k � p in Algorithm 1.

5 Simulation study

To evaluate the L-AIC procedure for the order estimation of the SETAR(2; p)
process, we generated time series from four data generating processes:

M1 : Xt ¼ �0:8Xt�1It�1 � 0:2Xt�1ð1� It�1Þ þ et
M2 : Xt ¼ 0:5Xt�1It�1 � 0:5Xt�1ð1� It�1Þ þ et
M3 : Xt ¼ ð�0:4Xt�1 � 0:5Xt�2ÞIt�1 þ ð0:2Xt�1 � 0:6Xt�2Þð1� It�1Þ þ et
M4 : Xt ¼ ð�0:7Xt�1 � 0:2Xt�2ÞIt�1 þ ð0:3Xt�1 � 0:6Xt�2Þð1� It�1Þ þ et
with threshold value r1 ¼ 0, and et 	Nð0; 1Þ. For each model we considered time

series of length n ¼ 50; 75; 150; 200; 500 (with burn-in at 500 to discharge the

effects of the initial conditions). The models M1 and M2 are those considered in

Galeano and Peña (2007), where even for model M1 the condition of Theorem 2,

p 6¼ p11, is satisfied; Models M3 and M4 were chosen to guarantee the assumptions

of Theorem 1 and change the percentage of observations generated from each

regime. (InM3 this percentage is almost identical in the two regimes, whereas inM4

the percentage of observations generated from the first regime is, on average, less

than 40%.) Further, note that not all models include the intercepts: it makes it less

easy to distinguishing between the two regimes, and the performance of the order

estimation procedure could be affected from it.

After fixing pmax ¼ 5, we estimated the SETAR(2;p) models, for p ¼ 1; . . .; 5
using conditional least squares estimators, with d ¼ 1 and r1 ¼ 0. For each

estimated model we obtained the linear autoregressive approximation X̂

ð2Þ
t and then

we started, for each approximation, the B ¼ 125 bootstrap replicates with

et 	Nð0; 1Þ. The number of Monte Carlo runs is 1000.

In the Monte Carlo study the L-AIC procedure has been compared to two other

approaches.
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The SETAR-AIC (Tsay 1989):

AICðp1; p2Þ ¼
X2

j¼1

Tj lnðr̂2ejÞ þ 2pj

	 

; ð17Þ

where Tj, pj and r̂2ej are the number of observations, the candidate autoregressive

order, and the residual variance of regime j, for j ¼ 1; 2, respectively, whereas the
second approach considered for the order estimation of the SETAR(2; p) model is

the bAIC of Fenga and Politis (2015), which is a bootstrapped version of the

SETAR-AIC.

Comparisons of the L-AIC with both the SETAR-AIC and the bAIC are

presented in the left side of Table 1 where the relative empirical frequency of the

selection of the true autoregressive orders of the SETAR(2; p) model are

summarized. (The complement to one of the relative frequencies in the table is

related to overparametrized models.)

It is widely known that the AIC tends to overfit models (see among others Koeher

and Murphree 1988), whereas this overparametrization is penalized by the Bayesian

Information Criterion (BIC), so we extended our procedure to the BIC domain

giving rise to the Linear BIC (L-BIC) procedure.

For this purpose we considered steps 1.a) - 2.d) of the L-AIC procedure and

replaced in step 2.c) the AIC with the BIC. Then we replicated the simulation study

and compared the performance of the SETAR-BIC (Galeano and Peña 2007):

Table 1 Relative empirical frequency of right selection over 1000 Monte Carlo runs.

n M1: SETAR(2;1) M2: SETAR(2;1)

L-AIC AIC bAIC L-BIC BIC L-AIC AIC bAIC L-BIC BIC

50 0.70 0.45 0.68 0.81 0.73 0.75 0.45 0.73 0.84 0.70

75 0.71 0.49 0.70 0.86 0.79 0.76 0.49 0.73 0.86 0.79

150 0.74 0.53 0.71 0.89 0.89 0.82 0.56 0.75 0.93 0.90

200 0.81 0.56 0.73 0.92 0.93 0.81 0.60 0.78 0.96 0.92

500 0.84 0.62 0.77 0.95 0.98 0.86 0.67 0.81 0.98 0.98

n M3 : SETAR(2;2) M4 : SETAR(2;2)

L-AIC AIC bAIC L-BIC BIC L-AIC AIC bAIC L-BIC BIC

50 0.71 0.54 0.71 0.76 0.69 0.74 0.48 0.71 0.78 0.68

75 0.75 0.59 0.72 0.82 0.83 0.83 0.56 0.81 0.86 0.79

150 0.80 0.56 0.78 0.88 0.87 0.92 0.65 0.83 0.97 0.94

200 0.83 0.63 0.80 0.94 0.91 0.92 0.69 0.85 0.98 0.96

500 0.90 0.72 0.85 0.97 0.98 0.96 0.75 0.88 0.99 0.99

L-AIC: Linear AIC; AIC: SETAR-AIC; bAIC: Fenga and Politis 2015; L-BIC: Linear BIC; BIC:

SETAR-BIC. n ¼ f50; 75; 150; 200; 500g is the time series length
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BICðp1; p2Þ ¼
X2

j¼1

Tj lnðr̂2ejÞ þ logðTjÞpj
	 


ð18Þ

to that of the L-BIC procedure. (Note that Fenga and Politis 2015 do not consider

the BIC.) The results of each model are presented in the right side of Table 1.

Finally note that the L-BIC procedure is made consistent by using the same

arguments as in the proof of Theorem 2, together with the consistency of the BIC

measure in the linear domain.

The results in Table 1 clearly show the improvement in the L-AIC procedure

with respect to the SETAR-AIC and the bAIC approaches in all considered cases

and correspondingly the good performance of the L-BIC if compared to the BIC

criterion, mainly for small values of n. In particular, one can be note that when the

distinction between the two regimes is more marked, as in model M2 where the

autoregressive coefficients have opposite signs, there is an overall improvement in

the competing order estimation approaches (mainly in the L-AIC case).

As the complexity of the data generating process grows with models M3 and M4,

all procedures confirm their pertinence to estimating the autoregressive order of the

nonlinear threshold processes, but even in this case the frequency with which the

L-AIC procedure correctly detects is generally higher than that of the competing

approaches based on the Akaike Criterion and this result is confirmed in the L-BIC

case, even if with less marked differences between the L-BIC and the SETAR-BIC.

From the computational point of view, if we compare the L-AIC procedure with

the Fenga and Politis (2015) criterion, we can note that, when r1, d are known and

p1 ¼ p2 ¼ p, the effort (measured in terms of computing time) is heavier for the

bAIC criterion; this is because in the bootstrap iterations, for each candidate

p ¼ 1; 2; . . .; pmax, we need to estimate a nonlinear threshold model instead of a

linear AR(2p) model, as in the L-AIC case. In practice, a further advantage of the L-

AIC procedure is that the computationally intensive steps of the bootstrap iterations

are confined to the linear domain characterized by reduced complexity relative to

the nonlinear domain.

Finally, to evaluate how the variability of the SETAR(2; p) process is explained
by the linear ARMA(2p, 2p) approximation, we have compared the variance of the

SETAR generating process with the variance of its linear ARMA approximation.

For all models, M1, M2, M3 and M4, we have generated 1000 artificial time series

and for each of them we have computed the ratio between the two variances. In

Table 2 the means of these ratios and the corresponding standard deviations, are

presented for n ¼ f200; 500g. The variance explained by the ARMA approximation

is higher for model M1 whereas this ratio is lower for model M4 that is

characterized by high nonlinearity. The artificial time series have been further

evaluated to investigate the dependence between X
ð2Þ
t and the generating process Xt.

For this aim, in Table 2 we have considered, for each model, the mean of the

correlations computed between the ARMA approximation X
ð2Þ
t and Yt ¼ Xt � X

ð2Þ
t .

The results show different correlations as the structure of the model changes.
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6 Conclusion

It is widely known that when the behaviour of the autocorrelation function (ACF) is

observed for a time series Xt generated by a SETAR(2; p) model, we can easily

confuse the ACF of the threshold process with that of a linear ARMA structure.

Different motivations can be cited for this empirical evaluation: among them is the

fact that the linear autoregressive model is nested in the SETAR model because it

can be seen as a degeneration of the SETAR structure when all data belong to the

same regime.

In this study we investigated the relation between the SETAR and ARMA

models. We showed that when Xt 	 SETAR(2; p), under proper conditions, the

linear approximation (10) of Xt is X
ð2Þ
t 	ARMA(2p, 2p). We theoretically showed

this result and even clarified when it could not be applied and how it can be

generalized when the number of regimes is greater than two or the regimes have a

different autoregressive order. Further, using linear approximation, we proposed an

order estimation procedure called Linear-AIC to estimate the autoregressive order

of the two regimes of Xt; the consistency of this procedure was proved and the

extension of these results to the BIC domain is discussed.

The L-AIC procedure is based on two main steps: in the first step we focus on the

nonlinear generating process Xt and on its linear approximation X
ð2Þ
t , whereas in the

second step we estimate the autoregressive order of the SETAR model using a

parametric bootstrap approach.

Our Monte Carlo study gives evidence of the performance of the L-AIC

procedure and of its BIC extension (called L-BIC). The results highlight that the

L-AIC generally does a better job than both the competing SETAR-AIC in (17) and

Fenga and Politis (2015) criterion (and, correspondingly, the L-BIC performs better

than the SETAR-BIC criterion), even in the presence of the parametrization of the

SETAR model that makes it difficult to distinguish among regimes.

The results presented herein will serve as the topic of future research that further

investigates the extensions discussed in Sect. 4; future research can also study how

Table 2 Mean values, over 1000 Monte Carlo replicates, of the ratios between the variance of the

ARMA(2p, 2p) approximation, X
ð2Þ
t , and the variance of the corresponding generating process

Xt 	SETAR(2; p); mean values of the correlation between X
ð2Þ
t and Yt ¼ Xt � X

ð2Þ
t . In parenthesis the

standard deviations

n Index M1 M2 M3 M4

200 varðXð2Þ
t Þ

varðXtÞ
0:939
ð0:044Þ

0:917
ð0:045Þ

0:910
ð0:056Þ

0:838
ð0:078Þ

corðXð2Þ
t ; YtÞ �0:354

ð0:043Þ
�0:086
ð0:054Þ

0:052
ð0:079Þ

�0:010
ð0:077Þ

500 varðXð2Þ
t Þ

varðXtÞ
0:957
ð0:027Þ

0:919
ð0:031Þ

0:934
ð0:041Þ

0:835
ð0:057Þ

corðXð2Þ
t ; YtÞ �0:356

ð0:027Þ
�0:087
ð0:035Þ

0:034
ð0:063Þ

�0:004
ð0:055Þ
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the L-AIC and the L-BIC can be included in an overall identification procedure for

SETAR models.

Appendix

We report the proof of all Theorems, Proposition and Corollary of the paper and two

technical Lemmas.

Before proofing Theorem 1, we need to introduce the following Lemma on the

iterative representation of the SETAR model:

Lemma 1 Let Xt, t 2 Z, be a stationary and ergodic SETAR(2;p) process (4), with

E½jetj�\1, c ¼ pkU1k þ ð1� pÞkU2k and E½IfXt�1 � 0g� ¼ p (with 0� p� 1), if

c\1 then Xt can be given by:

Xt ¼
Xn

i¼1

Yi�1

s¼0

AIt�1�s
et�i þ et; a:s:; for n ! 1; ð19Þ

where AIt�1�s
is defined in (5) and k � k is any matrix norm.

Proof Using Theorem 1.1 in Bougerol and Picard (1992) and let

ck ¼
1

k
E log

Yk�1

s¼0

AIt�1�s

�����

�����

 !
;

it is sufficient to show that ck\0, for any k 2 N and t 2 Z.

Let k � k any matrix norm, now we have that

ck � log E
Yk�1

s¼0

AIt�1�s

�����

�����

1=k
0

@

1

A

0

@

1

A� log E
1

k

Xk�1

s¼0

kAIt�1�s
k

 ! !
¼ logðcÞ\0:

Given the ergodicity and stationarity of Xt and considered the representation (5),

then E kAIt�1�s
kð Þ ¼ c, for any t and s. Noting that the assumptions of the present

Lemma fit all conditions of Theorem 1.1 of Bougerol and Picard (1992), we have

that c\1, for any k, and that this result holds for any matrix norm. h

The next lemma proves the existence of moments of the SETAR process.

Lemma 2 Let Xt, t 2 Z, be a stationary and ergodic SETAR(2;p) process with

E½jetjr�\1, and cr\1, where cr ¼ p U1k krþð1� pÞ U2k kr , for r 2 ½1;1Þ and

E½IfXt�1 � 0g� ¼ p (with 0� p� 1), then E½jXtjr�\1 (where �k k is any matrix

norm).
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Proof Let ðkXtkÞLr ¼ E kXtkð Þ1=r, be the Lr norm, as given in Stelzer (2009, Def-

inition 4.1). We state with k � k a generic matrix or vector norm on Rp, since the

result of this lemma holds for any matrix or vector norm. By Lemma 1 and using the

same arguments given in the first part of the proof of Theorem 4.1 in Stelzer (2009) ,

that can be applied even in this SETAR domain, we need to prove the sufficient

condition that Xt belongs to LrðRpÞ, that is given by:

Eketkrð Þ1=rþ
X1

i¼1

E
Yi�1

s¼0

AIt�1�s

 !
et�i

�����

�����

r" #1=r
\1: ð20Þ

Define

Qi ¼ E
Yi�1

s¼0

AIt�1�s

 !
et�i

�����

�����

r

; ciþ1 ¼
1

iþ 1
E log

Yi�1

s¼0

AIt�1�s

 !
et�i

�����

�����

r !
:

By using the same arguments as in the proof of Lemma 1, we have that

ciþ1 � log E
Yi�1

s¼0

AIt�1�s

 !
et�i

�����

�����

r=ðiþ1Þ
0
@

1
A�

� log E
1

iþ 1

Xi�1

s¼0

AIt�1�s
k krþ 1

iþ 1
et�ik kr

 ! !
¼ logðcrÞ as i ! 1;

ð21Þ

since E AIt�1�s
k kr¼ cr by stationarity and ergodicity of Xt and Ejetjr\1. Then, by

(21)

exp ðiþ 1Þciþ1ð Þ�Qi and exp ðiþ 1Þciþ1ð Þ� cr þ giþ1

� �iþ1
:

where giþ1 ¼ O 1
iþ1

	 

.

Since cr\1 and Qi ¼ OðcirÞ, the result in (20) follows. Thus, we have that

E½jXtjr�\1. The proof is complete. h

Proof of Proposition 1 Using the results of Lemma 1, we need to minimize the

following quantity

Qðg1; g2; . . .; I t�1Þ ¼ jjXt � XL
t jI t�1jj2L2 ¼

¼ E
X1

j¼1

eT1
Yj�1

s¼0

AIt�1�s
e1 � gj

 !
et�j

 !2
������
I t�1

2

4

3

5: ð22Þ

Since by Lemma 2, the second moment exists, that is EðX2
t Þ\1, then

Qðg1; g2. . .; I t�1Þ is well defined.
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Making the first partial derivatives of Qðg1; g2; . . .; I t�1Þ with respect to gk, with
k� 1, and putting each equation equal to zero, we have

oQ

ogk
¼ E

X1

j¼1

eT1
Yj�1

s¼0

AIt�1�s
e1 � gj

 !
et�jet�k

 !�����I t�1

" #
¼ 0; 8k� 1: ð23Þ

Since the process Xt is also measurable with respect to ~I t�1 ¼ fet�1; et�2; . . .g, then
it is equivalent to consider either ~I t�1 in place of I t�1 in the conditional means.

Now, it is sufficient to derive gj, 8j� 1, in the following equations.

E eT1
Yj�1

s¼0

AIt�1�s
e1 � gj

 !
et�jet�k

�����
~I t�1

" #
¼ 0 8j; k� 1: ð24Þ

Without loss of generality, we can consider both et�j and et�k different from zero.

So, we can write (24) as

et�jet�kE eT1
Yj�1

s¼0

AIt�1�s
e1 � gj

 !�����
~I t�1

" #
¼ 0; ð25Þ

It follows that the solution in (25) is

gjð ~I t�1Þ ¼ gjðI t�1Þ ¼ E eT1
Yj�1

s¼0

AIt�1�s
e1

�����I t�1

 !
¼ eT1

Yj�1

s¼0

AIt�1�s
e1: ð26Þ

Since (22) is a square function, if we replace the solution (26) in (22), then the latter

is zero. This means that we have a minimum. Then, the proof of the first part of

Proposition is complete.

Now, for the second part, we know that the optimal one step ahead L2 predictor of Xt

is Xtð1Þ ¼ E XtjI t�1ð Þ. By using again Lemma 1, we have that

Xtð1Þ ¼E et þ
X1

j¼1

eT1
Yj�1

s¼0

AIt�1�s
e1et�j

 !�����I t�1

" #
¼

¼
X1

j¼1

eT1
Yj�1

s¼0

AIt�1�s
e1et�j ¼

X1

j¼1

gjðI t�1Þet�j:

The proof is so complete. h

Now we can prove Theorem 1.

Proof of Theorem 1 We start from the linear process (10) with coefficients,

g
ð2Þ
j ¼ E eT1

Qj�1
s¼0 AIt�1�s

e1

	 

, j� 1, defined in (9).

By using the stationarity and ergodicity assumption on Xt, it follows that also the

indicator process, It, is stationary and ergodic. Moreover, we can apply, on the

expression for g
ð2Þ
j , the Markov property and arguments similar to those given in
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Timmermann (2000) on the recursive representation and generation of moments of

the regimes switching models. So, it follows that

g
ð2Þ
j ¼ eT1p

TKj�1
U1

U2

� �
e1; j� 1; ð27Þ

where p and K are defined in (7) and (8), respectively and Kj�1 ¼ K �K � . . . �K,

with the matrix K multiplied ðj� 1Þ times. Then, we can write the linear process in

(10) as

X
ð2Þ
t ¼ et þ eT1p

T U1

U2

� �
e1et�1 þ . . .þ eT1p

TKj�1
U1

U2

� �
e1et�j þ . . . ¼

¼ eT1 Ip þ pT
X1

j¼1

BjKj�1

 !
U1

U2

� �" #
e1et;

ð28Þ

where B is the back-shift operator such that Bjet ¼ et�j. For now, suppose that all the

eigenvalues of the matrix K are different. So, we can write K ¼ CDC�1, where D is

a diagonal matrix with the eigenvalues on the main diagonal and C is the matrix

with the corresponding eigenvectors. Therefore, we can write (28) as

X
ð2Þ
t ¼ eT1 Ip þ pTC

X1

j¼1

BjDj�1

 !
C�1

U1

U2

� �" #
e1et: ð29Þ

By Remark 1, it follows that the series
P1

j¼1 jg
ð2Þ
j j is convergent. Note that in (29)

we have a power series and so it follows that qðKÞ\1, with qðKÞ the maximum

absolute eigenvalue of K.

Set PT
1 ¼ eT1p

TC and P2 ¼ C�1 U1

U2

� �
e1 and let ck be the component-wise product

of the corresponding elements in the vectors P1 and P2, k ¼ 1; . . .; 2p. Now, we can
write (29) as

X
ð2Þ
t ¼ 1þ B

X2p

k¼1

ck
1� kkB

 !
et; ð30Þ

where kk, k ¼ 1; . . .; 2p, are the eigenvalues in the matrix D. So, we can conclude,

that:

X
ð2Þ
t 	ARMAð2p; 2pÞ:

To complete the proof, we need to consider the case when two or more eigenvalues

in the matrix K are equal. In this case, we can apply the Jordan matrix decompo-

sition of K (among the others, see Lütkepohl (1996)) and the previous results still

hold. The proof is so complete. h
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Corollary 1 states that the linear approximation of the SETAR model could be

null. We here give the proof.

Proof of Corollary 1 Starting from (27) in the proof of Theorem 2, we have that

g
ð2Þ
j ¼ eT1p

TKj�1
U1

U2

� �
e1; j� 1;

and so it is sufficient to find one case such that g
ð2Þ
j ¼ 0, 8j� 1. For this aim,

suppose that the transition probability matrix (7) is

P ¼
1=2 1=2

1=2 1=2

� �
:

Then p ¼ 1=2.
Further, suppose that the parameters in the first regime of the SETAR(2;p) model

are the same, in absolute value, to the corresponding parameters of the second

regime but with the opposite sign. It is easy to verify that g
ð2Þ
1 ¼

2�1eT1 Ip; Ip
� � U1

U2

� �
e1 ¼ 0:

Now, by using the above assumptions, we can write g
ð2Þ
j as

g
ð2Þ
j ¼2�jeT1 U1 þU2ð Þj�1; U1 þU2ð Þj�1

h i U1

U2

� �
e1

¼2�jeT1 U1 þU2ð Þ j

 �

e1;

ð31Þ

8j� 1. Since the elements in the first row of the matrix U1 have opposite sign with

respect to the elements in the first row of the matrix U2, we can write

U1 þU2 ¼ 2C, where the matrix C has all zeros in the first row and the same

elements of U1 or U2 in the other rows. It is clear that the matrix C is idempotent

and so Cj ¼ C, 8j� 1. Then, we can write (31) as

g
ð2Þ
j ¼ 2�je>1 2Cð Þje1 ¼ e>1 C

je1 ¼ e>1 Ce1 ¼ g
ð2Þ
1 ¼ 0:

So, the result follows. h

We prove here the consistency of the identification procedure proposed.

Proof of Theorem 2 Before to enter into the details of the proof, we need to discuss

the assumptions of Theorem 2. For simplicity, suppose that the eigenvalues of the

matrix K, defined in (8), are all different. The assumption p11 6¼ p guarantees that

the linear approximation, X
ð2Þ
t , shows, at least, one coefficient different from zero (in

fact, by Corollary 1, we could also have that X
ð2Þ
t ¼ et).
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In particular, from (11), it follows that a2p0 ¼
Q2p0

k¼1 kk, with kk, k ¼ 1; . . .; 2p0, the
eigenvalues of K. Then a2p0 is the determinant of K and it is different from zero, if

and only if all kk are different from zero. Further, jKj ¼ /ð1Þ
p0
/ð2Þ
p0
ðp11p22 � p12p21Þ,

and then, given the generating process SETAR(2; p0) where /ð1Þ
p0

6¼ 0 and /ð2Þ
p0

6¼ 0,

jKj is different from zero if and only if p11p22 � p12p21 6¼ 0, or in other words, if

p11p22 � ð1� p11Þð1� p22Þ 6¼ 0 (where the term on the left is the determinant of P

in (8)). Using the ergodicity of the indicator process It�1 such that pT ¼ pTP, it
follows that the determinant of P (and of K) is different from zero if and only if

p11 6¼ p. Then, we have that a2p0 6¼ 0 iff p11 6¼ p.
The remaining assumptions of this Theorem imply that the Conditional Least

Squares estimators of the parameters for the SETAR(2;p0) process, are consistent by

Theorem 1 of Chan (1993). In order to apply this Theorem we need that EðX2
t Þ\1

which follows by the assumptions c2\1 and Eðe2t Þ\1 (see Lemma 2).

Since the eigenvalues of K are all different and by using the Dini’s Theorem, it

follows that the parameters ai, i ¼ 1; . . .; 2p0 (given in (11)) are differentiable

functions of the SETAR(2;p0) parameters. So, they are also continuous functions of

the SETAR(2;p0) parameters. Then, we have that

âi � ai ¼ opð1Þ; ð32Þ

where i ¼ 1; . . .; 2p0.
Now we focus the attention on the consistency of p̂. Consider a ~p such that

1� ~p� pmax, where clearly ~p can be different from p0. Moreover, (32) holds when ~p
is not equal to p0.
The second step of our procedure is based on a parametric bootstrap. In fact, we use

the latter to estimate some quantities on the latent linear process X
ð2Þ
t defined in (14).

We build its bootstrap approximation as X

ð2Þ
t which is defined in (15). There are

two main differences between X
ð2Þ
t and X


ð2Þ
t . Noting that we can fix any distribution

function such that the random variables (drawn from it) have zero mean and vari-

ance r2, the first difference is that the random variables e
t are not the same as et
even if they are independently drawn from the same distribution. The second dif-

ference is that X

ð2Þ
t includes the estimates âi instead of the true values ai, for

i ¼ 1; . . .; 2~p, as in X
ð2Þ
t . Now, we evaluate these two differences by using the

Mallow’s metric of order 2 (see Bickel and Freedman 1981), say d2ðF1;F2Þ, where
F1 and F2 are two distributions . By Lemma 8.4 of Bickel and Freedman (1981), we

have that

d2ðFe;n;FeÞ ! 0 a:s: ð33Þ

where Fe;n and Fe are the empirical distribution and the true distribution function of

et, respectively. Since we use a parametric bootstrap, then fe
t g and fetg are two

different samples from the same distribution function. So, by (33) and using the

triangular property of the Mallow’s metric, it follows that
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d2ðFe
;n;Fe;nÞ ! 0 a:s: ð34Þ

with Fe
;n the empirical distribution function of e
t .

By Remark 1, the linear process X
ð2Þ
t is stationary and ergodic. Further by (), also the

linear process X

ð2Þ
t is stationary and ergodic with probability tending to one when

n ! 1, . Then the process X

ð2Þ
t � X

ð2Þ
t is still stationary and ergodic with proba-

bility tending to one when n ! 1, since it is the difference of two (possibly

different) AR(2~p) process which are both stationary and ergodic, at least, in prob-

ability for large n.

Now, we evaluate the differences between the two linear processes X

ð2Þ
t and X

ð2Þ
t by

using d2ðF

n ;FnÞ where F


n and Fn are two univariate empirical distributions with

respect to X

ð2Þ
t and X

ð2Þ
t , respectively. We show that d2ðF


n ;FnÞ�!
p
0. In order to get

this result, it is sufficient that

1

n� 2~p

Xn

t¼2 ~pþ1

X

ð2Þ
t � X

ð2Þ
t

	 
2
�!p 0: ð35Þ

Since in our procedure both X

ð2Þ
t and X

ð2Þ
t are two (possibly different) AR(2~p)

processes, we can write

X

ð2Þ
t � X

ð2Þ
t ¼

X2 ~p

i¼1

âi X

ð2Þ
t�i � X

ð2Þ
t�i

	 

þ
X2 ~p

i¼1

âi � aið ÞXð2Þ
t�i þ e
t � et;

where âi and ai, i ¼ 1; . . .; 2~p, are in (15) and (14), respectively.

By (32), it follows that

X2 ~p

i¼1

âi � aið Þ2 1

n� 2~p

Xn

t¼2 ~pþ1

X
ð2Þ
t

	 
2
�!p 0; ð36Þ

since 1
n�2 ~p

Pn
t¼2 ~pþ1 X

ð2Þ
t

	 
2
�!p cXð0Þ\1, which is the variance of X

ð2Þ
t . So, by (34)

and (36), we can write

1

n� 2~p

Xn

t¼2 ~pþ1

X

ð2Þ
t � X

ð2Þ
t

	 
2
¼
X2 ~p

i¼1

âi
1

n� 2~p

Xn

t¼2 ~pþ1

X

ð2Þ
t�i � X

ð2Þ
t�i

	 
2
þ

þ
X2 ~p

i6¼j

âiâj
1

n� 2~p

Xn

t¼2 ~pþ1

X

ð2Þ
t�i � X

ð2Þ
t�i

	 

X

ð2Þ
t�j � X

ð2Þ
t�j

	 

þ opð1Þ:

ð37Þ

Since X

ð2Þ
t � X

ð2Þ
t is a stationary and ergodic process with finite variance in prob-

ability, for large n, then 1
n�2 ~p

Pn
t¼2 ~pþ1 X


ð2Þ
t�i � X

ð2Þ
t�i

	 
2
�!p Q1, for each integer i� 0,

with 0�Q1\1. For now, suppose that Q1 [ 0, then, by (32), (37) asymptotically

becomes Q1 1� hða1; . . .; a2 ~pÞ

 �

¼ 0 with hða1; . . .; a2 ~pÞ a continuous function and it
is less than one because 1� hða1; . . .; a2 ~pÞ is the same expression we get to derive
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cXð0Þ. So, we can conclude that Q1 cannot be positive. The unique solution is

Q1 ¼ 0. Thus, (35) is shown.

By Bickel and Freedman (1981), this result implies that

1

n

Xn

t¼maxð2 ~p;iÞþ1

X

ð2Þ
t X


ð2Þ
t�i � 1

n

Xn

t¼maxð2 ~p;iÞþ1

X
ð2Þ
t X

ð2Þ
t�i�!

p
0; ð38Þ

for each integer i� 0.

By Theorem 8.1.1 of Brockwell and Davis 1991, the Yule-Walker estimators of the

parameters in X
ð2Þ
t , say ~ai, i ¼ 1; . . .; 2~p, (we omit the order 2~p) are consistent as

well as S2e , the estimator of r2, the variance of the innovation process. By (38) and

using the continuous mapping Theorem, ~a
i � ~ai�!
p
0, i ¼ 1; . . .; 2~p, where ~a
i ,

i ¼ 1. . .; 2~p, are the Yule-Waker estimators of parameters in X

ð2Þ
t . Moreover,

S2
e � S2e�!
p
0, with S2
e the estimator of r2 on X


ð2Þ
t . Therefore, the AIC measure on

the process X

ð2Þ
t is equal in probability, for large n, to the AIC measure on X

ð2Þ
t .

Then, in the following, we can consider the X
ð2Þ
t process.

First, suppose an AR(2~p) process for X
ð2Þ
t with ~p\p0 and 2~p the maximum order of

the AR process. By Shibata (1976), it follows that limn!1 Pð2p̂ ¼ 2~pÞ ¼ 1 but with

~p\p0.

Now, consider an AR(2~p) process for X
ð2Þ
t , with ~p ¼ p0 and 2~p the maximum order

for the AR process. In this case we have that limn!1 Prð2p̂ ¼ 2p0Þ ¼ 1 by Shibata

(1976). So, we have the estimate of p̂ ¼ p0 by step 3.c in our procedure with a

probability tending to one.

Finally, suppose an AR(2~p) process for X
ð2Þ
t with ~p[ p0 with 2~p the maximum

order of the AR process. In this case, it follows that ai ¼ 0 for i ¼ 2~p; . . .; 2pmax and
by Shibata (1976), we have that limn!1 Prð2p̂ ¼ 2p0Þ[ 0.

Putting all together, we have that our procedure gives limn!1 Prðp̂ ¼ ~pÞ ¼ 0 if

~p\p0 and limn!1 Prðp̂ ¼ ~pÞ[ 0 if ~p� p0. So, p̂ is asymptotically type-AIC con-

sistent. The proof is complete. h
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