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Abstract
Nowadays there is increasing availability of good quality official statistics data. The

construction of multivariate statistical models possibly leading to the identification

of causal relationships is of interest. In this context Bayesian networks play an

important role. A crucial step consists in learning the structure of a Bayesian net-

work. One of the most widely used procedures is the PC algorithm consisting in

carrying out several independence tests on the available data set and in building a

Bayesian network according to the tests results. The PC algorithm is based on the

irremissible assumption that data are independent and identically distributed.

Unfortunately, official statistics data are generally collected through complex

sampling designs, then the aforementioned assumption is not met. In such a context

the PC algorithm fails in learning the structure. To avoid this, the sample selection

must be taken into account in the structural learning process. In this paper, a

modified version of the PC algorithm is proposed for inferring causal structure from

complex survey data. It is based on resampling techniques for finite populations. A

simulation experiment showing the robustness with respect to departures from the

assumptions and the good performance of the proposed algorithm is carried out.
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1 Introduction

Nowadays there is increasing availability of good quality data produced by official

statistics, and useful for both study purpose and decision making. Simple but

important examples are the EU-SILC survey on income, the ISTAT survey on

labour forces, the ISTAT survey on consumption expenses, etc.... Typically in those

surveys data are collected with unequal first order inclusion probabilities. In all the

above mentioned cases, as well as in many others, the construction of multivariate

statistical models involving several variables is of primary interest. In this context

Bayesian networks (BN) play a very important role because of their flexibility and

easy-to-read representation of relationships among variables by means of edges

connecting them. Bayesian networks are multivariate statistical models satisfying

sets of conditional independence statements contained in a directed acyclic graph

(DAG), see Cowell et al. (2007). The nodes of the graph correspond to random

variables, while edges represent dependencies. In recent years BNs have been

successfully applied to a large variety of contexts; among them official statistics.

Data collected through a survey are typically affected by selection bias due to

sampling design, nonresponse and measurement error. BNs appeared to be very

useful in missing data imputation (Di Zio et al. (2004), Thibaudeau and Winkler

(2002)), contingency table estimation for complex survey sampling (Ballin and

Scanu (2010)) and measurement errors (Marella and Vicard (2013), Marella and

Vicard (2015)). However, there are still serious obstacles complicating a wider

application in official statistics contexts and in all those contexts where complex

sampling designs are used. In fact, missing item imputation and measurement error

correction can be performed once the BN structure is available (either known in

advance or learned from data) since information has to be propagated throughout the

network. Therefore, it is necessary to develop structural learning algorithms

accounting for the sampling design complexity.

Learning BNs from a sample can be a time consuming task and a challenging

issue even when data are independent and identically distributed (i.i.d.). For a

survey on structural learning, see Drton and Maathuis (2017). In case of data driven

learning, three broad classes of algorithms can be distinguished: constraint based

algorithms, score-plus-search and hybrid algorithms. Constraint based algorithms

carry out a series of independence tests and construct a graph satisfying the

discovered independence statements. The second group of algorithms considers

structure learning as a structural optimization problem, using a search strategy to

select the structure optimizing a given score function which measures the fitting

degree of network and data. Recently, the third group of algorithms, hybrid

algorithms, has become widely used. They combine the ideas and the advantages of

the previous two types of algorithms. One popular strategy is to use constraint-based

algorithms (in the first learning phase) to determine the initial network structure, and

then use score-based algorithms (in the second learning phase) to find the highest-

scoring network structure, see Tsamardinos et al. (2006). The main constraint based

algorithm is the PC algorithm, see Spirtes et al. (2000). It has several advantages,

among which an intuitive basis. The PC algorithm is based on conditional
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independence tests, usually performed by using the standard Pearson chi-square test

statistic under i.i.d. assumption, which is equivalent to simple random sampling

assumption. However, sample selection in surveys may involve more complex

sampling designs based on stratification, different level of clustering and inclusion

probabilities proportional to an appropriate size measure. Complex designs can

severely impact on i.i.d. based method, as shown in Skinner et al. (1989). In such

circumstances, the standard test procedure is not valid even asymptotically. As a

consequence, in these cases the PC algorithm fails in correctly identifying the

independence equivalence class of DAGs containing the true structure of the BN

under examination.

Survey weights and design effects are appropriate tools by which complex

sampling designs can be accommodated. As far as the chi-square statistic is

concerned, corrections based on the design effects have been proposed in Rao and

Scott (1981), Rao and Scott (1984). However, such corrections require design effect

or, alternatively, full covariance matrix estimates of the cell proportions estimators

that are not generally delivered and then need to be estimated by resampling.

In this paper, a novel approach for inferring causal structure from complex survey

data is investigated requiring to combine two different statistical cultures: sampling

theory and structural learning. A modified version of the PC algorithm (PC-cs

algorithm, for short) that uses independence tests accounting for the sample selection

mechanism is proposed. The sampling design complexity is accounted for via a

design-based approach by including the sampling weights in the BN parameters

estimates. In fact, such weights contain invaluable information about the relationship

between the distribution of the sample data and the distribution in the population from

which the sample is taken. After having estimated such parameters, a procedure based

on the chi-square statistic for testing the association in a two-way table is proposed; its

limiting sampling distribution is estimated by resorting to resampling techniques for

finite populations. The new test procedure is applied to BN structural learning.

The paper is organized as follows. In Sect. 2 the PC algorithm for i.i.d. data and
the basic assumptions on which it relies are briefly recalled. In Sect. 3 the modified

version of the PC algorithm for complex survey data is introduced and described. A

simulation study is performed in Sect. 4. Finally, advantages and disadvantages of

the proposed approach are discussed in Sect. 5.

2 Discovering causal structure with the PC algorithm

2.1 Preliminary definitions

A DAG is a pair G ¼ ðV ;EÞ consisting of a set of vertices V and a set of directed

edges between pairs of nodes.

A directed graph is acyclic in the sense that it is not possible to start from a node

and go back to the same node following arrows directions. Each node represents a

random variable, while a missing arrow between two nodes implies (un)conditional

independence between the corresponding variables. Examples of DAG are shown in

Fig. 1a, b. Consider Fig. 1a. In the arrow X2 ! X3, X2 is said parent of X3 and X3 is
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said child of X2. X1 is called an ancestor of X3 and X3 a descendant of X1 since X1 is

connected to X3 by a directed path, i.e. a sequence of direction preserving arrows.

Two nodes Xi and Xj are said adjacent if they are directly connected by a directed or

undirected edge. A graph is complete if all vertices are joined by a directed or

indirected edge. A v-structure is a triple of nodes ðXi;Xk;XjÞ such that the arrows

Xi ! Xk and Xj ! Xk are in the DAG. In such configuration, Xk is said unshielded

collider. If Xi and Xj are connected then the collider Xk is termed shielded. For

example, in Fig. 1a the triple ðX2;X3;X4Þ constitutes a v-structure where X3 is an

unshielded collider. The skeleton of a DAG G is the undirected graph obtained from

G by replacing all arrows with lines (undirected edges).

For example, the undirected graph in Fig. 1c is the skeleton of the graphs in

Fig. 1a, b.

We next recall the basic assumptions and then the main steps of the PC

algorithm.

2.2 Assumptions

Let P be the joint probability distribution associated to G. The following

assumptions are set when applying the PC algorithm (for details see Zhang and

Spirtes (2008) and Uhler et al. (2013)):

1. Sufficiency Condition. The set of observed variables V is causally sufficient, that

is every common direct cause relative to V of any pair of variables in V is also

contained in V.
2. Causal Markov Condition. P is said to be Markov with respect to G if a node of

G is probabilistically independent of its non descendents given its parents in G.
For example, in Fig. 1a, X3 is independent of X1 given its parent X2. The causal

Markov condition defines the set of conditional independence relations entailed

by the DAG.

3. Causal Faithfulness Condition. The joint probability distribution P is faithful to

G if all conditional independencies can be read off G. This means that if the true

causal structure G does not entail a conditional independence relation according

to the causal Markov condition, then the conditional independence relation does

Fig. 1 a Example of DAG, b DAG Markov equivalent to (a); c skeleton of DAGs in (a) and (b);
d completed partially DAG, CPDAG for DAGs (a), (b)
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not hold for the true probability distribution. In Zhang and Spirtes (2008) a

decomposition of the faithfulness assumption useful for violation detection is

proposed. The faithfulness condition implies adjacency-faithfulness and orien-

tation-faithfulness. These do not constitute an exhaustive decomposition of the

faithfulness assumption. However, the leftover part is irrelevant to the

correctness of structural learning procedures such as PC algorithm.

2.3 PC algorithm for i.i.d. data

The PC algorithm starts with a complete undirected graph on the set V, and ends

with a class of Markov equivalent DAGs where all the associated models encode the

same conditional independence information.

Two DAGs are Markov equivalent if and only if they have the same skeleton and

the same v-structures, Verma and Pearl (1990). For example DAGs a and b in Fig. 1

are Markov equivalent. In fact, they have the same skeleton (Fig. 1c) and the same

v-structure X2 ! X3  X4: A common tool for visualizing equivalence classes of

DAGs are the completed partially directed acyclic graphs (CPDAG), see Spirtes

et al. (2000). A CPDAG is a summary graph that has: a directed edge where all

DAGs in the equivalence class have the same directed edge; an undirected edge

between Xi and Xj if in the equivalence class there exist at least a DAG with Xi ! Xj

and a DAG with Xi  Xj. An example of CPDAG is shown in Fig. 1d.

The PC algorithm proceeds according to the following two phases:

Phase 1 Skeleton estimation. First, all pairs ðXi;XjÞ are tested for marginal

independence removing the edge between independent variables and

saving the empty set as separating sets Sij and Sji. Then all the pairs, say

ðXi;XjÞ, still adjacent, are tested for independence conditionally on one

single node adjacent to Xi. If Xi and Xj are judged to be independent

given, say, Xk, the edge between Xi and Xj is removed and Xk is saved

as separating sets Sij and Sji. The algorithm proceeds augmenting, one

unit at a time, the conditioning set size until all adjacency sets are

smaller than the conditioning set size. The resulting graph is the

skeleton.

Phase 2 Arrows orientation. The v-structures and their colliders are identified.

A triple of vertices ðXi;Xk;XjÞ in the skeleton such that the pairs

ðXi;XkÞ and ðXj;XkÞ are adjacent but ðXi;XjÞ is not, is oriented as a v-
structure Xi ! Xk  Xj if Xk is not in Sij ¼ Sji. Once all v-structures

have been identified, it may be possible to orient some of the remaining

edges, without introducing additional v-structures or directed cycles,

thus leading to a CPDAG.

As far as the faithfulness assumption is concerned, adjacency-faithfulness condition

is necessary to recover the skeleton of the true DAG and it is strictly related to Phase

1 of the PC algorithm. The orientation-faithfulness condition, necessary for finding

the correct arrows orientation, is related to Phase 2 of the algorithm.
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3 PC algorithm for complex survey data

3.1 The problem

Under the assumptions in Sect. 2.2 and if the sample size is large enough, the

original PC algorithm is able to infer from data the Markov equivalence class the

true causal DAG belongs to. This means that, if the input of the PC algorithm is a

sample from a population distribution P faithful to some DAG, then in large sample

limit, the algorithm can identify any probabilistic independence claim with perfect

reliability. In practice, we do not have direct access to the true population

distribution, and need to do statistical inference based on finite sample size. Hence,

since the first phase of the PC algorithm consists in a series of conditional

independence tests based on a finite sample size, it is possible that the original graph

is not recovered even if the PC algorithm assumptions are verified at the population

level. Therefore, it becomes very relevant to causal inference whether the

population probability distribution, though faithful to the true causal structure, is

far from or close to being unfaithful. As stressed in Zhang and Spirtes (2008), a

population distribution is close-to-unfaithful to a causal structure, if the structure

does not entail some conditional independence relation according to the Causal

Markov Condition, but the conditional independence almost holds, or in other

words, the conditional dependence is by some measure very weak in the population.

Precisely, the dependence degree and the sample size determine how ‘‘weak‘‘ counts

as ‘‘close to independence’’. It is clear that at every finite sample size, there are

distributions faithful to the true causal structure but so close to being unfaithful as to

possibly cause troubles for inference at that sample size. For instance, two variables,

though entailed to be dependent conditional on some variables, can be close to be

conditionally independent. As a consequence, due to sample size, tests can fail to

correctly identify such a dependence leading to errors in judgment about the

properties of the population.

The situation worsens for complex survey data since the sampling design can

modify independence and conditional independence relations associated with the

population probability distribution P. Roughly speaking, complex sampling

schemes lead to unequal selection probabilities; ignoring this can result in biased

estimates of the population distribution P. As a consequence, even if the population

distribution is faithful to some DAG G, the sample distribution may not be faithful

to the same DAG because of the sample selection mechanism. Specifically, the

selection probabilities are often unequal in at least some stages of the sample

selection. When such probabilities are correlated with the survey variables of

interest, the observed outcomes are no longer representative of the population

outcomes and the model holding for the sample data is then different from the

model holding in the population, see Pfeffermann (2001). In this case, conventional

analysis, which ignores the sampling effects, may yield large bias and erroneous

inference, as illustrated, for example, in the book edited by Skinner et al. (1989). In

Marella and Pfeffermann (2019) the effect of alternative sampling designs on a

trivariate normal population distribution has been evaluated. For instance, suppose
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that (X, Y, Z) is a trivariate normal with mean vector l and covariance matrix R, and
that the sample inclusion probabilities have expectations

Epðpijxi; yi; ziÞ ¼ j expfcXxi þ cYyi þ cZzig; ð1Þ

where j guarantees that the expectation is less or equal to one. It can be shown that

the model holding for the sample outcomes is normal but with parameters lS and R,
see Marella and Pfeffermann (2019). In this case, the sample model and the pop-

ulation model belong to the same family and differ only in some parameters.

Clearly, other examples in Marella and Pfeffermann (2019) show that the population

and the sample distributions can be either in the same family and differ only in some

or all the parameters, or in different families.

In the sequel, we assume that the design variables used for sample selection are

known for all the sample units so that the sufficiency condition is satisfied, as in

Ballin and Scanu (2010). Nevertheless, the Markov and the faithfulness condition

may fail if the sample is selected by a procedure that is biased towards two or more

variables in the set V.
In the PC algorithm for complex survey data the skeleton learning step (Phase 1)

of the PC algorithm is modified by introducing a procedure for testing association in

a two-way table for data coming from complex sample surveys. Such a procedure is

introduced in Sect. 3.2 where the existence of a limiting distribution of the test

statistic under the independence null hypothesis is proved. In paragraph 3.3 such a

distribution is estimated by resampling methods for finite population.

3.2 Independence test for complex sample surveys

In this section a test for independence based on the chi-square statistic in a two-way

table for complex survey data is described. The test relies on some results in Conti

et al. (2018) where a resampling technique allowing to make inference on the

superpopulation parameters in a finite population setting is proposed.

Denote by A and B two characters of interest with H ðA1; . . .;AHÞ and K

ðB1; . . .;BKÞ categories, respectively. Furthermore, let the superpopulation param-

eters phk, ph:, p:k be defined as

phk ¼ProbðA ¼ Ah;B ¼ BkÞ; ph: ¼ ProbðA ¼ AhÞ
p:k ¼ProbðB ¼ BkÞ

ð2Þ

for h ¼ 1; . . .;H and k ¼ 1; . . .;K. Let UN be a finite population of size N generated

from the superpopulation model (2), labeled by integers 1; . . .;N. For each unit i, let

Yh:
i (Y :k

i ) be the indicator variable taking value 1 if the unit i assumes the modality

Ah (Bk) and 0 otherwise, for h ¼ 1; . . .;H (k ¼ 1; . . .;K). Let Yhk
i ¼ Yh:

i Y
:k
i so that

for each unit i the following equalities hold
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XH

h¼1
Yh:
i ¼

XK

k¼1
Y :k
i ¼ 1;

XH

h¼1
Yhk
i ¼ Y :k

i ;
XK

k¼1
Yhk
i ¼ Yh:

i : ð3Þ

For each unit i in the population UN , let Di be the sample membership indicator, i.e.
a Bernoulli random variable taking value 1 whenever i is in the sample, and 0

otherwise, and let DN ¼ ðD1; . . .;DNÞ be the sample membership random vector for

the population units. An unordered, without replacement sampling design S is the

probability distribution of DN . In particular pi ¼ ES½Di� is the first order inclusion

probability of unit i. The suffix S denotes the sampling design used to select pop-

ulation units. The sample selection, and therefore pis, depends on the values of

design variables (like strata, cluster indicator variables or size measures) that are

statistically related to Yh:
i and Y :k

i but are not included in the inference model.

Consequently, the distribution holding for the sample data may be very different

from the distribution in the population. In other words, even if the Yh:
i , Y :k

i ,

i ¼ 1; . . .;N, are i.i.d. at a population level, they are not i.i.d. at a sample level due

to the sampling design (Pfeffermann (1993)).

The effective sample size is the r.v. ns ¼ D1 þ � � � þ DN . In the sequel we will

confine ourselves to fixed size sampling designs, such that ns � n. Assumptions on

the sampling design according to which the sample is drawn, are similar to those

used in Conti (2014), Conti and Marella (2015a) and Conti et al. (2019)

(assumptions A1-A6). From now on we will assume that the sampling design

possesses asymptotically maximal entropy. More precisely, consider the Poisson

sampling design where the random variables Dis are independent with ES½Di� ¼ pi,
and n ¼ p1 þ � � � þ pN . The rejective sampling (or normalized conditional Poisson
sampling) is obtained by conditioning the Poisson design to nS ¼ n. Denote by

HðSÞ ¼ ES logPrSðDNÞ½ � the entropy of sampling S. In particular, the rejective

design possesses maximal entropy among all sampling designs with fixed sample

size and fixed first order inclusion probabilities. Let PrRð�Þ be the sample

probabilities for the rejective sampling, the Kullback-Leibler divergence of PrS
from PrR can be written as,

DKLðPrSjjPrRÞ ¼ HðPrRÞ � HðPrSÞ: ð4Þ

In the sequel we assume that DKLðPrSjjPrRÞ ! 0 as n;N !1. This means that the

sampling design S possesses high (asymptotically maximal) entropy.

The properties of high entropy sampling designs are discussed in Berger (2011),

Grafström (2010) and references therein. As a matter of fact, asymptotics for high

entropy sampling designs only depend on their first order inclusion probabilities. In

other terms, if two high entropy designs have the same first order inclusion

probabilities, then they have the same asymptotic behaviour. High entropy sampling

designs generate highly randomized samples, which in turn make the design more

robust. A discussion about high entropy designs and their relationship with

robustness can be found in Grafström (2010). Examples of maximal asymptotic

entropy sampling designs are simple random sampling, Rao-Sampford design, Chao

design, stratified design, etc., see Berger (2011).
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3.2.1 Parameters estimators and their distributions

Let phkN , ph:N , p
:k
N be the finite population parameters defined as

phkN ¼
1

N

XN

i¼1
Yhk
i ; ph:N ¼

1

N

XN

i¼1
Yh:
i ¼

XK

k¼1
phkN ;

p:kN ¼
1

N

XN

i¼1
Y :k
i ¼

XH

h¼1
phkN

ð5Þ

where h ¼ 1; . . .;H, k ¼ 1; . . .;K. In complex sample design sample proportions

would result in inconsistent estimators of the population parameters, Pfeffermann

(1993). Parameters (5) can be estimated using the classical Hájek estimators (Hájek

(1964))

bphk ¼
PN

i¼1
DiY

hk
i

piPN
i¼1

Di

pi

; bph: ¼
PN

i¼1
DiY

h:
i

piPN
i¼1

Di

pi

¼
XK

k¼1
bphk;

bp:k ¼
PN

i¼1
DiY

:k
i

piPN
i¼1

Di

pi

¼
XH

h¼1
bphk

ð6Þ

for h ¼ 1; . . .;H, k ¼ 1; . . .;K, where 1=pi is the sampling weight, that is the

reciprocal of the probability that the unit i is included in the sample. Note that, in the

simple random sampling case, the estimators (6) reduce to the proportion of units in

the sample belonging to categories (h, k), h and k, respectively.
The existence of the limiting distribution of the Hájek estimators (6) is studied in

Conti et al. (2018), under both the sample selection and the population generation

randomness sources. Similar results are in Boistard et al. (2017) where no

resampling schemes allowing to recover the limiting distribution of the chi-square

test statistic (14) defined in Sect. 3.2.2 are proposed. Here, similarly to Conti et al.

(2018), we analyze the behaviour of the stochastic processes

WHK ¼f
ffiffiffi
n
p
ðbphk � phkÞ; h ¼ 1; . . .; H; k ¼ 1; . . .; Kg; ð7Þ

WH ¼f
ffiffiffi
n
p
ðbph: � ph:Þ; h ¼ 1; . . .; Hg; ð8Þ

WK ¼f
ffiffiffi
n
p
ðbp:k � p:kÞ; k ¼ 1; . . .; Kg: ð9Þ

Each of these processes can be partitioned as follows

WHK ¼fWHK
n þWHK

N ; h ¼ 1; . . .; H; k ¼ 1; . . .; Kg
¼f

ffiffiffi
n
p
ðbphk � phkN Þ þ

ffiffiffi
f

p ffiffiffiffi
N
p
ðphkN � phkÞg;

ð10Þ
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WH ¼fWH
n þWH

N ; h ¼ 1; . . .; Hg
¼f

ffiffiffi
n
p
ðbph: � ph:N Þ þ

ffiffiffi
f

p ffiffiffiffi
N
p
ðph:N � ph:Þg;

ð11Þ

WK ¼fWK
n þWK

N ; k ¼ 1; . . .; Kg
¼f

ffiffiffi
n
p
ðbp:k � p:kNÞ þ

ffiffiffi
f

p ffiffiffiffi
N
p
ðp:kN � p:kÞg

ð12Þ

for h ¼ 1; . . .; H; k ¼ 1; . . .; K and f ¼ n
N. The components WHK

n ;WH
n ;W

K
n depend

on the sample selection randomness while the components WHK
N ,WH

N ,W
K
N depend on

the superpopulation randomness. Proposition 1 establishes the convergence of

processes ð7Þ � ð9Þ to Gaussian distributions.

Proposition 1 Under the assumptions A1-A6 of Proposition 1 in Conti et al.
(2018), as n and N increase, the sequences:

1. WHK
n and WHK

N converge in distribution to degenerate multivariate normal

distributions with zero mean vector and singular covariance matrices RHK
1 and

RHK
2 of order HK, respectively. As a consequence, the whole process WHK

converges to a degenerate multivariate normal distribution with zero mean

vector and singular covariance matrix RHK ¼ RHK
1 þ fRHK

2 .

2. WH
n and WH

N converge in distribution to degenerate multivariate normal

distributions with zero mean vector and singular covariance matrices RH
1 and RH

2

of order H, respectively. As a consequence, the whole process WH converges to

a degenerate multivariate normal distribution with zero mean vector and

singular covariance matrix RH ¼ RH
1 þ fRH

2 .

3. WK
n and WK

N converge in distribution to degenerate multivariate normal

distributions with zero mean vector and singular covariance matrices RK
1 and RK

2

of order K, respectively. As a consequence, the whole process WK converges to

a degenerate multivariate normal distribution with zero mean vector and

singular covariance matrix RK ¼ RK
1 þ fRK

2 .

The proof rests on the same ideas as the proof of Proposition 1 in Conti et al.

(2018) and it can be seen as a direct consequence. The proof guidelines are reported

in the Appendix.

3.2.2 The independence test statistic

Suppose to test the null hypothesis that the two categorical variables A and B are

independent, against the alternative hypothesis that they are associated. Formally

H0 : p
hk ¼ ph:p:k against H1 : p

hk 6¼ ph:p:k: ð13Þ

The used test statistic is

123

990 D. Marella, P. Vicard



v2H ¼ n
XH

h¼1

XK

k¼1

ðbphk � bph:bp:kÞ2

bph:bp:k ð14Þ

where the sampling weights in the Hájek estimators bphk, bph: and bp:k (6) compensate

for different selection probabilities. As stressed in Proposition 3, for complex survey

data: (i) the statistic (14) does have a limiting distribution; (ii) the limiting distri-

bution does not necessarily approach a chi-square distribution due to the singularity

of the covariance matrices RHK , RH and RK in Proposition 1. From Proposition 1,

the following result holds.

Proposition 2 Let pHK ¼ ðp11; . . .; p1K ; . . .; pH1; . . .; pHKÞ, pH: ¼ ðp1:; . . .; pH:Þ,
p:K ¼ ðp:1; . . .; p:KÞ be vectors of length HK, H and K, respectively, and denote by

bpHK, bpH: and bp:K their estimates. Furthermore, let

bp ¼ ðbpHK ; bpH:; bp:KÞ

and

pH0 ¼ ðp1:p:1; . . .; pHp:K ; p1:; . . .; pH:; p:1; . . .; p:KÞ

be two vectors of length T ¼ HK þ H þ K. Under the null hypothesis H0 the

statistic

Z ¼
ffiffiffi
n
p
ðbp � pH0Þ ð15Þ

converges, as n and N go to infinity, to a degenerate multivariate normal distribution

with T components having zero mean vector and singular covariance matrix RT .

The proof of Proposition 2 is a consequence of Proposition 1 and is reported in

the Appendix.

Proposition 3 Let f be the continuous, differentiable and with continuous
derivatives function defined as follows

f : Z! v2H ¼ n
XH

h¼1

XK

k¼1

ðbphk � bph:bp:kÞ2

bph:bp:k : ð16Þ

From Proposition 2, it follows that v2H tends in distribution to a quadratic form of a

degenerate multivariate distribution.

The proof of Proposition 3 is reported in the Appendix.

3.3 Estimation of test statistic limiting distribution under H0 via resampling

Resampling methods are computer-based methods for assigning measures of

accuracy to statistics estimates and performing statistical inference. In the Bayesian

Network learning process, the Efron’s bootstrap Efron (1979) has been proposed as

a computationally efficient approach for answering questions about specific network

features. In Friedman et al. (1999) the aim is the increase in the learning procedure
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performance with information from the bootstrap estimates, even when the amount

of data is not enough to induce a high scoring network. Then, the bootstrap method

is used to answer questions as: (i) Is the existence of an edge between two nodes

warranted? (ii) Is the Markov blanket of a given node robust? (iii) Can we say

anything about the ordering of the variables?

Here resampling methods are used to recover the limiting sampling distribution

of the test statistic (14) under the independence null hypothesis. With this regard, in

sampling from finite populations, the original Efron’s bootstrap can lead to biased

results since it does not take into account the dependence among units due to

sampling design. Adaptations taking into account the non i.i.d. nature of the data

have been proposed in the literature, which is mainly devoted to estimate variances

of estimators; cfr. Mashreghi et al. (2016). The main approaches are essentially two:

ad hoc approaches and plug in approaches (cfr. Ranalli and Mecatti (2012), Chauvet

(2007) and references therein). The basic idea of ad hoc approaches consists in

resampling from the original sample through a special design accounting for the

dependence among units. This approach is pursued in McCarthy and Snowden

(1985), Rao and Wu (1988), where the re-sampled data produced by the i.i.d.
bootstrap are properly rescaled, as well as in Sitter (1992), Beaumont and Patak

(2012), Chatterjee (2011), Conti and Marella (2015b), where a rescaled bootstrap

process based on asymptotic results is proposed. Among the ad hoc approaches we

also quote the paper by Antal and Tillé (2011), where a mixed resampling design is

proposed. Plug-in approaches are based on the idea of expanding the sample to a

pseudo-population that plays the role of a prediction of the original one. Then,

bootstrap samples are drawn from such a pseudo-population according to some

appropriate resampling design. The most intuitive choice consists in using the same

sampling design used to draw the original sample from the population; cfr. Gross

(1980), Chao and Lo (1985), Booth et al. (1994), Holmberg (1998), Chauvet (2007),

as well as Mashreghi et al. (2016).

Virtually all resampling techniques proposed for finite populations rest on the

same justification: in case of linear statistics, the variance of the resampled statistic

should be very close to the usual variance estimator, possibly with approximated

forms of the second order inclusion probabilities; cfr. Antal and Tillé (2011). This is

far from the arguments commonly used to justify the classical bootstrap and its

variants, that are based on asymptotic considerations involving the whole sampling

distribution of a statistic (cfr., for instance, Bickel and Freedman (1981) and Lahiri

(2003)): the asymptotic distribution of a bootstrapped statistic should coincide with

that of the ‘‘original’’ statistic. This argument is actually used in Conti and Marella

(2015b). In Conti et al. (2019), a class of resampling techniques for finite

populations is proposed; cfr. also the paper Jiménez-Gamero et al. (2018), where

asymptotic results in Conti et al. (2019) are used to construct various testing

procedures based on a design-based estimator of the finite population characteristic

function.

However, the class of resampling techniques defined in Conti et al. (2019) does

not work in the present case due to the descriptive inference framework. The

noticeable exception is the multinomial scheme introduced in Conti et al. (2018)

together with the asymptotic results used in Sect. 3.2.1. Such a resampling
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procedure has been exploited in Conti et al. (2020) to approximate the asymptotic

law of the Lorenz curve estimator when data are collected according to a complex

sampling design.

It is based on a two-step procedure consisting in: (i) constructing on the basis of

the sampling data a prediction of the population (i.e the multinomial pseudo-

population) by sampling N units independently from the original sample where each

unit i 2 s is selected with probability p�1i =
P

j2s p
�1
j . Such a prediction is based on

the sampling design, and does not essentially involve the superpopulation model;

(ii) drawing a sample of the same size of the original one from the pseudo-

population according to an appropriate resampling design fulfilling the high entropy

requirement. Notice that the idea of using pseudo-populations has been previously

used by Mashreghi et al. (2016).

The asymptotic distribution of (14) under the null hypothesis is estimated

applying the following procedure.

Step 1 GenerateM ¼ 1000 bootstrap samples of size n as the original sample size

on the basis of the two phase resampling procedure described above.

Notice that, the pseudo-population in phase 1 has to be generated under

the null hypothesis H0. Specifically, for each unit i 2 s such that Yh:
i ¼ 1

and Y :k
i ¼ 1, the original weight wi ¼ 1=pi is modified as follows

w�i ¼ wi
bph:bp:k
bphk : ð17Þ

Let Ahk be the set fi 2 s : Yh:
i ¼ 1; Y :k

i ¼ 1g, the modified weights (17)

guarantee that

X

i2Ahk

w�i ¼
P

i2Ah: wi

P
i2A:k wiP

i2s wi
: ð18Þ

Step 2 For each bootstrap sample, compute the corresponding Hájek estimators

bphk, bph:,bp:k (6).
Step 3 Compute the M quantities v2;mH , m ¼ 1; . . .;M as in (14).

Step 4 Compute the empirical cumulative distribution function of v2;mH s

bTn;MðtÞ ¼
1

M

XM

m¼1
Iðv2;mH � tÞ; t 2 R: ð19Þ

Finally, compute the 1� a percentile of bTn;MðtÞ
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bT�1n;Mð1� aÞ ¼ infft : bTn;MðtÞ� 1� ag; 0\a\1: ð20Þ

If v2H\ bT�1n;Mð1� aÞ then H0 is not rejected at the a% significance level.

4 Simulation studies

In this section we proceed to empirically test the PC-cs algorithm performance via a

simulation study. The study is organized as follows. First of all, in Sect. 4.1 a

preliminary analysis is performed. More specifically, the performance of the

proposed algorithm when the PC algorithm basic assumptions are violated by the

sampling design is investigated. The analysis is based on one sample replicate.

Small and larger networks are considered. In Sect. 4.2 a Monte Carlo simulation to

evaluate the accuracy of the proposed algorithm is carried out. The aim is to

measure how often the PC-cs algorithm is able to eliminate the selection bias

recovering the correct dependence structure between the variables. The accuracy is

evaluated over a large number of sample replicates. Small and larger networks with

fixed or randomly chosen DAG and conditional probabilities are considered.

4.1 Evaluating the accuracy of PC algorithm for complex survey data:
a preliminary analysis

In Sect. 4.1.1 the PC-cs algorithm performance when the Markov assumption is

violated by the sampling design is investigated. This means that the sample

distribution violates the set of conditional independence relations entailed by the

DAG to which the population probability distribution P is faithful. The PC-cs

algorithm behaviour in case of orientation faithfulness and adjacency faithfulness

violations is investigated in sects. 4.1.2 and 4.1.3, respectively. Finally, in Sect.

4.1.4 the robustness of the PC-cs algorithm is evaluated in a ten nodes network

where the aforementioned PC algorithm assumptions can be simultaneously

violated by the sample distribution.

Fig. 2 a True graph, b Finite
population CPDAG
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4.1.1 Markov assumption violation

A finite population of size N ¼ 10; 000 has been generated according to the true

causal DAG in Fig. 2a. In Tables 1, 2, 3, 4, 5 the conditional probability

distributions associated to the nodes are reported.

An estimate of the finite population underlying causal structure has been obtained

using the function pc() in the R-package pcalg, with the argument

Table 1 Probability distribution

of X1
X1 PðX1 ¼ x1Þ

0 0.25

1 0.35

2 0.40

Table 2 Probability distribution

of X2jX1
X2 X1 PðX2 ¼ x2jX1 ¼ x1Þ

0 0 0.60

1 0 0.40

0 1 0.45

1 1 0.55

0 2 0.25

1 2 0.75

Table 3 Probability distribution

of X3jX2
X3 X2 PðX3 ¼ x3jX2 ¼ x2Þ

0 0 0.30

1 0 0.20

2 0 0.50

0 1 0.55

1 1 0.25

2 1 0.20

Table 4 Probability distribution

of X4jX2
X4 X2 PðX4 ¼ x4jX2 ¼ x2Þ

0 0 0.15

1 0 0.20

2 0 0.35

3 0 0.30

0 1 0.23

1 1 0.50

2 1 0.15

3 1 0.57
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method=‘‘stable’’, implementing the PC algorithm, based on conditional indepen-

dence test for i.i.d data, see Kalisch et al. (2012). Notice that, in high dimensional

settings the proposal of Lagani et al. (2017) and Tsagris (2019) seems to perform

faster and better in terms of returning correct networks. Fig. 2b shows the resulting

CPDAG with undirected edges only, representing the Markov equivalence class. We

next proceed to generate a sample from our finite population by a complex sampling

design. To this aim the variable X1 has been transformed in a continuous variable Z
as follows

Z ¼
�
Nð100; 2Þ þ 15 if X1 ¼ 0

Nð10; 2Þ þ 5 if X1 ¼ 1 or X1 ¼ 2
ð21Þ

A sample of size n ¼ 3000 has been drawn from the finite population according to a

conditional Poisson sampling design. Inclusion probabilities are taken proportional

to Z-values (21). The effect of the survey design on the causal structure learned

using the PC algorithm is shown in the CPDAG in Fig. 3a where an additional edge

is placed between the nodes X1 and X3. The conditional independence between X1

and X3 given X2 at the population level is destroyed by the sampling design.

In order to estimate the test statistic distribution under the independence null

hypothesis, M ¼ 1000 bootstrap replications have been drawn from the selected

Table 5 Probability distribution

of X5jX4
X5 X4 PðX5 ¼ x5jX4 ¼ x4Þ

0 0 0.60

1 0 0.40

0 1 0.30

1 1 0.70

0 2 0.75

1 2 0.25

0 3 0.50

1 3 0.50

Fig. 3 a Markov Condition
Violation, b Orientation
Faithfulness Violation
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sample using the procedure described in sect. 3.3, and the corresponding M

bootstrap estimates v2;mH , m ¼ 1; . . .; M, have been computed. Although the

minimum number of bootstrap samples to be considered is 599 as suggested in

Wilcox (2010), we use M=1000 bootstrap samples to reach a compromise between

the computational cost of the procedure and the estimate accuracy.

The significance level for the independence tests has been set equal to 0.05. In

this case, the PC-cs algorithm is able to recover the true population equivalence

class obtaining the CPDAG shown in Fig. 2b.

The simulation has been repeated considering an alternative sampling design

obtained from (21) modifying the parameters of the normal distribution and the

intercept value. Specifically, in (21) for X1 ¼ 1 and X1 ¼ 2 the Z variable is

generated according to Nð5; 1Þ þ 10 and the effect of sampling design on the

association structure is an additional edge between ðX3;X4Þ with respect to CPDAG

in Fig. 2b. Again the PC-cs algorithm is able to recover the true population

equivalence class in Fig. 2b.

4.1.2 Orientation faithfulness violation

In order to investigate the performance of the PC-cs algorithm when the orientation

faithfulness is violated, a finite population of size N ¼ 10; 000 has been generated

according to the true causal DAG in Fig. 2a; the conditional probability distributions

are in Tables 1, 4, 5 and Tables 6, 7.

A sample of n ¼ 3000 has been selected from the finite population according to a

conditional Poisson sampling design with inclusion probabilities proportional to Z-
values (21). In this case, the survey design produces a failure of the orientation-

faithfulness assumption, as shown in Fig. 3b where a v-structure on the triple

ðX2;X4;X5Þ is placed. As before, M ¼ 1000 bootstrap replications and the

corresponding M bootstrap estimates v2;mH , m ¼ 1; . . .; M, have been computed.

Setting the significance level at 0.05, the PC algorithm for complex survey data is

able to recover the true population equivalence class obtaining the CPDAG shown

in Fig. 2b.

A variation of the PC algorithm, called the conservative PC algorithm, has been

proposed in Ramsey et al. (2006) to detect orientation-faithfulness failures. The

main difference between the PC algorithm for complex survey data and the

conservative PC algorithm can be summarized as follows:

Table 6 Probability distribution

of X2jX1
X2 X1 PðX2jX1Þ

0 0 0.80

1 0 0.20

0 1 0.45

1 1 0.55

0 2 0.15

1 2 0.85
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1. the PC algorithm for complex survey data takes into account the sampling

design via a design-based approach, by including the sampling weights in the

estimates of the BN parameters. Hence, the PC-cs algorithm adjusts for sample

selection bias at the top of the PC algorithm (Phase 1).

2. The conservative PC algorithm assumes the Markov condition and the

adjacency faithfulness and tests the orientation faithfulness condition perform-

ing additional independence tests. Then the conservative PC algorithm adjusts

for sample selection bias at the bottom, i.e. in Phase 2, of the PC algorithm. The

conservative PC algorithm works in a model-based approach avoiding the use of

sampling weights, then it produces bias in the structure learning process if the

sampling design is not ignorable, see Pfeffermann (1993).

In our example, the conservative PC algorithm marks the triple ðX2;X4;X5Þ as
ambiguous since X4 is in some but not all separating sets. An ambiguous triple is not

oriented as a v-structure. Furthermore, no later orientation rule that needs to know

whether ðX2;X4;X5Þ is a v-structure or not is applied.

4.1.3 Adjacency faithfulness violation

In order to investigate the performance of PC-cs algorithm when the adjacency

faithfulness is violated, a finite population of size N ¼ 10; 000 has been generated

Table 7 Probability distribution

of X3jX2
X3 X2 PðX3jX2Þ

0 0 0.7

1 0 0.2

2 0 0.1

0 1 0.2

1 1 0.3

2 1 0.5

Fig. 4 a Superpopulation graph, b finite population CPDAG, c adjacency faithfulness violation
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according to the true causal DAG in Fig. 4a, where a v-structure is introduced. The
conditional probability distributions associated to the nodes are in Tables 8, 9, 10,

11, 12.

An estimate of the underlying causal structure in the finite population has been

obtained using the function pc() in the R-package pcalg. The result is shown in

Fig. 4b.

A sample of size n ¼ 3000 has been drawn from the finite population according

to a conditional Poisson sampling design. Inclusion probabilities are taken

proportional to Z-values, defined in (21). The sampling design effect is reported

in Fig. 4c where an edge between X1 and X3 is missing. On the basis of M ¼ 1000

bootstrap replications and a significance level equal to 0.05, the PC algorithm for

complex survey data is able to recover the true population equivalence class in

Fig. 4b.

4.1.4 Robustness of PC-cs algorithm: a ten nodes network

In this section the performance of the PC-cs algorithm is evaluated in a ten nodes

network. Specifically, a finite population of size N ¼ 10000 has been generated

according to the network in Fig. 5a, where X3 and X9 are discrete variables assuming

the values (0, 1, 2) while the remaining nodes are dichotomous variables (0, 1).

As before, an estimate of the finite population causal structure has been obtained

using the function pc(). The result is shown in Fig. 5b. A sample of size n ¼ 3000

has been drawn from the finite population according to a conditional Poisson

sampling design. Inclusion probabilities are taken proportional to Z-values, defined
as follows

Z ¼
� Nð10; 2Þ þ 5 if X3 þ X9 ¼ 0

Nð20; 4Þ þ 10 if X3 þ X9 ¼ 1

Nð30; 6Þ þ 15 if X3 þ X9 ¼ 2

ð22Þ

and the original PC-algorithm is applied. The sampling design effect on the asso-

ciation structure is reported in Fig. 6a.

Clearly, as the number of nodes increases the Markov condition, the orientation

faithfulness, the adjacency faithfulness discussed in sects. 4.1.1–4.1.3 can be

simultaneously violated by the sample distribution. Specifically, as Fig. 6a shows,

1. the edge ðX2;X7Þ is missing;

2. the edge ðX3;X9Þ is added;
3. the directions of the edges ðX2;X4Þ and ðX2;X3Þ are wrong.

Table 8 Probability distribution

of X1
X1 PðX1Þ

0 0.15

1 0.45

2 0.40
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On the basis of M ¼ 1000 bootstrap replications and a significance level equal to

0.05, the PC algorithm for complex survey data is able to recover the population

equivalence class in Fig. 6b.

Finally, the structural Hamming distance (SHD, Tsamardinos et al. (2006)) has

been computed. Recall that the structural Hamming distance between two CPDAGs

is defined as the number of operations (addition, deletion, flips) required to make the

Table 9 Probability distribution

of X2
X2 PðX2Þ

0 0.5

1 0.5

Table 10 Probability

distribution of X3jðX1;X2Þ X3 X1 X2 PðX3jðX1;X2Þ

0 0 0 0.10

1 0 0 0.50

2 0 0 0.40

0 1 0 0.40

1 1 0 0.20

2 1 0 0.40

0 2 0 0.40

1 2 0 0.30

2 2 0 0.30

0 0 1 0.70

1 0 1 0.20

2 0 1 0.10

0 1 1 0.30

1 1 1 0.50

2 1 1 0.20

0 2 1 0.35

1 2 1 0.25

2 2 1 0.40

Table 11 Probability

distribution of X4jX2
X4 X2 PðX4jX2Þ

0 0 0.25

1 0 0.25

2 0 0.20

3 0 0.30

0 1 0.23

1 1 0.50

2 1 0.15

3 1 0.12
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CPDAGs match. The SHDs between the population CPDAG (Fig. 5b) and the

CPDAG obtained by the PC algorithm (Fig. 6a) and the PC-cs algorithm (Fig. 6b)

are 7 and 1, respectively, showing the good performance of our proposed

methodology in taking into account the sampling design complexity.

Table 12 Probability

distribution of X5jX4
X5 PðX4Þ PðX5jX4Þ

0 0 0.60

1 0 0.40

0 1 0.40

1 1 0.60

0 2 0.55

1 2 0.45

0 3 0.50

1 3 0.50

Fig. 5 a Superpopulation graph, b finite population CPDAG

a b

Fig. 6 a CPDAG from PC-algorithm, b CPDAG from the PC-cs algorithm
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4.2 Evaluating the accuracy of PC algorithm for complex survey data:
a Monte Carlo study

In this section the performance of the PC-cs algorithm is evaluated over a large

number of sample replicates. Small and larger networks with fixed or randomly

chosen DAG and conditional probabilities are considered. More specifically, in

Sect. 4.2.1 a network of three nodes with fixed DAG and conditional probabilities is

considered and the effects of sampling design on the association structure are

graphically showed over 500 sample replicates. In Sect. 4.2.2 the ten nodes network

of Fig. 5a is analyzed over 350 sample replicates. Finally, in Sect. 4.2.3 the accuracy

of the PC-cs algorithm is evaluated when the DAG and the conditional probabilities

are randomly chosen. The number of sample replicates is 350 and sample sizes

equal to 3000 and 6000 are considered.

4.2.1 A three nodes network with fixed DAG and conditional probabilities

In this section a Monte Carlo simulation is performed to assess the PC-cs algorithm

accuracy. A finite population of size N ¼ 10000 has bee generated according to the

network in Fig. 7a. The probability distributions of the nodes X1, X2 and X3jðX1;X2Þ
are reported in Tables 8, 13 and 14, respectively. An estimate of the finite

population causal structure has been obtained using the function pc() in the R-

package pcalg. The finite population CPDAG in Fig. 7a has been obtained. In order

to investigate the effect of the sampling design on the structural learning process,

500 samples of size n ¼ 3000 have been selected from the finite population

according to (i) a simple random sampling design; (ii) a conditional Poisson

sampling design with inclusion probabilities proportional to the Z-values, defined as

follows

Z ¼
�
Nð200; 2Þ þ 10 if X2 ¼ 0

Nð10; 2Þ þ 5 if X2 ¼ 1
ð23Þ

The significance level is fixed to 0.05. When the sample is selected according to a

simple random sampling, the PC algorithm is not able to recover the true association

structure in 3% of the selected samples.

The percentage of wrong graphs rises to 10:7% when the sample is selected

according to a conditional Poisson sampling. In Fig. 7 the survey design effects on

the association structure are shown. The edge between the nodes X2 and X3 is

Fig. 7 a True graph and finite population CPDAG, b, c Sampling design effects
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missing in 34% of the wrong graphs (Fig. 7b). An additional edge is placed between

the nodes X1 and X2 in the remaining 66% (Fig. 7c). For each sample, a pseudo

population has been constructed and M ¼ 1000 bootstrap samples have been drawn.

The percentage of wrong graphs decreases to 3:2% when the PC algorithm for

complex survey data is applied.

4.2.2 A ten nodes network with fixed DAG and conditional probabilities

With regard to the ten nodes network of Fig. 5a (sect. 4.1.4), in order to assess the

PC-cs algorithm accuracy, 350 samples of size n ¼ 3000 have been selected from

the finite population according to a conditional Poisson sampling design with

inclusion probabilities proportional to the Z-values defined in (22). The mean, the

standard deviation and the quartiles of SHDs for the PC algorithm and the PC-cs

algorithm over the 350 have been computed and denoted by SHDiid and SHDcs, sdiid
and sdcs, Q

1
iid;Q

2
iid;Q

3
iid and Q1

cs;Q
2
cs;Q

3
cs respectively. They are shown in Table 15,

where it can be noticed that SHDiid ¼ 9:3 while SHDcs ¼ 3:4, confirming the good

performance of PC-cs algorithm in taking into account the sample selection effects.

Table 13 Probability

distribution of X2
X2 PðX2Þ

0 0.7

1 0.3

Table 14 Probability

distribution of X3jðX1;X2Þ X3 X1 X2 PðX3jðX1;X2ÞÞ

0 0 0 0.10

1 0 0 0.50

2 0 0 0.40

0 1 0 0.40

1 1 0 0.20

2 1 0 0.40

0 2 0 0.20

1 2 0 0.20

2 2 0 0.60

0 0 1 0.70

1 0 1 0.20

2 0 1 0.10

0 1 1 0.30

1 1 1 0.50

2 1 1 0.20

0 2 1 0.35

1 2 1 0.25

2 2 1 0.40
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4.2.3 A four nodes network with randomly chosen DAG and conditional
probabilities

In this section, the accuracy of the PC-cs algorithm is evaluated by a simulation

where the DAG and the conditional probabilities are not fixed but randomly chosen.

To this aim, the following procedure has been applied:

Step 1 Generate a random DAG with 4 nodes and sparsity parameter 0.6 by the

function randomDAG in R package pcalg.

Step 2 Generate a multivariate dataset from the DAG defined in Step 1 by the

function rmvDAG with nodes corresponding to normal random variables.

Step 3 Discretize the variables ðX1;X2;X3;X4Þ according to the DAG dependence

structure. First of all, the range of the variables without parents has been

divided into 3 intervals according to the hth percentiles of data, for

h ¼ 0:5; 0:75. Next, if paðXjÞ 6¼ ;, then the range of XjjpaðXjÞ has been

divided into 2 intervals according to the 80th percentile of data.

Step 4 Generate a finite population of size N ¼ 10000 from the discretized

variables in Step 3 and learn its structure by function pc(). This represents
the population CPDAG.

Step 5 Draw a sample of size n from the finite population according to a

conditional Poisson sampling design. Inclusion probabilities are taken

proportional to Z-values defined as

Z ¼
� Nð10; 2Þ þ 5 if X1 ¼ 0

Nð20; 4Þ þ 10 if X1 ¼ 1

Nð30; 6Þ þ 15 if X1 ¼ 2

ð24Þ

Step 6 Perform structural learning using the original PC algorithm and the PC-cs

algorithm with a 0.05 significance level.

Steps 1-6 have been repeated 350 times and for n ¼ 3000; 6000. Algorithms

performance have been compared in terms of (i) the percentage of wrong graphs

denoted by Wiid andWcs for the PC algorithm and the PC-cs algorithm, respectively;

(ii) the mean of SHDs denoted by SHDiid and SHDcs, respectively; (iii) the standard

deviation of SHDs denoted by sdiid and sdcs, respectively; (iv) the first, the second

and the third quartile of SHDs denoted by Q1
iid;Q

2
iid;Q

3
iid and Q1

cs;Q
2
cs;Q

3
cs,

respectively. Results are reported in Table 16.

Table 15 Mean, standard deviations and quartiles of SHDs for PC-algorithm and PC-cs algorithm over

the 350 samples

n SHDiid SHDcs sdiid sdcs Q1
iid Q2

iid Q3
iid Q1

cs Q2
cs Q3

cs

3000 9.3 3.4 1.4 0.3 8.3 9 10.1 3.2 3.3 3.6
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As results in Table 16 show, the percentage of wrong graphs Wcs, the Structural

Hamming Distance SHDcs, the standard deviation and the interquartile difference

decrease when the PC-cs algorithm is applied and the complexity of sampling

design is taken into account in the learning process. Finally, the accuracy of the

results improves as the sample size increases.

5 Conclusions

In this paper a modified version of the PC algorithm is proposed for inferring causal

structure from complex survey data. The complexity of sampling design is

accounted for via a design-based approach. In the PC algorithm for complex survey

data the chi-square statistic does not necessarily approach to a chi-square

distribution, and the limiting distribution under the null hypothesis is estimated

by a resampling method allowing to make inference on the superpopulation

parameters in a finite population setting. Corrections based on design effects have

been proposed by Rao & Scott in Rao and Scott (1981) and Rao and Scott (1984).

However, while the PC algorithm for complex survey data adjusts for the sample

selection bias including the sampling weights in the BN parameters estimates, Rao

& Scott corrections use the classical chi-square test statistic adjusted on the basis of

the design effects. Furthermore, the second order Rao & Scott correction requires

availability of the full covariance matrix estimate of the cell proportions estimators.

In secondary analysis this estimate is not necessarily provided, but cell design-effect

estimate, possibly with marginal design effect estimate, might be reported.

Approximate first-order corrections can then be obtained by using the design effect

estimates. These results require that published two-way tables report at least the

cells design effects and their marginal along with the cell estimates, otherwise

variance estimates must be computed from microdata files using resampling

methods for finite population. Hence, both the approaches require to resort to

resampling methods: in the PC algorithm for complex survey data the distribution

under the independence null hypothesis is estimated; in Rao & Scott approach the

variances need to be estimated. Extension of the proposed approach to complex

multi-stage designs is under investigation. Finally, future research will be devoted to

the development of a structural learning procedure for complex survey sampling in

the score-plus-search framework.

Table 16 Percentage of wrong graphs and mean, standard deviations and quartiles of SHDs for PC-

algorithm and PC-cs algorithm over the 350 samples, for n=3000,6000

n Wiid Wcs SHDiid SHDcs sdiid sdcs Q1
iid Q2

iid Q3
iid Q1

cs Q2
cs Q3

cs

3000 8.2 3.7 3.4 1.8 0.6 0.3 2.8 3.2 3.7 1.5 1.7 2

6000 6.5 2.8 2.6 1.2 0.4 0.1 2.1 2.4 2.8 1.1 1.2 1.4

123

Bayesian network structural learning from complex... 1005



Appendix

Proof of Proposition 1 Here the main lines showing how Proposition 1 descends

from Proposition 1 in Conti et al. (2018) are provided.

Define the cumulative distribution functions (c.d.f.s),

Fhk ¼
Xh

u¼1

Xk

v¼1
puv; h ¼ 1; . . .;H; k ¼ 1; . . .;K

the empirical c.d.f.s

bFhk ¼
Xh

u¼1

Xk

v¼1
bpuv; h ¼ 1; . . .;H; k ¼ 1; . . .;K

where bpuv are estimated using the classical Hájek estimators as in (6), and the

corresponding random vectors (with elements in lexicographic order)

FHK ¼

F11

F12

. . .

FHK

2

6664

3

7775
bFHK ¼

bF11

bF12

. . .

bFHK

2

6664

3

7775

and

THK ¼
ffiffiffi
n
p bFHK � FHK

� �
:

Note that the random vector THK lies on a hyperplane of dimension HK � 1, due to

the relationships bFHK ¼ FHK ¼ 1 (then the last component of THK is 0).

From Conti et al. (2018) it follows that THK tends in distribution, as n;N !1,

to a degenerate multivariate Normal r.v. with mean vector 0HK (with HK

components) and covariance matrix XHK . Since the limiting distribution is

degenerate (it lies in a sub-space of dimension HK � 1), the matrix XHK is

degenerate. However, this does not affect neither its definition, nor its basic

properties (cfr. Rao (1973), pp. 184-185). In addition, again from Conti et al.

(2018), the relationship

XHK ¼ XHK
1 þ fXHK

2 ð25Þ

holds, where XHK
1 is the part of the total variability due to sampling design, XHK

2 is

the part of variability due to superpopulation model, and f is the limiting sampling

fraction.

Define now
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WHK ¼
ffiffiffi
n
p

bp11 � p11

bp12 � p12

. . .

bpHK � pHK

2

6664

3

7775

From

phk ¼Fhk � Fh k�1 � Fh�1 k þ Fh�1 k�1

bphk ¼ bFhk � bFh k�1 � bFh�1 k þ bFh�1 k�1

where h ¼ 1; . . .;H, k ¼ 1; . . .;K, it is immediate to verify that the map

THK 7!WHK ð26Þ

is linear, and hence continuous. From the continuous mapping theorem, WHK tends

in distribution to a degenerate multivariate Normal distribution with mean 0HK and

(singular) covariance matrix RHK . In view of (25), the matrix RHK can be decom-

posed as

RHK ¼ RHK
1 þ fRHK

2 : ð27Þ

Next, define

WH ¼
ffiffiffi
n
p

bp1: � p1:

bp2: � p2:

. . .

bpH: � pH:

2
6664

3
7775 ¼

ffiffiffi
n
p

PK
k¼1ðbp1k � p1kÞ

PK
k¼1ðbp2k � p2kÞ

. . .
PK

k¼1ðbpHk � pHkÞ

2
66664

3
77775
:

The map WHK 7!WH is linear, and hence continuous. From the continuous mapping

theorem, it follows that WH tends in distribution to a (degenerate) multivariate

Normal distribution, with mean vector 0H and covariance matrix RH . From (27), it

also follows that the following decomposition holds:

RH ¼ RH
1 þ fRH

2 :

Finally, using exactly the same arguments as above, it is not difficult to see that the

degenerate r.v.

WK ¼
ffiffiffi
n
p

bp:1 � p:1

bp:2 � p:2

. . .

bp:K � p:K

2
6664

3
7775

tends in distribution to a (degenerate) multivariate Normal distribution, with mean

vector 0K and covariance matrix RK . Again, the decomposition
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RH ¼ RH
1 þ fRH

2

holds. h

In order to prove Propositions 2, 3, define the vectors epHK and pHK of length HK

epHK ¼

bp1:bp:1

bp1:bp:2

. . .

bp1:bp:K

bp2:bp:1

bp2:bp:2

. . .

bp2:bp:K

. . .

bpH:bp:1

bpH:bp:2

. . .

bpH:bp:K

2

666666666666666666666666664

3

777777777777777777777777775

pHK ¼

p1:p:1

p1:p:2

. . .

p1:p:K

p2:p:1

p2:p:2

. . .

p2:p:K

. . .

pH:p:1

pH:p:2

. . .

pH:p:K

2

666666666666666666666666664

3

777777777777777777777777775

and the matrices (H 	 HK and K 	 HK, respectively)

A ¼ A1;A2; . . .;AH½ �
B ¼ B1;B2; . . .;BH½ �

where

i) Ah is a matrix of size H 	 K with all entries equal to 0 but the entries of the

hth row which are equal to 1, for h ¼ 1; . . .;H.

ii) Bh is an identity matrix of order K, for h ¼ 1; ::;H.

If we set

bpH: ¼

bp1:

bp2:

. . .

bpH:

2
6664

3
7775 bp:K ¼

bp:1

bp:2

. . .

bp:K

2
6664

3
7775

then the relationships

bpH: ¼AbpHK

bp:K ¼BbpHK

hold. Next, define the matrices (HK 	 H, HK 	 H and HK 	 K, respectively)
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P ¼

P1

P2

. . .

PH

2
6664

3
7775

bP ¼

bP1

bP2

. . .

bPH

2
66664

3
77775

W ¼

W1

W2

. . .

WH

2
6664

3
7775

where

1. Ph is a matrix of size K 	 H having all entries equal to zero but the entries in

the hth column that are equal to p:1; p:2; . . .; p:K , for h ¼ 1; :::;H.

2. bPh is a matrix of order K 	 H having all entries equal to zero but the entries in

the hth column that are equal to bp:1; bp:2; . . .; bp:K , for h ¼ 1; :::;H.

3. Wh is a diagonal matrix of order K 	 K, with all entries in the main diagonal

equal to ph:, for h ¼ 1; :::;H.

With this symbols, we may write

ffiffiffi
n
p

bpHK � pHK

bpH: � pH:

bp:K � p:K

2

64

3

75 ¼
IHK

A

B

2

64

3

75
ffiffiffi
n
p
ðbpHK � pHKÞ ð28Þ

where IHK is the identity matrix of size HK 	 HK.

Lemma 1 bphk � phk converges in probability to 0 as, n, N go to infinity, for each h,
k.

Proof Immediate consequence of Proposition 1. h

Note that Proposition 1 actually implies that bphk � phk ¼ Opðn�1=2Þ, for each h, k.

Lemma 2 bph: � ph:, bp:k � p:k converge in probability to 0 as, n, N go to infinity, for
each h, k.

Proof Consequence of Lemma 1. h

Proof of Proposition 2 It is enough to use the relationship (28). Proposition 2 follows

from (28), Proposition 1, and the continuous mapping theorem. h

Lemma 3 Under the independence hypothesis H0, the limiting distribution offfiffiffi
n
p
ðbpHK � epHKÞ coincides with the limiting distribution of

ðIHK �PA�WBÞ
ffiffiffi
n
p
ðbpHK � pHKÞ

� �

that turns out to be (degenerate) multivariate Normal with null mean vector and

covariance matrix,

CHK ¼ ðIHK �PA�WBÞRHKðIHK �PA�WBÞT
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Proof From the relationship

bphk � bph:bp:k ¼ ðbphk � ph:p:kÞ � bph:ðbp:k � p:kÞ � bp:kðbph: � ph:Þ

it follows that, in matrix terms,

ffiffiffi
n
p
ðbpHK � epHKÞ ¼

ffiffiffi
n
p
ðIHK � bPA�WBÞðbpHK � pHKÞ:

Next, from Lemma 2, the matrix bP tends in probability to P, as n, N go to infinity.

Using the Slutsky Theorem (Serfling 1980), this implies, in its turns, that the lim-

iting distribution of,

ffiffiffi
n
p
ðbpHK � epHKÞ ¼ðIHK �PA�WBÞ

ffiffiffi
n
p
ðbpHK � pHKÞ

� �

�ð bP �PÞA
ffiffiffi
n
p
ðbpHK � pHKÞ

� �

coincides with the limiting distribution of

ðIHK �PA�WBÞ
ffiffiffi
n
p
ðbpHK � pHKÞ

� �
ð29Þ

The linearity of (29) and the continuous mapping theorem complete the proof. h

For the sake of simplicity, from now the notation

C ¼ IHK �PA�WB

will be used.

Lemma 4 Define

v22H ¼ n
XH

h¼1

XK

k¼1
ðbphk � bph:bp:kÞ2 1

bph:bp:k �
1

ph:p:k

� 	
ð30Þ

Under the null hypothesis of independence H0, v22H converges in probability to 0 as

n, N go to infinity.

Proof First of all, we have

jv22H j � max
h;k

1

bph:bp:k �
1

ph:p:k











 n
XH

h¼1

XK

k¼1
ðbphk � bph:bp:kÞ2

( )
:

Since convergence in probability is preserved under continuous transformations, the

term

max
h;k

1

bph:bp:k �
1

ph:p:k











!
p
0 as n;N !1 ð31Þ

In addition, from Lemma 3 it follows that
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n
XH

h¼1

XK

k¼1
ðbphk � bph:bp:kÞ2 ¼

ffiffiffi
n
p
ðbpHK � epHKÞ

� �T ffiffiffi
n
p
ðbpHK � epHKÞ

� �

!d XTX

ð32Þ

where X is a singular multivariate (HK) Normal r.v. with null mean vector and

covariance matrix CHK ¼ CRHKCT . The lemma follows from (31) and (32) and the

continuous mapping theorem. h

Lemma 5 Define

v21H ¼ n
XH

h¼1

Xk

k¼1

ðbphk � bph:bp:kÞ2

bph:bp:k : ð33Þ

Under the null hypothesis of independence H0, v21H tends in distribution to

XTpHKðpHKÞTX where X is a (singular) multivariate HK Normal r.v. with null mean

vector and covariance matrix CHK ¼ CRHKCT .

Proof It is enough to observe that

v21H ¼
ffiffiffi
n
p
ðbpHK � epHKÞ

� �T
pHKðpHKÞT

ffiffiffi
n
p
ðbpHK � epHKÞ

� �

and apply Lemma 3 and the continuous mapping theorem. h

Proof of Proposition 3 The statistic v2H can be written as v21H þ v22H , where v21H and

v22H are defined in (33) and (30) respectively. The proof is a simple application of

Lemma 4, 5. h
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