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Abstract
The weak form of the efficient market hypothesis is identified with the conditions

established by different types of random walks (1–3) on the returns associated with

the prices of a financial asset. The methods traditionally applied for testing weak

efficiency in a financial market as stated by the random walk model test only some

necessary, but not sufficient, condition of this model. Thus, a procedure is proposed

to detect if a return series associated with a given price index follows a random walk

and, if so, what type it is. The procedure combines methods that test only a nec-

essary, but not sufficient, condition for the fulfilment of the random walk hypothesis

and methods that directly test a particular type of random walk. The proposed

procedure is evaluated by means of a Monte Carlo experiment, and the results show

that this procedure performs better (more powerful) against linear correlation-only

alternatives when starting from the Ljung–Box test. On the other hand, against the

random walk type 3 alternative, the procedure is more powerful when it is initiated

from the BDS test.
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1 Introduction

The hypothesis of financial market efficiency is an analytical approach aimed at

explaining movements in prices of financial assets over time and is based on the

insight that prices for such assets are determined by the rational behaviour of agents

interacting in the market. This hypothesis states that stock prices reflect all the

information available for the agents when they are determined. Therefore, if the

hypothesis is fulfilled, it would not be possible to anticipate price changes and

formulate investment strategies to obtain substantial returns, i.e., predictions about

future market behaviour could not be performed.

The validation of the hypothesis of efficiency in a given financial market is

important for both investors and trade regulatory institutions. It provides criteria to

assess whether the environment favours the state that all agents playing in the

market are subject to equal footings in a ‘‘fair game’’, where expectations of success

and failure are equivalent.

Although the theoretical origin of the efficiency hypothesis arises from the work

of Bachelier in 1900, Samuelson reported the theoretical foundations for this

hypothesis in 1965. On the other hand, Fama established, for the first time, the

concept of an efficient market. A short time later, the concept of the hypothesis of
financial market efficiency emerged from the work of Roberts (1967), which also

analysed efficiency with an informational outlook, leading to a rating for efficiency

on three levels according to the rising availability of information for agents: weak,

semi-strong and strong. Thus, weak efficiency means that information available to

the agents is restricted to the historical price series; semi-strong efficiency means

that all public information is available for all agents; and strong efficiency means

that the set of available information includes the previously described information

and other private data, known as insider trading.

The weak form of the efficiency hypothesis has been the benchmark of the

theoretical and empirical approaches throughout history. In relation to the

theoretical contributions, most link the weak efficiency hypothesis to the fact that

financial asset prices follow a random walk (in form 1, 2 or 3) or a martingale.

However, since it is necessary to impose additional restrictions on the underlying

probability distributions that lead to one of the forms of random walk to obtain

testable hypotheses derived from the martingale model, it seems logical to assume

any of these forms as a pricing model.

Specifically, the types of random walks with which the weak efficiency hypothesis is

identified are conditions that are established on the returns of a financial asset, which are

relaxed from random walk 1 (which is the most restrictive) to random walk 3 (which

corresponds to the most plausible in economic terms since it is not as restrictive). This

makes it possible to evaluate the degree of weak efficiency.

Although numerous procedures have traditionally been used to test the weak

efficiency of a financial market according to the random walk model, many test only

some necessary, but not sufficient, condition of the aforementioned model in any of

its forms (this is the case, for example, of the so-called linear methods that test only

the necessary uncorrelation for the three types of random walk). In any case,
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applying one of these tests can lead to an incorrect conclusion. On the other hand,

there are methods that directly test a specific type of random walk.

Through the strategic combination of both types of methods, a procedure that

allows us to detect if a time series of financial returns follows a random walk and, if

so, its corresponding type, is proposed. The objective is to reduce the effect of the

above-mentioned limitation of some traditional methods when studying the weak

efficiency hypothesis.

Consequently, the work begins (Sect. 2) by describing how the hypothesis of

efficiency in a financial market is evaluated based on the so-called joint-hypothesis

problem (Fama 1991). The different methods traditionally applied to test the weak

efficiency in the forms that establish the random walk types are detailed in Sect. 3.

Next, a procedure is proposed to detect if a return series associated with a given

price index follows a random walk and, if so, what type it is. This procedure

combines methods that test only a necessary, but not sufficient, condition for the

fulfilment of the random walk hypothesis and methods that directly test for a

particular type of random walk. The proposed procedure is evaluated by means of a

Monte Carlo experiment, and the results are presented in Sect. 4. Finally, Sect. 5

contains the main conclusions of the study.

2 Evaluation of the efficiency hypothesis

To evaluate the efficiency of a financial market, Bailey (2005) proposes a procedure

on the basis of the joint-hypothesis problem of Fama (1991), that is, considering, in

addition to the available information, the existence of an underlying model to fix the

prices of financial assets. Specifically, based on the aforementioned model and the

cited set of information, the criterion that determines the efficiency of the market is

established to create a testable hypothesis. Thus, by means of some method

designed to test the hypothesis of efficiency, whether the collected data (observed

prices) evince this hypothesis is tested, which would imply the efficiency or

inefficiency of the market. Figure 1 shows this whole process schematically.

Clearly, in this procedure, the efficiency of a market depends on the pricing

model and the information set assumed. Thus, if the conclusion for a market is

efficiency (inefficiency) given a pricing model and a specific information set, it is

possible that inefficiency (efficiency) would be concluded if another model and/or

different set are assumed.

Traditionally, the martingale and the random walk are assumed to be models to

fix the price Pt of a financial asset whose continuously compounded return or log
return is given by the expression

rt ¼ lnPt � lnPt�1 ¼ pt � pt�1

2.1 Martingale

Samuelson (1965) and Fama (1970), understanding the market as a fair game, raised

the idea of efficiency from an informational outlook, with the less restrictive model,

the martingale model. In this case, if Xt is the available information set at time t,
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ðiÞ E ptj j½ �\1
ðiiÞ E ptþ1jXt½ � ¼ pt

ð1Þ

That is, in an efficient market, it is not possible to forecast the future using the

available information, so the best forecast for the price of an asset at time t þ 1 is

today’s price. The second condition of expression (1) implies

E ptþ1 � pt ¼ rtþ1jXt½ � ¼ 0

which reflects the idea of a fair game and allows us to affirm that the return rt
constitutes a martingale difference sequence, i.e., it satisfies the conditions

ðiÞ E rtj j½ �\1
ðiiÞ E rtþ1jXt½ � ¼ 0

2.2 Random walk

The random walk was initially formulated as

pt ¼ pt�1 þ rt ð2Þ

where rt is considered an independent and identically distributed process with mean

0 and constant variance, which assumes that changes in prices are unpredictable and

random, a fact that is inherent to the first versions of the efficient market hypothesis.

Reject hypothesis:
Inefficient market

Do not reject hypothesis:
Efficient market

Empirical evidence

Tests

Hypothesis

Criteria for efficiency

Pricing               
model

Information   
available

Fig. 1 Scheme of the procedure to evaluate the efficiency of a market. Source: Bailey (2005)
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Nevertheless, several studies have shown that financial data are inconsistent with

these conditions.

Campbell et al. (1997) adjusted the idea of random walks based on the

formulation

pt ¼ lþ pt�1 þ et ð3Þ

where l is a constant term. By establishing conditions on the dependency structure

of the process fetg (which the authors call increments), they distinguish three types

of random walks: 1, 2 and 3. In this case, the change in the price or return is

pt � pt�1 ¼ rt ¼ lþ et

So the conditions fixed on the increments fetg can be extrapolated integrally to

the returns {rt}.

a. Random walk 1 (RW1): IID increments/returns
In this first type, et is an independent and identically distributed process with

mean 0 and variance r2, or et � IID(0,r2Þ in abbreviated form, which implies

rt � IID(l;r2Þ. Thus, formulation (2) is a particular case of this type of random

walk for l ¼ 0. Under these conditions, the constant term l is the expected

price change or drift. If, in addition, normality of et is assumed, then (3) is

equivalent to arithmetic Brownian motion.

In this case, the independence of et implies that random walk 1 is also a fair

game but in a much stronger sense than martingale, since the mentioned

independence implies not only that increments/returns are uncorrelated but also

that any nonlinear functions of them are uncorrelated.

b. Random walk 2 (RW2): independent increments/returns
For this type of random walk, et (and by extension rt) is an independent but not

identically distributed process (INID). RW2 contains RW1 as a particular case.

This version of the random walk accommodates more general price generation

processes and, at the same time, is more in line with the reality of the market

since, for example, it allows for unconditional heteroskedasticity in rt, thus

taking into account the temporal dependence of volatility that is characteristic of

financial series.

c. Random walk 3 (RW3): uncorrelated increments/returns
Under this denomination, et (and therefore rt) is a process that is not

independent or identically distributed but is uncorrelated; that is, cases are

considered

Cov et; et�kð Þ ¼ 0 8k 6¼ 0 but Cov e2
t ; e

2
t�k

� �
6¼ 0 for some k 6¼ 0

which means there may be dependence but no correlation.

This is the weakest form of the random walk hypothesis and contains RW1 and

RW2 as special cases.

As previously mentioned, financial data tend to reject random walk 1, mainly due

to non-compliance with the constancy assumption of the variance of rt. In contrast,
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random walks 2 and 3 are more consistent with financial reality since they allow for

heteroskedasticity (conditional or unconditional) in rt. Consequently, we could say

that RW2 is the type of random walk closest to the martingale [actually, RW1 and

RW2 satisfy the conditions of the martingale, but in a stronger sense (Bailey 2005)].

2.3 Martingale vs. random walk

The random walk hypothesis, in its three versions, and that of the martingale are

captured in an expression that considers the kind of dependence that can exist

between the returns r of a given asset at two times, t y tþk,

Cov f rtð Þ; g rtþkð Þð Þ ¼ 0; 8t; 8k 6¼ 0 ð4Þ

where, in principle, f ð�Þ and gð�Þ are two arbitrary functions and may be interpreted

as an orthogonality condition. For appropriately chosen f ð�Þ and gð�Þ, all versions of

the random walk hypothesis and martingale hypothesis are captured by (4).

Specifically,

• If condition (4) is satisfied only in the case that f ð�Þ and gð�Þ are linear functions,

then the returns are serially uncorrelated but not independent, which is identified

with RW3. In this context, the linear projection of rtþk onto the set of its past

values Xt satisfies

Proj rtþkjXtð Þ ¼ constant; 8t; 8k� 1

• If condition (4) is satisfied only when gð�Þ is a linear function but f ð�Þ is

unrestricted, then the returns are uncorrelated with any function of their past

values, which is equivalent to the martingale hypothesis. In this case,

E rtþkjXt½ � ¼ 0; 8t; 8k� 1

• If condition (4) holds for any f ð�Þ and gð�Þ, then returns are independent, which

corresponds to RW1 and RW2. In this case,

d:f : rtþkjXtð Þ ¼ d:f : rtþkð Þ; 8t; 8k� 1

where d.f. denotes the probability density function.

Table 1 summarizes the hypotheses derived from expression (4).

Since, in practice, additional restrictions are usually imposed on the underlying

probability distributions to obtain testable hypotheses derived from the martingale

model, which results in the conditions of some of the random walk versions1 (Bailey

2005, pp. 59–60), it is normal to assume the random walk as a pricing model.

Therefore, if the available information set is the historical price series and the

pricing model assumed is the random walk, weak efficiency is identified with some

types of random walks.

1 The additional restrictions that are usually imposed correspond to the conditions of random walks 1 or

2, which fulfil the martingale hypothesis in a stronger sense (see Sects. 2.2.a and 2.2.b).
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3 Evaluation of the weak efficiency

3.1 Traditional methods

The methods traditionally used to test the weak form of efficiency, as established by

some of the random walk types, are classified into two groups depending on whether

they make use of formal statistical inference.

RW2 is analysed with methods that do not use formal inference techniques (filter
rules and technical analysis2) because this type of random walk requires that the

return series is INID. In this case, it would be very complicated to test for

independence without assuming identical distributions (particularly in the context of

time series) since the sampling distributions of the statistics that would be

constructed to carry out the corresponding test could not be obtained (Campbell

et al. 1997, p. 41).

On the other hand, the methods that apply formal inference techniques for the

analysis can be classified into two groups according to whether they allow direct

testing of a type of random walk or only some necessary, but not sufficient,

condition for its fulfilment.

The methods of the second group include the Bartlett test, tests based on the

Box–Jenkins methodology, the Box–Pierce test, the Ljung–Box test and the

variance ratio test. These methods test only the uncorrelation condition on the return

Table 1 Classification of martingale and random walk hypotheses (the three versions) in the context of an

efficient market

Cov f rtð Þ; g rtþkð Þð Þ ¼ 0 gðrtþkÞ,8gð�Þ linear gðrtþkÞ, 8gð�Þ
f ðrtÞ, 8f ð�Þ linear RW3:rt

Not independent

Not identically distributed

Uncorrelated

Proj rtþkjXtð Þ ¼ constant,8k� 1

–

f ðrtÞ,8f ð�Þ Martingale:rt

Uncorrelated with any function of

their past values

E rtþkjXt½ � ¼ 08k� 1

RW1 y RW2:rt

Independent

d:f : rtþkjXtð Þ ¼ d:f : rtþkð Þ8k� 1

RW1:rt

Identically

distributed

RW2:rt

Not identically

distributed

IID INID

Source: Own elaboration from Campbell et al. (1997)

2 Filter rules and technical analysis are two forms of empirical testing of the RW2 hypothesis that, by not

making use of formal statistical inference, are considered ‘‘economic’’ tests of the random walk 2

hypothesis.
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series (they are also called linear methods3) necessary for any type of random walk.

Since these tests do not detect non-linear relationships4 that, if they exist, would

entail the dependence of the series, rejection of the null hypothesis would imply no

uncorrelation of the series and, consequently, the non-existence of any type of

random walk.

On the other hand, for tests that try to detect ARCH effects, rejection of the null

hypothesis involves only the acceptance of non-linear relationships, which does not

necessarily imply that the series is uncorrelated.

Other methods allow direct determination of whether the return series follows a

specific type of random walk. This means that these procedures also take into

account the possibility of non-linear relationships in the series, either because they

are considered by the null hypothesis itself or because the cited methods have power

against alternatives that capture these relationships (they would be, therefore, non-

linear methods). These methods include those that allow testing of the random walk

type 1 (BDS test, runs test and sequences and reversals test) and one that tests for a

type 3 random walk (variance ratio test, which considers the heteroskedasticity of

the series).

Figure 2 shows the classification established in this section for the different

methods that are traditionally used to test the hypothesis of weak efficiency.

The financial literature shows that the methods described above have tradition-

ally been applied to test the weak efficiency hypothesis in financial markets.

Correlation tests to determine the efficiency of a market were first used when

Fama (1965) and Samuelson (1965) laid the foundations of efficient market theory.

From these beginnings, the works developed by Moore (1964), Theil and Leenders

(1965), Fama (1965) and Fisher (1966), among others, stand out.

These tests were used as almost the only tool to analyse the efficiency of a market

until, in the 1970s, seasonal effects and calendar anomalies became relevant for the

analysis. Then, new methodologies incorporating these effects emerged, such as the

seasonality tests applied by Roseff and Kinney (1976), French (1980) and Gultekin

and Gultekin (1983).

In the 1990s, studies that analysed the efficiency hypothesis in financial markets

using so-called traditional methods began to appear. This practice has continued to

the present day, as evidenced by the most prominent empirical works on financial

efficiency in recent years.

Articles using technical analysis to test for the efficiency of a financial market

include Potvin et al. (2004), Marshall et al. (2006), Chen et al. (2009), Alexeev and

Tapon (2011), Shynkevich (2012), Ho et al. (2012), Leković (2018), Picasso et al.

(2019) and Nti et al. (2020).

On the other hand, among the studies that apply methods that test only a

necessary, but not sufficient, condition of the random walk hypothesis, the most

numerous are those that use correlation tests. In this sense, we can cite the studies

3 Methods that try to detect non-linear relationships are called non-linear methods regardless of whether

they are sensitive to the existence of linear relationships.
4 According to Hinich et al. (2005), economic systems are non-linear, and if this non-linearity is

considerable, it is erroneous to forecast based on an estimated linear approximation. Therefore, the

authors claim that testing for non-linearity is a means of validating the linearity of a system.
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developed by Buguk and Brorsen (2003), DePenya and Gil-Alana (2007), Lim et al.

(2008b), Álvarez-Ramı́rez and Escarela-Pérez (2010), Khan and Vieito (2012),

Ryaly et al. (2014), Juana (2017), Rossi and Gunardi (2018) and Stoian and

Iorgulescu (2020). Research applying the variance ratio test (also very numerous)

includes Hasan et al. (2003), Hoque et al. (2007), Righi and Ceretta (2013), Kumar

(2018), Omane-Adjepong et al. (2019) and Sánchez-Granero et al. (2020). Finally,

ARCH effect tests have been used in several papers, such as Appiah-Kusi and

Menyah (2003), Cheong et al. (2007), Jayasinghe and Tsui (2008), Lim

et al. (2008a), Chuang et al. (2012), Rossi and Gunardi (2018) and Khanh and

Dat (2020).

Regarding methods that directly test a type of random walk, the runs test has

been used in works such as Dicle et al. (2010), Jamaani and Roca (2015), Leković

(2018), Chu et al. (2019) and Tiwari et al. (2019). Meanwhile, the application of the

BDS test can be found in studies such as Yao and Rahaman (2018), Abdullah et al.

(2020), Kołatka (2020) and Adaramola and Obisesan (2021).

Therefore, the proposal of a procedure (Sect. 3.2) that reduces the limitations of

traditional methods would be a novel contribution to the financial field as far as the

analysis of the weak efficiency hypothesis is concerned. Moreover, it would be more

accurate than the traditional methods in determining whether a return series follows

a random walk.

3.2 Proposed procedure

By strategically combining the methods analysed in the previous section, we

propose a procedure to test the random walk hypothesis that can be started either

from a method that tests only a necessary, but not sufficient, condition or from one

that directly tests a specific type of random walk (1, 2 or 3).

On the one hand, if the procedure is started with a method from the first group

and shows correlation of the return series, it would not follow any type of random

Fig. 2 Methods traditionally used to test the random walk hypothesis (weak efficiency). Source: own
elaboration
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walk. In the opposite case (uncorrelation), an ARCH effect test is recommended to

determine the type of random walk. Thus, if ARCH effects are detected, which

implies the existence of non-linear relationships, it should be concluded that the

series is RW3. Otherwise, the series will be RW1 or RW2, and a non-formal

statistical inference technique can be applied to test for type 2. Finally, if the RW2

hypothesis is rejected, then the series is necessarily RW1.

On the other hand, regarding the methods that directly test a type of random

walk, it is proposed to start the procedure with one that tests RW1. Thus, if the null

hypothesis is rejected with this method, it cannot be ruled out that the series is RW2,

RW3 or not a random walk at all. Before affirming that we are not facing any type

of random walk, first it is suggested to check for type 2 by applying a non-formal

statistical inference technique. If the RW2 hypothesis cannot be accepted, then RW3

is tested. In this case, rejection of the RW3 hypothesis implies that the series is not a

random walk.

Figure 3 schematically shows the described procedure.

The acceptance of market inefficiency (i.e., that the return series is not RW)

occurs when the price series analysed shows non-randomness, a structure that can be

identified, long systematic deviations from its intrinsic value, etc. (even the RW3

hypothesis implies dependence but no correlation). This indicates a certain degree

of predictability, at least in the short run, i.e., it is possible to forecast both the asset

returns and the volatility of the market using past price changes. These forecasts are

constructed on the basis of models reflecting the behaviour of financial asset prices.

Among the models that allow linear structures to be captured, the ARIMA and

ARIMAX models stand out. Moreover, ARCH family models are used for

modelling and forecasting the conditional volatility of asset returns. On the other

hand, when the return series presents non-linear relationships, it is common to use

non-parametric and non-linear models, including those based on neural networks

and machine learning techniques. Finally, hybrid models (a combination of two or

more of the procedures described above) consider all the typical characteristics of

financial series.

4 Monte Carlo experiment

The procedure introduced in the previous section is evaluated by means of a Monte

Carlo experiment,5 considering the variance ratio test proposed by Lo and

MacKinlay (1988)6 and the Ljung–Box test (1978), when started from methods that

test only some necessary, but not sufficient, condition of the random walk

5 Since the testing of the RW2 hypothesis is not based on formal statistical inference, only the random

walk types 1 and 3 can be considered in the experiment.
6 The variance ratio test suggested by Lo and MacKinlay (1988) has two versions: one that allows testing

the uncorrelation of a return series and another that tests if the aforementioned series follows a random

walk 3. The application of one version or another will depend on what the procedure requires at all times.

If the variance ratio test, in any of its versions, leads to contradictory decisions for different values of

parameter k (first values of the return series), the final decision is based on the global test proposed by

Chow and Denning (1993).
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hypothesis; and the BDS test7 and the runs test when starting from methods that

directly test the mentioned hypothesis. If the procedure requires the application of

an ARCH effect test to decide between random walks 1 and 3, ARCH models up to

order 4 are used.

To conduct this analysis, return series are generated from two different models

because the objective is twofold: to evaluate the performance of the procedure in the

analysis of the random walk 1 hypothesis against the linear correlation alternative,

on the one hand, and against that of the random walk 3, on the other.8

Thus, the BDS, runs, variance ratio and Ljung–Box tests are applied to each

generated return series. Then, if the RW1 hypothesis is rejected by the first two

tests, the variance-ratio test is applied to determine whether the series is at least

RW3. On the other hand, if the random walk hypothesis is not rejected with the first

two tests, an ARCH effect test is applied to discern between RW1 and RW3. The

process is replicated 10,000 times for each sample size T and each value of the

parameter involved in the generation of the series (see the whole process in Fig. 4).

Fig. 3 Procedure for testing the random walk hypothesis. Source: Own elaboration

7 Nonparametric test proposed by Brock, Dechert, LeBaron and Scheinkman (1996) for testing the null

hypothesis that a series is independent and identically distributed. It is based on the correlation integral

developed by Grassberger and Procaccia (1983), which is a measure of spatial correlation between two

points of an m-dimensional space. We consider m = 2, 3, 4 and 5 since Monte Carlo experiments have

shown that the BDS statistic has good properties for m� 5, regardless of the sample size (Kanzler 1999).
8 All the simulations were performed using routines developed in EViews 8 with the random number

generator contained therein.
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a. Nominal size
Before analysing the Monte Carlo powers of the procedure initiated from the

different indicated tests, the corresponding nominal size is estimated; that is, the

maximum probability of falsely rejecting the null hypothesis of random walk 1

is calculated in each case. Since the different ways of executing the proposed

procedure contemplate the possibility of applying tests sequentially to make a

decision, we must not expect, in general, the nominal size of each case to

coincide with the significance level a which is fixed in each of the individual

tests.

To estimate the mentioned nominal size, return series that follow a random walk

1 are generated

rt ¼ et; t ¼ 1; . . .T ð5Þ

where et � iidð0; 1Þ. Specifically, 10,000 series of size T are generated, and the tests

required by the specific way in which the procedure is being applied are performed

on each data series independently, not sequentially, with significance level a. The

reiteration of this process allows us to determine, for each T, the number of

acceptances and rejections of the null hypothesis (random walk 1) that occur with

the independent application of each test. This makes possible the estimation of the

nominal size of the procedure in each case as the quotient of the total rejections of

the null hypothesis divided by the total number of replications (10,000 in this case).

The process described in the previous paragraph was performed for the sample

sizes T = 25, 50, 100, 250, 500 and 1000 and significance levels a = 0.02, 0.05 and

0.1 [application of the process in Fig. 4 for expression (5)]. The results (Table 2)

indicate, for a given value T, the (estimated) theoretical size of the procedure when a

significance level a is set in the individual tests required by the cited procedure

initiated from a specific method. For example, if for T ¼ 100 the researcher sets a

value of a ¼ 0:05 in the individual tests and wishes to apply the procedure initiated

from the variance ratio test, he will be working with a (estimated) theoretical size of

0.0975.

The estimated nominal size of the procedure when starting from methods that

directly test the hypothesis of random walk 1 is much better in the case of the runs

test since it practically coincides with the significance level a fixed (in the individual

tests) for any sample size T. However, size distortions (estimated values far from the

level a) are evident when the procedure is initiated from the BDS test, and the

results are clearly affected by T. In effect, the greatest distortions occur for small

sample sizes and decrease as T increases (at T ¼ 1000, the estimated nominal size

for each a is 0.0566, 0.133244 and 0.2214, respectively, i.e., approximately 2a).

Since the variance ratio test and the Ljung–Box test do not directly test the

random walk 1 hypothesis—to estimate the nominal size of the procedure initiated

from any of them, it is necessary to apply tests sequentially—the results that appear

in Table 2 for these two cases are expected in the sense that the estimates of the

respective nominal sizes for each T are greater than the significance level a. In this

context of size distortion, the best results correspond to the case of the variance ratio
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test, with estimated values very close to the significance level a for small sample

sizes (T ¼ 25 and 50) but that increase as T increases (note that at T ¼ 1000, for

each value of a, the nominal size is approximately double that at T ¼ 25, i.e.,

approximately 2a). In the case of the Ljung–Box test, where the distortion is greater,

the sample size T hardly influences the estimated values of the nominal size since,

irrespective of the value of T, they remain approximately 10%, 21% and 37% for

levels 0.02, 0.05 and 0.1, respectively.

b. Empirical size and Monte Carlo power

(b1) The performance of the procedure for testing the random walk 1 hypothesis

against the only linear correlation alternative (among the variables of the return

series generating process) is analysed using the model

rt ¼ /1rt�1 þ et; t ¼ 1; . . .; T ð6Þ

with r0 ¼ 0 and et � iidð0; 1Þ. By means of (6), ten thousand samples of sizes

T = 25, 50, 100, 250, 500 and 1000 of the series rt are generated for each value of

parameter /1 considered: - 0.9, - 0.75, - 0.5, - 0.25, - 0.1, 0, 0.1 0.25, 0.5.

0.75 and 0.9. In this way, the model yields return series that follow a random walk 1

(particular case in which /1 ¼ 0) and, as an alternative, series with a first-order

autoregressive structure (cases in which /1 6¼ 0), i.e., they would be generated by a

process whose variables are correlated. Therefore, when the null hypothesis is

rejected, some degree of predictability is admitted since by modelling the above

autoregressive structure with an ARMA model, it is possible to predict price

changes on the basis of historical price changes.

Fig. 4 Iteration of the simulation process. Source: Own elaboration
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The procedure, starting from each of the considered tests (BDS, runs, Ljung–

Box and variance ratio), was applied to the different series generated by the

combinations of values of T and /1 with a significance level of 5% [application of

the process in Fig. 4 for expression (6)]. Then, we calculated the number of times

that the different decisions contemplated by the two ways of applying the procedure

are made (according to whether we start from a method that does or does not

directly test the random walk hypothesis).

From the previous results, we calculate, for each sample size T, the percentage of

rejection of the null hypothesis (random walk 1) when starting from each of the four

tests considered, depending on the value of parameter /1. Since /1 ¼ 0 implies that

the null hypothesis is true, in this particular case, the calculations represent the

empirical probability of committing a type I error for the procedure in the four

applications, i.e., the empirical size. However, when /1 6¼ 0, the cited calculations

represent the Monte Carlo power of each version of the procedure since for these

values of /1, the null hypothesis is false.

b1:1 Empirical size

The empirical sizes (Table 3) that resulted from the different cases analysed nearly

coincide with the corresponding theoretical probabilities calculated for a ¼ 0:05

(see Table 2). Therefore, there is empirical confirmation of the size distortions that

appear in the procedure according to the test from which it is started. In effect,

• When the procedure is initiated from methods that directly test the random walk

1 hypothesis, the results confirm that for the runs test, the size of the procedure

remains approximately 5% (the significance level) for all T. Nevertheless, when

initiating from the BDS test, a very high size distortion is produced for small

sample sizes (0.6806 and 0.5425 at T ¼ 25 and 50, respectively), but the

distortion decreases as T increases (it reaches a value of 0.1334 at T ¼ 1000).

• The size distortions exhibited by the procedure when starting with methods that

test only a necessary, but not sufficient, condition of the random walk

hypothesis, are less pronounced when the procedure is applied starting from the

variance ratio test than when starting from the Ljung–Box test. Likewise, in the

former case, the empirical size increases with the sample size T from values

close to the significance level (0.05) to more than double the significance level

(from 0.0603 at T ¼ 25 to 0.1287 at T ¼ 1000). In the latter case (Ljung–Box),

the values between which the empirical size oscillates (18% and 22%) do not

allow us to affirm that there exists an influence of T.

b1:2 Monte Carlo power

Table 4 reports, for each sample size T, the power calculations of the procedure

started from each of the four tests considered in this study, i.e., the probability of

rejecting the null hypothesis (random walk 1) with each version of the procedure on

the assumption that the hypothesis is false. Likewise, since several alternatives to
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the null hypothesis (values that satisfy /1 6¼ 0) are considered, the corresponding

power functions of the cited versions of the procedure are obtained and plotted in a

comparative way for each T (Fig. 5).

For each sample size T and regardless of the test from which the procedure is

started, the corresponding probabilities of rejection of the random walk 1 hypothesis

are distributed symmetrically around the value /1 ¼ 0 (random walk 1 hypothesis).

Additionally, these probabilities tend to unity as /1j j increases, reaching 1 for

values of /1j j increasingly closer to 0 as the sample size T increases. The velocity of

the described behaviour depends on the test from which the procedure is started:

• For the two smallest sample sizes (T ¼ 25 and 50), a power of 1 is hardly

achieved for any of the alternatives. Only at T ¼ 50 is the power approximately

100 percent, with the procedure initiated from any of the four tests, for

/1j j � 0:75. On the other hand, at T ¼ 25, the estimated powers of the procedure

initiated from the BDS test for /1j j � 0:5 are much higher than those presented

by the other cases. A similar situation occurs at T ¼ 50, but with less

pronounced differences between what the procedure with the BDS test and the

other cases yield and restricted to the alternatives with /1j j � 0:25.

• From sample size 100, we observe differences in the convergence to unity of the

estimated powers according to the test from which the procedure is initiated. Thus,

when starting from the Ljung–Box test and the variance ratio test, a power of

approximately 1 is achieved for /1j j � 0:5 at T ¼ 100, whereas for larger sample

sizes, convergence to 1 is nearly reached for /1j j � 0:25. On the other hand, when the

procedure is started from the BDS test, a power of 1 is reached for /1j j � 0:75 at

T ¼ 100 and for /1j j � 0:5 at T � 250 (note that at T ¼ 1000, the estimated power

does not exceed 0.89 for /1j j ¼ 0:25Þ. Finally, when the procedure is initiated from

the runs test, the value of /1j j for which the powers achieve unity decreases as the

sample size T increases beyond 100. Specifically, at T ¼ 100, unity is reached for

/1j j � 0:75; at T ¼ 250, for /1j j � 0:5; and at T ¼ 1000, for /1j j � 0:25 (at

T ¼ 500, the power is approximately 0.95 for /1j j ¼ 0:25). The plots in Fig. 5 show

that the power function of the procedure initiated from the Ljung–Box test is always

above the other power functions, i.e., it is uniformly more powerful for T � 100.

Table 3 Empirical size of the

procedure*
T Procedure started from

BDS Runs VR LB

25 0.6806 0.0411 0.0603 0.1810

50 0.5425 0.0542 0.0787 0.1913

100 0.3816 0.0561 0.093 0.1993

250 0.2282 0.0452 0.1157 0.2114

500 0.1562 0.0529 0.1199 0.2175

1000 0.1334 0.0515 0.1287 0.2195

Source: Own elaboration

*The individual tests required by the different ways of applying the

procedure are performed at the 5% level of significance
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Table 4 Monte Carlo powers* of the procedure** started from a specific test against linear correlation-

only alternatives

ø1 T = 25

- 0.9 - 0.75 - 0.5 - 0.25 - 0.1

BDS 0.9731 (0.8994) 0.9157 (0.717) 0.7672 (0.2818) 0.6975 (0.0583) 0.6811 (0.0357)

Runs 0.8713 (0.8403) 0.6867 (0.6162) 0.324 (0.2109) 0.1005 (0.0367) 0.0464 (0.0115)

VR 0.9792 (0.9774) 0.9108 (0.9044) 0.5402 (0.5079) 0.1538 (0.1029) 0.0695 (0.023)

LB 0.9931 (0.9924) 0.9707 (0.9689) 0.7882 (0.7745) 0.3985 (0.3633) 0.2166 (0.1793)

ø1 T = 25

0.1 0.25 0.5 0.75 0.9

BDS 0.6758 (0.0816) 0.6965 (0.1802) 0.7487 (0.4701) 0.8768 (0.7874) 0.9394 (0.9047)

Runs 0.0525 (0.0201) 0.1117 (0.0715) 0.3363 (0.2902) 0.6571 (0.6351) 0.8126 (0.8028)

VR 0.061 (0.0108) 0.0908 (0.0386) 0.3468 (0.3027) 0.7446 (0.714) 0.8997 (0.8802)

LB 0.184 (0.1428) 0.2811 (0.2423) 0.6433 (0.6237) 0.9062 (0.9006) 0.9639 (0.9605)

ø1 T = 50

- 0.9 - 0.75 - 0.5 - 0.25 - 0.1

BDS 0.9988 (0.9984) 0.9829 (0.9755) 0.795 (0.6583) 0.569 (0.125) 0.5418 (0.0353)

Runs 0.9962 (0.9959) 0.9566 (0.9533) 0.6481 (0.5932) 0.2096 (0.125) 0.0818 (0.0199)

VR 1 (1) 0.9981 (0.9978) 0.8836 (0.8725) 0.2989 (0.2479) 0.1082 (0.0473)

LB 1 (1) 0.9995 (0.9995) 0.9604 (0.957) 0.559 (0.5292) 0.2604 (0.2111)

ø1 T = 50

0.1 0.25 0.5 0.75 0.9

BDS 0.5379 (0.0739) 0.5711 (0.2122) 0.7626 (0.6745) 0.9688 (0.965) 0.9963 (0.9956)

Runs 0.0821 (0.0335) 0.2302 (0.1556) 0.6505 (0.6171) 0.9461 (0.9439) 0.9901 (0.9897)

VR 0.0914 (0.0314) 0.2353 (0.179) 0.7852 (0.7654) 0.9915 (0.9904) 0.999 (0.9989)

LB 0.2216 (0.1737) 0.4674 (0.4307) 0.9233 (0.9177) 0.9988 (0.9987) 0.9999 (0.9999)

ø1 T = 100

- 0.9 - 0.75 - 0.5 - 0.25 - 0.1

BDS 1 (1) 1 (1) 0.909 (0.9045) 0.4735 (0.2582) 0.387 (0.0329)

Runs 0.9999 (0.9999) 0.9991 (0.9991) 0.9032 (0.901) 0.3683 (0.2865) 0.0992 (0.0308)

VR 1 (1) 1 (1) 0.9965 (0.9964) 0.5886 (0.5499) 0.1587 (0.0881)

LB 1 (1) 1 (1) 0.9995 (0.9995) 0.7905 (0.773) 0.3332 (0.2767)

ø1 T = 100

0.1 0.25 0.5 0.75 0.9

BDS 0.3858 (0.0646) 0.4632 (0.2921) 0.8928 (0.889) 0.9992 (0.9992) 1 (1)

Runs 0.1054 (0.0467) 0.3733 (0.3075) 0.9067 (0.9037) 0.9987 (0.9986) 1 (1)

VR 0.1413 (0.0754) 0.5112 (0.4664) 0.9915 (0.9902) 1 (1) 1 (1)
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Table 4 continued

ø1 T = 100

0.1 0.25 0.5 0.75 0.9

LB 0.2909 (0.2331) 0.7331 (0.7109) 0.9983 (0.9979) 1 (1) 1 (1)

ø1 T = 250

- 0.9 - 0.75 - 0.5 - 0.25 - 0.1

BDS 1 (1) 1 (1) 0.9985 (0.9985) 0.5075 (0.4871) 0.2401 (0.0571)

Runs 1 (1) 1 (1) 0.9987 (0.9987) 0.7085 (0.6948) 0.1676 (0.0917)

VR 1 (1) 1 (1) 1 (1) 0.9477 (0.9423) 0.2934 (0.2215)

LB 1 (1) 1 (1) 1 (1) 0.9861 (0.9842) 0.4965 (0.4487)

ø1 T = 250

0.1 0.25 0.5 0.75 0.9

BDS 0.2322 (0.0656) 0.4828 (0.4678) 0.9974 (0.9974) 1 (1) 1 (1)

Runs 0.1733 (0.102) 0.7255 (0.7108) 0.999 (0.999) 1 (1) 1 (1)

VR 0.2793 (0.2047) 0.9314 (0.9241) 1 (1) 1 (1) 1 (1)

LB 0.4683 (0.4138) 0.9804 (0.9781) 1 (1) 1 (1) 1 (1)

ø1 T = 500

- 0.9 - 0.75 - 0.5 - 0.25 - 0.1

BDS 1 (1) 1 (1) 1 (1) 0.6626 (0.6622) 0.1829 (0.0907)

Runs 1 (1) 1 (1) 1 (1) 0.9507 (0.9504) 0.3066 (0.2248)

VR 1 (1) 1 (1) 1 (1) 0.9992 (0.9991) 0.5114 (0.455)

LB 1 (1) 1 (1) 1 (1) 0.9999 (0.9999) 0.7174 (0.6891)

ø1 T = 500

0.1 0.25 0.5 0.75 0.9

BDS 0.179 (0.0966) 0.6575 (0.6573) 1 (1) 1 (1) 1 (1)

Runs 0.2974 (0.2238) 0.9477 (0.9472) 1 (1) 1 (1) 1 (1)

VR 0.4796 (0.423) 0.9986 (0.9986) 1 (1) 1 (1) 1 (1)

LB 0.6842 (0.6496) 0.9998 (0.9998) 1 (1) 1 (1) 1 (1)

ø1 T = 1000

- 0.9 - 0.75 - 0.5 - 0.25 - 0.1

BDS 1 (1) 1 (1) 1 (1) 0.8873 (0.8873) 0.1808 (0.1522)

Runs 1 (1) 1 (1) 1 (1) 0.9993 (0.9993) 0.5407 (0.4996)

VR 1 (1) 1 (1) 1 (1) 1 (1) 0.8102 (0.7893)

LB 1 (1) 1 (1) 1 (1) 1 (1) 0.9244 (0.9161)

ø1 T = 1000

0.1 0.25 0.5 0.75 0.9
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• Regardless of the test from which the procedure is started, a power of 1 is not

achieved for /1j j ¼ 0:1 for any sample size, not even at T ¼ 1000 (the best

result corresponds to the Ljung–Box case with an estimated power of

approximately 0.91, followed by the variance ratio and runs cases with values

close to 0.8 and 0.53, respectively; the BDS case yields the worst result of

approximately 0.18).

At this point, we can say that the power of the procedure has been analysed, that

is, its capability of rejecting the null hypothesis (random walk 1) when the null

hypothesis is false. As already mentioned, for /1 6¼ 0, Model (6) yields a series that

does not follow any type of random walk. However, the proposed procedure

contemplates random walk 3 among the possible decisions. Therefore, if from the

powers calculated for each version of the procedure, we subtract the portion that

corresponds to the (wrong) decision of random walk 3, we obtain the power that the

procedure initiated from each test actually has, i.e., its capability to reject the null

hypothesis in favour of true alternatives when the null hypothesis is false.

In this sense, Table 4 and Fig. 6 report, for each sample size T, the power

calculations of the procedure initiated from each of the tests considered after

subtracting the effect of the (false) alternative of random walk 3. Furthermore, the

cited powers and those initially calculated for each version of the procedure are

compared for each T in Figs. 9, 10, 11 and 12 (Appendix).

When the procedure is started from the runs test, the variance ratio test or the

Ljung–Box test (Appendix Figs. 10, 11, 12), what we call real power hardly differs

from that initially calculated for each sample size T (these slight differences occur

for /1j j � 0:5 with T � 100 and /1j j ¼ 0:1 with T � 250). Therefore, all the above-

mentioned findings in relation to the power of these three cases is maintained.

Nevertheless, there are considerable differences between the real power and that

initially calculated when the procedure is started from the BDS test. In effect, the

Table 4 continued

ø1 T = 1000

0.1 0.25 0.5 0.75 0.9

BDS 0.1702 (0.1391) 0.8807 (0.8807) 1 (1) 1 (1) 1 (1)

Runs 0.5201 (0.4815) 0.9995 (0.9995) 1 (1) 1 (1) 1 (1)

VR 0.786 (0.7591) 1 (1) 1 (1) 1 (1) 1 (1)

LB 0.9094 (0.8995) 1 (1) 1 (1) 1 (1) 1 (1)

*The values in parentheses indicate the real power of the procedure for the corresponding alternative, i.e.,

the probability of rejecting the null hypothesis in favour of true alternatives when the null hypothesis is

false

**The individual tests required by the different ways of applying the procedure are performed at the 5%

level of significance

Source: Own elaboration
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initial calculations indicated that this version of the procedure was the most

powerful for /1j j � 0:5 and /1j j � 0:25 for T ¼ 25 and T ¼ 50, respectively (with

all the values greater than 0.5), but the results in Table 4 and Fig. 6 show that the

powers in these cases are actually much lower (0.2 is hardly reached in one single

case). Although these differences persist for T ¼ 100, also in the context of

/1j j � 0; 25, they start to decrease as the sample size increases from T � 250 (we

could say that, for T � 500, there are minimal differences between the real power

and the initially calculated power).

Consequently, in terms of the power referring only to true alternatives (linear

correlation in this case), the procedure initiated from the Ljung–Box test is the most

powerful.

Fig. 5 Monte Carlo power of the procedure when starting from each test against linear correlation-only
alternatives. Source: Own elaboration
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(b2) The performance of the procedure for testing the random walk 1 hypothesis

against only the non-linear alternative (among the variables of the return series

generating process) is analysed by means of an ARCH(1) model.

rt ¼ htet
h2
t ¼ a0 þ a1r

2
t�1

�
; t ¼ 1; . . .T ð7Þ

where ht and et are independent processes of each other such that ht is stationary

and et � iidð0; 1Þ, with a0 [ 0 and a1 � 0. Specifically, taking r0 ¼ 0 in (7), 10,000

samples of sizes T = 25, 50, 100, 250, 500 and 1000 of the series rt are generated for

Fig. 6 Real Monte Carlo power of the procedure when starting from each test against linear correlation-
only alternatives. Source: Own elaboration
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a0 ¼ 1 and each value of a1 considered: 0, 0.1, 0.2, 0.3, 0.4 and 0.5.9 In the

particular case in which a1 ¼ 0, Model (7) yields a return series that follows a

random walk 1 and, for a1 [ 0, series that are identified with a random walk 3, i.e.,

they would be generated by a process whose variables are uncorrelated but

dependent (there are non-linear relationships among the variables10). Therefore,

when random walk 3 is accepted, it is possible to develop models that allow market

volatility to be predicted (model types ARCH and GARCH).

The procedure, starting from each of the four tests considered in this study, was

applied to the different series generated by the combination of values for T and a1

with a significance level of 5% [application of the process in Fig. 4 for expression

(7)]. Then, we calculated the number of times that the different decisions

contemplated by the two already known ways of applying the procedure were made.

On the basis of the results indicated in the previous paragraph and analogously to

that described in Section (b1), we calculate, for each sample size T, the empirical
size and the Monte Carlo power of each version of the procedure. In this context,

a1 ¼ 0 implies that the random walk 1 hypothesis is true, and a1 [ 0 implies that it

is not (it corresponds to a random walk 3).

b2:1 Empirical size

Since in this case the null hypothesis is again random walk 1, the obtained empirical

sizes are nearly identical to those calculated in Section (b1) (the results are available

on request).

b2:2 Monte Carlo power

Table 5 and Fig. 7 show, respectively, the power calculations of each version of the

procedure and the plots of the corresponding power functions (in terms of parameter

a1) for each sample size T.

The estimated power of the procedure when starting from the runs test is

approximately 0.05 for all alternatives, irrespective of the value of T. In the other

cases, the power is influenced by parameters T and a1; as the values of these

parameters increase, the power tends to unity.

• Fig. 7 shows that the procedure initiated from the BDS test is uniformly more

powerful when T � 100, and the difference between the estimated powers of the

procedure with the BDS test and those of the other cases becomes more

9 For an ARCH(1) model such as (7), the 4th-order moment of rt

E r4
t

� �
¼ 3a2

0
ð1þa1Þ

ð1�a1Þð1�3a2
1
Þ

will be finite and positive if a2
1 2 ½0; 1=3�.

10 From Model (7) and the conditions under which it is defined, the uncorrelation of rt is derived

Covðrt; rt�kÞ ¼ E ðhtetÞðht�ket�kÞ½ � ¼ E ðhtht�kÞðetet�kÞ½ � ¼ E htht�k½ �E etet�k½ � ¼ 0 8k 6¼ 0 (where it has

been taken into account that E rt½ � ¼ E htet½ � ¼ E ht½ �E et½ � ¼ 08t), just as the non-linear relationship among

the variables of the process rt since r2
t has a first-order autoregressive structure r2

t ¼ r2
t þ h2

t � h2
t ¼

h2
t þ r2

t � h2
t ¼ a0 þ a1r

2
t�1 þ r2

t � h2
t ¼ a0 þ a1r

2
t�1 þ vt being vt ¼ r2

t � h2
t ¼ h2

t e
2
t � h2

t ¼ h2
t e2

t � 1
� �

white noise.
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pronounced as the sample size decreases. When T ¼ 25, the estimated power of

the procedure initiated from the BDS test is approximately 0.7 for all

alternatives, while the estimated power when starting from the Ljung–Box test

and the variance ratio test increases with a1 from 0.2 and 0.08 to 0.35 and 0.23,

respectively. The difference in the estimated power in favour of the procedure

initiated from the BDS test decreases with increasing sample size T, especially at

high values of a1. Likewise, in all three cases, the estimated power improves

when the sample size increases, but a power of 1 is not reached in any case (at

T ¼ 100, the estimated power for a1 ¼ 0:5 is approximately 0.8 in all three

cases).

• For T � 250, the estimated power of the procedure initiated from the BDS test,

Ljung–Box test and variance ratio test converges to 1 as a1 increases. In all these

Fig. 7 Monte Carlo power of the procedure when starting from each test against non-linear alternatives
only. Source: Own elaboration
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cases, the value of a1 for which the power achieves unity decreases as the sample

size increases. Thus, at T ¼ 250, unity is reached for a1 ¼ 0:5; at T ¼ 500, for

a1 � 0:3, and at T ¼ 1000, for a1 � 0:2. On the other hand, the plots in Fig. 7

show that the power function of the procedure initiated from the Ljung–Box is

always above the other power functions, i.e., it is uniformly more powerful for

T � 250. However, the difference in the estimated power (in favour of the

procedure initiated with the Ljung–Box test) is not pronounced.

• Finally, regardless of the test from which the procedure is started, a power of 1 is

not achieved for a1 ¼ 0:1 for any sample size, not even T ¼ 1000 (the best result

corresponds to the Ljung–Box case with an estimated power of approximately

0.83, followed by the variance ratio case with a value of 0.82; the BDS case

yields the worst result–without considering the runs case–of approximately

0.74).

Fig. 8 Real Monte Carlo power of the procedure when starting from each test against non-linear
alternatives only. Source: Own elaboration
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In this case, for alternative a1 [ 0, Model (7) yields a series that follows a

random walk 3, and the proposed procedure contemplates ‘‘non-random walk’’

among the possible decisions. Therefore, it is interesting to analyse, with each

version of the procedure, to what extent the rejection of the random walk 1

hypothesis (when this is false) leads correctly to random walk 3. In other words, we

are interested in determining what part of the power calculated in each case

corresponds to the acceptance of the random walk 3 hypothesis (under the

assumption that the hypothesis of random walk 1 is false). According to Section b1),

we calculate the power that the procedure initiated from each test actually has. Thus,

Table 5 and Fig. 8 report, for each sample size T, Monte Carlo estimates of the

probability of accepting the random walk 3 hypothesis (given that the type 1 is

false) with the procedure initiated from each of the tests considered (i.e., the real

power). Additionally, the cited real powers and those initially calculated for each

version of the procedure are compared for each T in Figs. 13, 14, 15 and 16

(Appendix).

As shown (Fig. 13), almost all the powers of the procedure initiated from the

BDS test correspond to the acceptance of random walk 3 since the so-called real
power hardly differs from that initially calculated for each sample size T. For large

sample sizes, the real power tends to stabilize at approximately 0.96 as a1 increases.

Similar behaviour is observed when the procedure is started from the variance

ratio test, with the exception that, for T � 250, the real powers become lower than

those initially calculated as a1 increases (for example, at T ¼ 1000, the estimated

power for a1 ¼ 0:5 was initially 1, but only 80% corresponds to the acceptance of

the random walk 3 hypothesis).

Finally, the results show that an important part of the power initially calculated

for the procedure when starting from the Ljung-Box test corresponds to the

acceptance of a wrong alternative, i.e., the real power is significantly lower than the

initial power, mainly at the small sample sizes (T ¼ 25 and 50). This extent of this

loss of power decreases when T � 100, and at T � 250, the observed behaviour for

high values of a1 is the same as that described for the variance ratio case.

Regardless, the real powers for the Ljung–Box case are lower than those for the

variance ratio case.

Consequently, for the random walk 3 alternative (the only one that is true in this

case), the procedure initiated from the BDS test is the most powerful.

5 Concluding comments

The methods traditionally applied to test the weak efficiency in a financial market,

as the random walk model states, have serious limitations. They only test for a type

of random walk or some necessary, but not sufficient, condition to accept the

random walk hypothesis in one of its forms.

To address these limitations, a procedure that strategically combines traditional

methods is proposed to detect whether a return series follows a specific type of

random walk (1, 2 or 3). When the random walk hypothesis is rejected, the
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inefficient market is accepted, i.e. the market is predictable. In this context, future

price changes can be predicted based on past price changes through a model of asset

prices.

The proposed procedure is evaluated in the context of a random walk 1 against

linearity and non-linearity alternatives using a Monte Carlo experiment. This

procedure is applied starting from methods that test only a necessary, but not

sufficient, condition for the fulfilment of the random walk 1 hypothesis (variance

ratio test and Ljung–Box test) and from methods that directly test a particular type

of random walk (BDS test and runs test).

The results allow us to conclude that, against linear correlation-only alternatives,

the procedure performs best when starting from the Ljung–Box test. In this case, the

real power of the procedure is higher than that when starting from any of the other

tests, for any sample size, especially for larger ones (T � 100). In all cases, serious

power distortions occur in the alternatives close to the null hypothesis (RW1).

However, these distortions disappear as the sample size increase, except when the

procedure is initiated from the BDS test (the aforementioned distortions remain for

large sample sizes).

In contrast, against the random walk 3 alternative, the highest real powers for

each sample size occur when the procedure is started from the BDS test. Again, all

cases show poor real power in the alternatives close to the null hypothesis (random

walk 1). These powers improve as the sample size increases, except in the case

where the procedure is initiated from the runs test, which retains very low power

against the RW3 alternative for all sample sizes (around the significance level

a ¼ 0:05).

Regarding the size of the procedure, all the cases analysed present empirical

values very similar to the corresponding estimated nominal size (for a significance

level of a ¼ 0:05). In particular, the procedure initiated from the BDS test exhibits

the greatest size distortions for small samples. However, there are no distortions

when the procedure is started from the runs test, although its application is

discouraged because its power for the random walk 3 alternative is poor.

The procedure introduced in this paper has been applied to evaluate the degree of

fulfilment of the weak efficiency hypothesis in four European financial markets

(Spain, Germany, France and Italy) from 1st January 2010 to 15th May 2020

(Garcı́a-Moreno and Roldán 2021).

Currently, the authors are analysing the performance of the proposed procedure

against other alternatives to the random walk hypothesis that are not considered in

this work. They are also analysing the performance of the procedure when it

combines formal and non-formal statistical inference techniques to accommodate

random walk 2.

Appendix

See Figs. 9, 10, 11, 12, 13, 14, 15 and 16.
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Fig. 9 Procedure started from the BDS test: power vs. real power (linear correlation-only alternatives).
Source: own elaboration
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Fig. 10 Procedure started from the runs test: power vs. real power (linear correlation-only alternatives).
Source: own elaboration
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Fig. 11 Procedure started from the variance ratio test: power vs. real power (linear correlation-only
alternatives). Source: own elaboration
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Fig. 12 Procedure started from the Ljung–Box test: power vs. real power (linear correlation-only
alternatives). Source: own elaboration
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Fig. 13 Procedure started from the BDS test: power vs. real power (non-linear alternatives only). Source:
own elaboration
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Fig. 14 Procedure started from the runs test: power vs. real power (non-linear alternatives only). Source:
own elaboration
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Fig. 15 Procedure started from the variance ratio test: power vs. real power (non-linear alternatives only).
Source: own elaboration
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Leković M (2018) Evidence for and against the validity of efficient market hypothesis. Econ Themes

56(3):369–387

Lim KP, Brooks RD, Hinich MJ (2008a) Nonlinear serial dependence and the weak-form efficiency of

Asian emerging stock markets. J Int Financ Markets Inst Money 18(5):527–544

Lim KP, Brooks RD, Kim JH (2008b) Financial crisis and stock market efficiency: empirical evidence

from Asian countries. Int Rev Financ Anal 17(3):571–591

Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297–303

Lo AW, MacKinlay AC (1988) Stock market prices do not follow random walks: evidence from a simple

specification test. Rev Financ Stud 1(1):41–66

Marshall BR, Young MR, Rose LC (2006) Candlestick technical trading strategies: can they create value

for investors? J Bank Finance 30(8):2303–2323

Moore AB (1964) Some characteristics of changes in common stock pices. In: Cootner P (ed) The random

character of stock market prices. MIT Press, Cambridge, pp 262–296

Nti IK, Adekoya AF, Weyori BA (2020) A systematic review of fundamental and technical analysis of

stock market predictions. Artif Intell Rev 53(4):3007–3057

Omane-Adjepong M, Alagidede P, Akosah NK (2019) Wavelet time-scale persistence analysis of

cryptocurrency market returns and volatility. Physica A 514:105–120

Picasso A, Merello S, Ma Y, Oneto L, Cambria E (2019) Technical analysis and sentiment embeddings

for market trend prediction. Expert Syst Appl 135:60–70

Potvin JY, Soriano P, Vallée M (2004) Generating trading rules on the stock markets with genetic

programming. Comput Oper Res 31(7):1033–1047

Righi MB, Ceretta PS (2013) Risk prediction management and weak form market efficiency in Eurozone

financial crisis. Int Rev Financ Anal 30:384–393

Roberts HV (1967) Statistical versus clinical prediction of the stock market. Unpublished paper presented

at The Seminar on the Analysis of the Security Prices, University of Chicago

Roseff M, Kinney W (1976) Capital market seasonality: the case of stock market returns. J Financ Econ

3:379–402

Rossi M, Gunardi A (2018) Efficient market hypothesis and stock market anomalies: empirical evidence

in four European countries. J Appl Bus Res 34(1):183–192

Ryaly VR, Kumar RK, Urlankula B (2014) A study on weak-form of market efficiency in selected Asian

stock markets. Indian J Finance 8(11):34–43

Samuelson PA (1965) Proof that properly anticipated prices fluctuate randomly. Ind Manag Rev

6(2):41–49

Sánchez-Granero MA, Balladares KA, Ramos-Requena JP, Trinidad-Segovia JE (2020) Testing the

efficient market hypothesis in Latin American stock markets. Physica A 540:1–14

Shynkevich A (2012) Short-term predictability of equity returns along two style dimensions. J Empir

Financ 19(5):675–685

Stoian A, Iorgulescu F (2020) Fiscal policy and stock market efficiency: an ARDL bounds testing

approach. Econ Model 90:406–416

123

1326 J. A. Roldán-Casas, M. B. García-Moreno García



Theil H, Leenders CT (1965) Tomorrow on the Amsterdam stock exchange. J Bus 38:277–284

Tiwari AK, Aye GC, Gupta R (2019) Stock market efficiency analysis using long spans of data: a

multifractal detrended fluctuation approach. Financ Res Lett 28:398–411

Yao H, Rahaman ARA (2018) Efficient market hypothesis and the RMB-dollar rates: a nonlinear

modeling of the exchange rate. Int J Econ Finance 10(2):150–160

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

A procedure for testing the hypothesis of weak efficiency in… 1327


	A procedure for testing the hypothesis of weak efficiency in financial markets: a Monte Carlo simulation
	Abstract
	Introduction
	Evaluation of the efficiency hypothesis
	Martingale
	Random walk
	Martingale vs. random walk

	Evaluation of the weak efficiency
	Traditional methods
	Proposed procedure

	Monte Carlo experiment
	Concluding comments
	Appendix
	Open Access
	References




