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Abstract
We consider a re-sampling scheme for estimation of the population parameters in

the mixed-effects nonlinear regression models of the type used, for example, in

clinical pharmacokinetics. We provide a two-stage estimation procedure which

resamples (or recycles), via random weightings, the various parameter’s estimates to

construct consistent estimates of their respective sampling distributions. In partic-

ular, we establish under rather general distribution-free assumptions, the asymptotic

normality and consistency of the standard two-stage estimates and of their resam-

pled version and demonstrate the applicability of our proposed resampling

methodology in a small simulation study. A detailed example based on real clinical

pharmacokinetic data is also provided.

Keywords Resampling � Random weights � Hierarchical nonlinear

models � Random effects

Mathematics Subject Classification MSC code1 � MSC code2 � more

1 Introduction

Hierarchical mixed-effects nonlinear regression models are widely used nowadays

to analyze complex data involving longitudinal or repeated measures which are

often arising in pharmacokinetics or from medical, biological and other similar

applications (see for example Davidian and Giltinan (2003)). In such studies, the

sampling units are often ‘‘subjects’’ drawn from the relevant population of interest
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whereby statistical inference, primarily for the estimation of various model

parameters, is being sought, primarily on certain characteristics of the underlying

population of interest. In that context, the hierarchical nonlinear model can be

considered as an extension of the ordinary nonlinear regression models constructed

to handle and ‘aggregate’ data obtained from several individuals. Modeling this type

of data usually involves a ‘functional’ relationship between at least one predictor

variable, x, and the measured response, y. As it often the case, the assumed

‘functional’ model between the response y and the predictor x, is based on some on

physical or mechanistic grounds and is usually nonlinear in its parameters. For

instance, in pharmacokinetics, a typical (compartmental) model of drug’s concen-

tration in the plasma is obtained from a set differential equations reflecting the

nonlinear time-dependency of the drug’s disposition in the body. Figure 1 below,

illustrates such plasma concentrations profiles for a group of N ¼ 12 patients (the

sample), each observed at n ¼ 11 time points following the administration of the

drug under study (the Theophylline study, see for example Boeckmann et al. (1994),

Davidian and Giltinan (1995) and also Sect. 5.3 for more details about this well-

known data set).

The primary aim of such pharmacokinetic studies with data as depicted in Fig. 1,

is to make, based on the N patients’ data, generalizations about the drug disposition

in the population of interest to which the group patients belongs. Therefore such

studies require a valid and reliable estimation procedure of the population’s
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Fig. 1 The Theophylline data—drug plasma concentrations (ng/mL) profiles of N ¼ 12 patients recorded
over time (hr)
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‘‘typicaland’’ variability values for each of the underlying pharmacokinetic

parameters (e.g.: the ‘typical’ rates of absorption, elimination, and clearance)–

usually reflecting the population (hierarchical) distribution of the relevant model’s

parameters. In that context, there are three basic types of ’typical’ population

pharmacokinetic parameters. Some are viewed as fixed-effect parameters which

quantify the population average kinetics of a drug; others represent inter-individual

random-effect parameters, which quantify the typical magnitude of inter-individual

variability in pharmacokinetic parameters and the intra-individual random-effect

parameter which quantifies the typical magnitude of the intra-individual variability

(the experimental error).

The basic hierarchical linear regression model for pharmacokinetics applications

was pioneered by Sheiner et al. (1972), which accounted for both types of

variations; of within and between subjects. The nonlinear case received widespread

attention in later developments. Lindstrom and Bates (1990) proposed a general

nonlinear mixed effects model for repeated measures data and proposed estimators

combining least squares estimators and maximum likelihood estimators (under

specific normality assumption). Vonesh and Carter (1992) discussed nonlinear

mixed effects model for unbalanced repeated measures. Additional related

references include: Mallet (1986), Davidian and Gallant (1993a); Davidian and

Giltinan (1993b, 1995).

In all, the standard approach for inference in hierarchical nonlinear models is

typically based on full distributional assumptions for both, the intra-individual and

inter-individual random components. The most commonly used assumption is that

both random components are considered to be normally distributed. However, this

can be a questionable assumption in many cases. Our main results in this work offer

a more generalized framework that does not hinge on the normality assumption of

the various random terms. In fact, the rigorous asymptotic results we obtained are

established only with minimal moments conditions on the random errors and

random effect components of the underlying model and thus could be construed as a

distribution-free approach.

One simple approach for estimation in such hierarchical ’population’ models is

the so-called two-stage estimation method. At the first stage one estimates the

’individual-level’ parameters and then, at the second-stage, combines them in some

manner to obtain the ’population-level’ parameter estimates. However despite of its

simplicity, the main challenge to such a two-stage estimation approach is in

obtaining the sampling distributions and related properties (accuracy, precision,

consitency, etc..) of the final estimators, either in finite or in large sample settings.

For most part, the performance of these two-stage estimation methods have been

evaluated primarily via Monte-Carlo simulations– see related references including:

Sheiner and Beal (1981, 1982, 1983), Steimer et al. (1984), and Davidian and

Giltinan (1995, 2003). Hence, an alternate and a more data oriented evaluation

methodology should be considered in assesing this type of hierarchical models.

Using a variant of the random weighting technique, Bar-Lev and Boukai (2015)

proposed a re-sampling scheme, which is termed herein recycling, as a valuable and

valid alternative methodology for evaluation and comparison of the estimation

procedure. Zhang and Boukai (2019b) studied the validity and established the
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asymptotic consistency and asymptotic normality of the recycled estimates in a one-

layered nonlinear regression model.

In the present paper we extend Bar-Lev and Boukai (2015) approach to include

general random weights in the case of hierarchical nonlinear regression models with

minimal moments assumptions on the random error-terms/effects. In Sect. 2, we

present the basic framework for the hierarchical nonlinear regression models with

fixed and random effects. In Sect. 3, we describe the Standard Two-Stage (STS)

estimation procedure for the population parameters appropriate in this hierarchical

nonlinear regression settings. Along these lines, we introduce a corresponding re-

sampling scheme especially devised, based on general random weights, to obtain the

recycled version of the STS estimators. In Sect. 4, we establish the asymptotic

consistency and asymptotic normality of the STS estimators in such general settings.

As we mentioned before, our rigorous results do not depend on specifying the

distribution(s) of the the random component terms in the model (both errors and

effects), but rather, are obtained largely based on minimal moments assumptions. As

far as we know, these are the first provably valid asymptotic results concerning the

sampling distribution and implied sampling properties of the estimators obtained

using the STS procedure in the context of hierarchical nonlinear regression. In

addition, we demonstrate the applicability via the asymptotic consistency and

normality of the recycled version of the STS estimators. These results enable us to

use the sampling distribution of the recycled version of the STS estimators to

approximate the unknown sampling distribution of the actual STS estimators in a

general ’distribution-free’ framework. The results of extensive simulation studies

and a detailed application to the Theophylline data are provided in Sect. 5. The

proofs of our main results along with many other technical details are provided in

the ‘‘Appendix’’.

2 The basic hierarchical (population) model

Consider a study involving a random sample of N individuals, where the nonlinear

regression model (as in Zhang and Boukai (2019b)) is assumed to hold for each of

the i-th individuals. That is, for each i, (i ¼ 1; 2; . . .;N), we have available the ni
(repeated) observations on the response variable in the form of

yi :¼ ðyi1; yi2; . . .; yiniÞ
t
, where

yij ¼ f ðxij; hiÞ þ �ij; j ¼ 1; . . .; ni; ð1Þ

and xij is the j-th covariate for the i-th individual, which gives rise to the response,

yij, for j ¼ 1; . . .; ni and i ¼ 1; . . .;N. Here, f ð�Þ is a given nonlinear function and �ij

denote some i.i.d. ð0; r2Þ error-terms. That is, if we set �i :¼ ð�i1; �i2; . . .; �iniÞ
t
, then

Eð�iÞ ¼ 0 and Varð�iÞ � Covð�i�itÞ ¼ r2Ini . In the current context of hierarchical

modeling, the parameter vector hi ¼ ðhi1; hi2; . . .; hipÞt 2 H � IRp, (with p\ni), can

vary from individual to individual, so that hi is seen as the individual-specific

realization of h. More specifically, it is assumed that, independent of the error terms,

�i,
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hi :¼ h0 þ bi; ð2Þ

where h0 :¼ ðh01; h02; . . .; h0pÞt, is a fixed population parameter, though unknown,

and bi ¼ ðbi1; bi2; . . .; bipÞt is a p� 1 vector representing the random effects asso-

ciated with i-th individual. It is assumed that the random effects, b1; b2; . . .; bN are

independent and identically distributed random vectors satisfying,

EðbiÞ ¼ 0 and VarðbiÞ � Covðbi; btiÞ ¼ D:

Here r2 represents the within individual variability and D describes the between
individuals variability. Thus, h1; h2; . . .; hN are i.i.d. random vectors with

EðhiÞ ¼ 0 and VarðhiÞ ¼ D:

In the simple (i.e.: standard) hierarchical modeling it is often assumed that D is

some diagonal matrix of the form D ¼ Diagðk2
1; k

2
2; . . .; k

2
pÞ or even simpler, as

D ¼ k2Ip for some k[ 0, and that Varð�iÞ ¼ r2Ini for each i ¼ 1; . . .;N for some

r[ 0.

In the more complex hierarchical modeling, more general structures of the within
individual variability Varð�iÞ ¼ Ci (for some Ci) and of the between individuals
variability, D, are possible. However, even in the simplest structure, the available

estimation methods for these model’s parameters, h0; r2 and D are typically highly

iterative in their nature and are based on the variations of the least squares

estimation. Similarly, even when considered under some specific distributional

assumptions, such as that both, the error terms �i, and the random effects bi are

normally distributed, so that, �i �N nið0; r2IniÞ and bi �N pð0;DÞ; for each

¼ i ¼ 1; . . .;N. In fact, many of the available results in the literature hinge on the

specific normality assumption and on the ability to effectively ’linearize’ the

regression function f ð�Þ (see for example Bates and Watts (2007)) on order to obtain

some assessment of the resulting sampling distributions fo the parameters’

estimates. We point out that here we require no specific distributional assumptions

(such as normality, or otherwise) on either the intra-individual and the inter-

individual error terms, �i nor bi, respectively.

3 The two-stage estimation procedure

For each i ¼ 1; . . .;N, let f iðhÞ denote the ni � 1 vectors whose elements are

f ðxij; hÞ; j ¼ 1; . . .; ni then model (1) can be written more succinctly as

yi ¼ f iðhiÞ þ �i ð3Þ

Accordingly, the STS estimation procedure can be described as follows:
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On Stage
I:

For each i ¼ 1; . . .;N obtain ĥni as the minimizer of

QiðhÞ :¼ ðyi � f iðhÞÞðyi � f iðhÞÞt �
Xni

j¼1

ðyij � f ðxij; hÞÞ2; ð4Þ

so as to form ĥn1; ĥn2; . . .; ĥnN , based on all the M :¼
PN

i ni available

observations. Next, estimate the within-individual variability compo-

nent, r2, by

r̂2
M :¼ 1

M � pN

XN

i¼1

QiðĥniÞ:

On Stage
II:

Estimate the ’population’ parameter h0 by the average

ĥ� STS :¼ 1

N

XN

i¼1

ĥni: ð5Þ

Next, estimate Varðĥ� STSÞ by S2 � STS=N, where

S2 � STS :¼
XN

i¼1

ðĥni � ĥ� STSÞðĥni � ĥ� STSÞt:

Finally estimate the between-individual variability component, D, by

D̂ ¼ S2 � STS� min ðm̂; r̂2
MÞ R̂N ; ð6Þ

where R̂N :¼ 1
N

PN
i¼1 RniðĥniÞ, with R�1

ni
defined as,

R�1
n ðhÞ :¼ 1

n

Xn

i¼1

rfiðhÞrfiðhÞt; ð7Þ

and where m̂ is the smallest root of the equation

jS2 � STS� mR̂N j ¼ 0, see Davidian and Giltinan (2003) for details.

Bar-Lev and Boukai (2015) provided a numerical study of this two-stage

estimation procedure in the context of a (hierarchical) pharmacokinetics modeling

under the normality assumption. They also proposed a corresponding two-stage re-

sampling scheme based on specific Dirichletð1Þ random weights. However, in this

paper we consider a more general framework for the random weights to be used.

As in Zhang and Boukai (2019b), we let for each n� 1, the random weights,

wn ¼ ðw1:n;w2:n; . . .;wn:nÞt, be a vector of exchangeable nonnegative random

variables with Eðwi:nÞ ¼ 1 and Varðwi:nÞ :¼ s2
n, and let Wi � W1:n ¼ ðwi:n � 1Þ=sn

be the standardized version of wi:n, i ¼ 1; . . .; n. In addition we also assume:

Assumption W The underlying distribution of the random weights wn satisfies

1. For all n� 1, the random weights wn are independent of ð�1; �2; . . .; �nÞt;
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2. s2
n ¼ oðnÞ, EðWiWjÞ ¼ Oðn�1Þ and EðW2

i W
2
j Þ ! 1 for all i 6¼ j, EðW4

i Þ\1 for

all i.

Some examples of random weights, wn that satisfy the above conditions in

Assumption W are: the Multinomial weights,

wn �Multinomialðn; 1=n; 1=n; . . .; 1=nÞ, which correspond to the classical boot-

strap of Efron (1979) and the Dirichlet weights, wn � n� zn where

zn �Dirichletða; a; . . .; aÞ, with a[ 0 which often refer to as the Bayesian

bootstrap (see Rubin (1981), and its variants as in Zheng and Tu (1988) and Lo

(1991)).

We will assume throughout this paper that all the random weights we use in the

sequel do satisfy Assumption W. With such random weights wn at hand, we define

in similarity to (3), the recycled version ĥ	n of ĥn as the minimizer of the randomly
weighted least squares criterion. With such general random weights, the recycled
version of the STS estimation procedure described in (4-7) above is:

On Stage I
	:

For each i ¼ 1; . . .;N, independently generate random weights, wi ¼
ðwi1;wi2; . . .;winiÞ

t
that satisfy Assumption W with VarðwijÞ ¼ s2

ni

and obtain ĥ	ni as the minimizer of

Q	
i ðhÞ :¼

Xni

j¼1

wijðyij � f ðxij; hÞÞ2; ð8Þ

so as to form ĥ	n1; ĥ
	
n2; . . .; ĥ

	
nN .

On Stage
II 	:

Independent of Stage I 	, generate random weights, u ¼
ðu1; u2; . . .; uNÞt that satisfy Assumption W with VarðuiÞ ¼ s2

N , and

obtained the recycled version of ĥ� STS as:

ĥ� RTS	 :¼ 1

N

XN

i¼1

uiĥ
	
ni ð9Þ

The recycled version D	 of D can be subsequently obtained as

described in Stage II above.

4 Consistency of the STS and the recycled estimation procedures

In this section we present some asymptotic results that establish and validate the

consistency and asymptotic normality of the STS estimator, ĥ� STS (Theorems 1

and 2) and of its recycled version ĥ� RTS	 (Theorems 3 and 4), obtained using the

general random weights satisfying the premises of Assumption W. We establish

these results without the ’typical’ normality assumption on the within-individual
error terms, �ij, nor on the between-individual random effects bi. However, for
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simplicity of the exposition, we state these results in the case of p ¼ 1, so that

H 2 IR. With that in mind, we denote for each i ¼ 1; . . .;N,

fijðhÞ � f ðxij; hÞ; for j ¼ 1; . . .; ni:

Accordingly, the least squares criterion in (1), becomes

QniðhÞ :¼
Xni

j¼1

ðyij � fijðhÞÞ2;

and the LS estimator ĥni is readily seen as the solution of

Q0
niðhÞ :¼ 2

Xni

j¼1

/ijðhÞ ¼ 0 ð10Þ

where,

/ijðhÞ :¼ �ðyij � fijðhÞÞf
0

ijðhÞ; ð11Þ

with f
0

ijðhÞ :¼ dfijðhÞ=dh, for j ¼ 1. . .; ni and for each i ¼ 1. . .;N. We write f
00

ij ðhÞ :
¼ df 0ijðhÞ=dh and /0

ijðhÞ :¼ d/ijðhÞ=dh, etc. As in Zhang and Boukai (2019b), we

also assume that f
0
ijðhÞ and f

00
ij ðhÞ exist for all h near h0. However, to account for the

inclusion of the ð0; k2Þ random effect term, bi, in the model, we also assume that,

Assumption A For each i ¼ 1; . . .;N

1. a2
ni
:¼ r2

Pni
j¼1 Eðf

02
ij ðh0 þ biÞÞ ! 1 as ni ! 1, ;

2. lim sup
ni!1

a�2
ni

Pni
j¼1 sup

jh�h0�bij 
 d
f
002
ij ðhÞ\1

3. a�2
ni

Pni
j¼1 f

02
ij ðhÞ ! 1

r2 uniformly in jh� h0 � bij 
 d.

In the following two Theorems we establish, under the conditions of Assumption A,

the asymptotic consistency and normality of ĥSTS. Their proofs and some related

technical results are given in Sect. 7.1.

Theorem 1 Suppose that Assumption A holds, then there exists a sequence ĥni of

solutions of (10) such that ĥni ¼ h0 þ bi þ a�1
ni Tni, where jTnij\K in probability, for

each i ¼ 1; 2; . . .;N. Further, there exists a sequence ĥSTS as expressed in (5) such

that ĥSTS � h0!
p

0; as ni ! 1, for i ¼ 1; 2; . . .;N, and as N ! 1.

Theorem 2 Suppose that Assumption A holds. If lim
N;ni!1

N=a2
ni\1; for all

i ¼ 1; 2; . . .;N, then there exists a sequence ĥSTS as expressed in (5) such that

ĥ� STS� h0 ¼ 1
N

PN
i¼1 bi � w� N; ni; where

ffiffiffiffi
N

p
w� N; ni!

p
0. Further,
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RN :¼
ffiffiffiffi
N

p

k
ðĥ� STS� h0Þ ) Nð0; 1Þ

as ni ! 1, for i ¼ 1; 2; . . .;N, and as N ! 1.

For the recycled STS estimation procedure as described in Sect. 3, the recycled

version ĥ	ni of ĥni is the minimizer of (8), or alternatively, the direct solution of

Q	0
i ðhÞ :¼ 2

Xni

j¼1

wij/ijðhÞ ¼ 0; ð12Þ

where wi ¼ ðwi1;wi2; . . .;winiÞ
t

are the randomly drawn weights (satisfying

Assumption W), for the ith individual, i ¼ 1; 2; . . .;N. For establishing comparable

results to those given in Theorems 1 and 2 for the recycled version, ĥ
	 � RTS ¼PN

i¼1 uiĥ
	
ni=N of ĥ� STS ¼

PN
i¼1 ĥni=N, with the random weights u ¼

ðu1; u2; . . .; uNÞt as in Stage II 	, we need the following additional assumptions.

Assumption B In addition to Assumption A, we assume that Eð�4
ijÞ\1 and that

for each i ¼ 1; 2; . . .;N;

1. lim sup
ni!1

a�2
ni

Pni
j¼1 sup

jh�h0�bij 
 d
f
04
ij ðhÞ\1;

2. lim sup
ni!1

a�2
ni

Pni
j¼1 sup

jh�h0�bij 
 d
f
004
ij ðhÞ\1;

3. As ni ! 1;nia
�2
ni

! ci � 0:

In Theorems 3 and 4 below we establish, under the conditions of Assumptions A

and B, the asymptotic consistency and normality of the recycled estimator

ĥ
	 � RTS. Their proofs and some related technical results are given in Sect. 7.2.

Theorem 3 Suppose that Assumptions A and B hold. Then there exists a sequence

ĥ
	
ni as the solution of (12) such that ĥ

	
ni ¼ ĥni þ a�1

ni T
	
ni , where jT	

nij\Ksni in

probability, for i ¼ 1; . . .;N. Further for any �[ 0, we have P	ðjĥ	 � RTS�
h0j[ �Þ ¼ opð1Þ; as ni ! 1, for i ¼ 1; 2; . . .;N, and as N ! 1.

Theorem 4 Suppose that Assumptions A and B hold. If for each i ¼ 1; 2; . . .;N,
sni
s�N ¼ oð ffiffiffiffi

ni
p Þ; then we have ĥ

	
RTS � ĥSTS ¼ 1

N

PN
i¼1ðui � 1Þĥni � w	

N;ni
; where

ffiffiffi
N

p

sN
w	
N;ni

!p
	

0 as N; ni ! 1. Additionally,

R	
N :¼

ffiffiffiffi
N

p

ksN
ðĥ	RTS � ĥSTSÞ ) Nð0; 1Þ;

as ni ! 1, for i ¼ 1; 2; . . .;N, and as N ! 1.

The proofs of Theorems 3 and 4 and some related technical results are given in

Sect. 7.1. The following Corollary is an immediate consequence of the above
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results. It suggest that the sampling distribution of ĥSTS can be well approximated by

that of the recycled or re-sampled version of it, ĥ
	
RTS.

Corollary 1 For all t 2 IR, let HNðtÞ ¼ P RN 
 tð Þ; and H	
NðtÞ ¼ P	 R	

N 
 t
� �

;

denote the corresponding c.d.f of RN and R	
N , respectively. Then by Theorems 2

and 4,

sup
t
jH	

nðtÞ � HnðtÞj ! 0 in probability:

5 Implementation and numerical results

5.1 Illustrating the STS estimation procedure

To illustrate the main results of Sect. 4 for the hierarchical nonlinear regression

model and the corresponding STS estimation procedure as described in (4-7) above,

we consider a typical compartmental modeling from pharmacokinetics. In the

standard two-compartment model, the relationship between the measure drug

concentration and the post-dosage time t, (following an intravenous administration),

can be described through the nonlinear function of the form:

f ðt; gÞ ¼ g1e
�g2t þ g3e

�g4t; ð13Þ

with g :¼ ðg1; g2; g3; g4Þ
0

being a parameter representing the various kinetics rate

constants, such as the rate of elimination, rate of absorption, clearance, volume, etc.

Since these constants (i.e. parameters) must be positive, we re-parametrize the

model with h � logðgÞ (with hk ¼ logðgkÞ, k ¼ 1; 2; 3; 4), so that with t[ 0,

f ðt; hÞ ¼ expðh1Þexpf�expðh2Þtg þ expðh3Þexpf�expðh4Þtg; ð14Þ

with h ¼ ðh1; h2; h3; h4Þt 2 IR4. For the simulation study we consider a situation in

which the (plasma) drug concentrations fyijg of N individuals were measure at post-

dose times tij and are related as in model (1) via the nonlinear regression model,

yij ¼ f ðtij; hiÞ þ �ij;

for j ¼ 1; . . .; ni and i ¼ 1; . . .;N. Here, as in Sect. 4, �ij are standard i.i.d. ð0;r2Þ
random error terms and hi ¼ h0 þ bi, where bi are independent identically dis-

tributed random effects terms, with mean 0 and unknown variance k2I4�4.

Accordingly, we have in all a total of 6 unknown parameters, namely, h0 ¼
ðh10; h20; h30; h40Þt; r and k.

Since r and k represent variation within and between individuals (respectively),

different setting for these two lead to very different situations. For instance, Fig. 2a

below, depicts the situation for N ¼ 5 and ni � n ¼ 15, each, when r ¼ 0:1 and

k ¼ 0:1, so that the variation between individuals are similar to variation within

individuals. Figure 2b depicts the situation with r ¼ 0:05; k ¼ 1, so that the

variation between individuals is much larger than variation within individuals.
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For the simulation, we set h0 ¼ ð1; 0:8;�0:5;�1Þt, and for each i, the times

tij; j ¼ 1; . . .; n were generated uniformly from [0, 8] interval. To allow for different

’distributions’, the error terms, �ij, as well as the random effect terms, bi, were

generated either from the (a) Truncated Normal, (b) Normal and (c) Laplace
distributions – all in consideration of Assumption A in our main results.

For each simulation run, with the Truncated Normal distribution for the error-

terms and the random effects terms, we calculated the value of ĥkSTS as an estimator

of h0 and repeated this procedure M ¼ 1000 times to calculate the corresponding

Mean Square Error (MSE) as followed,

MSE ¼ 1

M

XM

k¼1

jjĥkSTS � h0jj2

The corresponding simulation results obtained for various values of N and n, are

presented in Table 1 for r ¼ 0:1; k ¼ 0:1 and r ¼ 0:05; k ¼ 1.
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Fig. 2 Illustrating drug plasma concentration vs time for 5 individuals (colored) for the cases: a r ¼
0:1; k ¼ 0:1 and b r ¼ 0:05; k ¼ 1

Table 1 The MSE of STS estimates for truncated Normal error-terms/effects with r ¼ 0:1; k ¼ 0:1 and

r ¼ 0:05; k ¼ 1:0

n r ¼ 0:1 k ¼ 0:1 r ¼ 0:05 k ¼ 1:0

N 15 30 50 100 200 15 30 50 100 200

15 0.8662 0.2289 0.0465 0.0114 0.0063 1.0001 0.6383 0.5688 0.4730 0.4602

30 0.5767 0.1071 0.0244 0.0057 0.0033 0.6997 0.3950 0.3315 0.3523 0.3263

50 0.4584 0.0893 0.0210 0.0038 0.0020 0.5568 0.2944 0.2594 0.2500 0.2347

100 0.3785 0.0692 0.0125 0.0022 0.0010 0.3982 0.2245 0.2021 0.1973 0.2200

200 0.3506 0.0590 0.0089 0.0014 0.0006 0.3492 0.1945 0.1748 0.1882 0.1958
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From Table 1, we see that with n and N both increasing, the MSE is decreasing,

as expected. However, when r ¼ 0:05; k ¼ 1, n increasing for a fixed N, doesn’t

contribute to smaller MSE, which is consistent with our main result Theorem 1, the

STS estimate is not consistent with only ni ! 1, (this effect is more obvious in the

case k is relatively large).

For simulating the results of Theorem 2, we choose h2 to be the unknown

parameter, and use the main result to construct 95% Confidence Interval as

ðĥSTS � 1:96
k̂ffiffiffiffi
N

p ; ĥSTS þ 1:96
k̂ffiffiffiffi
N

p Þ;

where

k̂2 ¼ 1

N � 1

XN

i¼1

ðĥni � ĥSTSÞ2:

The estimate for k̂ used here is the simple STS estimate, not the corrected one as in

(6). M=1,000 replications of such simulations were executed to determine the

percentage of times the true value of the parameter estimates was contained in the

interval. We use r ¼ 0:5; k ¼ 0:5 and observed Coverage Percentages are provided

in Table 2.

From these results we can observe that with n and N both increase, the Coverage

Percentage approximate to 0.95. While when n is small (15), with N increase, the

Coverage Percentage is drifting farther away from the desired level of 0.95. This

finding is consistent with our main result, the convergence require the condition

lim
N;ni!1

N=a2
ni\1, which in this case becomes lim

n!1
1
n a

2
n=r

2\1, that is

lim
N;n!1

N=n\1 is required. Hence, when N is much large than n, this condition

does not hold. Although for this model, error terms that follow the normal

distribution do not satisfy Assumption A, we used normal error terms in the

simulations, and reported the resulting MSE and Coverage Percentage for 95%

confidence interval in Tables 2 and 3. From the results we can observe that with

Table 2 Coverage Percentage of the CI for the truncated Normal and Normal error-terms/effects with

r ¼ 0:5; k ¼ 0:5

n truncated Normal Normal

N 15 30 50 100 200 15 30 50 100 200

15 0.903 0.934 0.933 0.931 0.931 0.918 0.927 0.939 0.951 0.922

30 0.896 0.940 0.940 0.943 0.944 0.901 0.939 0.944 0.931 0.932

50 0.883 0.941 0.959 0.944 0.944 0.871 0.947 0.949 0.950 0.944

100 0.828 0.948 0.946 0.941 0.944 0.851 0.950 0.934 0.949 0.948

200 0.759 0.943 0.932 0.935 0.949 0.740 0.949 0.944 0.951 0.945
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n and N increasing, the MSE are smaller and Coverage Percentage are closer to

0.95.

We further considered simulations using the Laplace distributions for the error

terms and random effects terms. The complete results are reported in Zhang and

Boukai (2019b) and indicate of similar conclusions.

5.2 Illustrating the recycled STS estimation procedure

Here we provide the results of the simulation studies corresponding to Theorem 3

and 4 concerning the recycled STS estimator, ĥ
	
RTS. We considered the same

nonlinear (compartmental) model as given in the previous subsection, however

again with p ¼ 1. Accordingly, we choose h2 to represent the model’s unknown

parameter and set, for the simulations, h0 ¼ 0:8, for each i. As before, we generated

the values of ftij; j ¼ 1; . . .; ng uniformly from the [0, 8] interval, and drew the error

terms, �ij and the random effects terms, bi, from the truncated Normal distribution.

For each simulation run, we calculated the value of ĥSTS as in Sect. 3, then with

B ¼ 1; 000, we generated B� N independent replications of the random weights

wi ¼ ðwi1;wi2; . . .;winÞ and B ¼ 1; 000 independent replications of the random

weight u ¼ ðu1; u2; . . .; uNÞ, to obtain ĥ	1
STS, ĥ	2

STS, . . ., ĥ	BSTS. The correspond 95%

Confidence Intervals were formed. With r ¼ 1, k ¼ 1 a total of M ¼ 2000

replications of such simulations were executed to determine the percentage of times

the true value of the parameter estimates was contained in the interval and average

confidence interval length was calculated. The Coverage Percentages with average

confidence interval lengths are reported in Tables 4 and 5.

Table 4 demonstrates the results of the asymptotic results of Sect. 4. Table 5

provide Coverage Percentages with average confidence interval lengths, with

random weights set to be Multinomial, Dirichlet or Exponential distributed . From

these results we can see with N and n both increase, the Coverage Percentages

converges to 0.95 as expected (see Corollary 5). Also notice that Coverage

Percentages derived from the recycled STS are more accurate (closer to 0.95) than

the asymptotic result, especially when n and N are small.

We further consider the case when n is even smaller. Table 6 provides Coverage

Percentages and the average confidence interval length when n ¼ 10 for the case of

the Multinomial, Dirichlet or Exponential distributed random weights. As can be

seen, in these cases, our procedure produces reasonable results. However, we must

Table 3 The MSE of STS

estimates for Normal error-

terms/effects with

r ¼ 0:1; k ¼ 0:1

n

N 15 30 50 100 200

15 0.7718 0.1746 0.0788 0.0112 0.0062

30 0.5548 0.1185 0.0297 0.0061 0.0032

50 0.4772 0.0928 0.0216 0.0044 0.0020

100 0.3828 0.0742 0.0122 0.0023 0.0010

200 0.3384 0.0563 0.0089 0.0014 0.0006
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point out that the effects of a small sample size on our procedure depend also on the

dimensionality, p, of the parameter h, on the ‘‘nature’’of the non-linear regression

function f ið�Þ and its gradients, and on the particular minimization (optimization)

algorithm used on QiðhÞ in (4) and on Q	
i ðhÞ in (8). Clearly, further numerical

experimentation could be instructive in these regards.

Table 4 Simulated Coverage

Percentage of the CI for the

truncated Normal error-

terms/effects with r ¼ 1; k ¼ 1

n

N 15 30 50 100

15 0.755 0.880 0.905 0.920

0.999 1.004 1.009 1.038

30 0.590 0.860 0.930 0.955

0.730 0.722 0.729 0.740

50 0.48 0.815 0.885 0.955

0.566 0.576 0.568 0.573

100 0.170 0.680 0.895 0.935

0.397 0.403 0.410 0.406

Table 5 Coverage Percentage of the CI for the truncated Normal error-terms/effects with r ¼ 1; k ¼ 1

and with Multinomial random weights

n Multinomial Dirichlet Exponential

N 15 30 50 100 15 30 50 100 15 30 50 100

15 0.860 0.910 0.930 0.940 0.810 0.905 0.930 0.950 0.810 0.895 0.920 0.945

1.222 1.191 1.179 1.170 1.303 1.362 1.364 1.407 1.296 1.351 1.347 1.397

30 0.780 0.915 0.955 0.960 0.695 0.900 0.955 0.965 0.680 0.890 0.960 0.965

0.881 0.855 0.851 0.832 0.936 0.965 0.993 1.001 0.935 0.965 0.990 0.999

50 0.760 0.890 0.940 0.940 0.605 0.870 0.930 0.965 0.590 0.855 0.930 0.940

0.787 0.683 0.660 0.648 0.725 0.761 0.766 0.773 0.729 0.765 0.765 0.771

100 0.500 0.850 0.935 0.945 0.305 0.795 0.935 0.950 0.300 0.805 0.935 0.950

0.478 0.473 0.471 0.458 0.509 0.534 0.550 0.546 0.507 0.532 0.550 0.546

Table 6 Coverage Percentage of

the CI for the truncated Normal
error-terms/effects with r ¼
0:05; k ¼ 1 and with different

choices of random weights

n=10

N Multinomial Dirichlet Exponential

15 0.880 0.875 0.865

0.899 1.114 1.121

100 0.705 0.705 0.685

0.361 0.438 0.435
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5.3 An example–thetheophylline data

We illustrate our proposed recycled two-stage estimation procedure with the

Theophylline data set (which is widely available as Theoph under the R package,

R Core Team (2020)). This well-known data set provides the concentration-time

profiles (see Fig. 1) as were obtained in the pharmacokinetic study of the anti-

asthmatic agent Theophylline, and reported by Boeckmann et al. (1994) and

subsequently analyzed by Davidian and Giltinan (1995) (NLME), Kurada and Chen

(2018) (NLMIXED) as well as in Adeniyi et al. (2018). In this experiment, the drug

was administered orally to N ¼ 12 subjects, and serum concentrations were

measured at 11 time points per subject over the subsequent 25 hours. However, as in

Davidian and Giltinan (1995), we also excluded here the zero time point from the

analysis to simplify the modeling of the within-subject mean variance relationship.

For the analysis, a one-compartment version of the model in (13) in which

g1 ¼ �g3 was fitted to the data. The resulting pharmacokineticmodel is described

by the three parameters hi ¼ ðKai ;Kei ;ClÞ
0
, (with Kai [Kei ), representing the

absorption rate (1/hr), the elimination rate (1/hr) and fundamental clearance (L/hr),

per each of the N individual under study. Often however, the model parametrization

is given in term of the compartmental volume, V, where V ¼ Cl=Ke (L). Thus, the

mean concentration at time tij, ði ¼ 1; . . .;N; j ¼ 1; . . .; nÞ, following a single dose

of size d0 administrated at time ti1, by the i-th individual, ði ¼ 1; . . .;NÞ, is,

f ðtij; hiÞ �
d0KaiKei

CliðKai � KeiÞ
ðexpð�Kei tijÞ � expð�Kai tijÞÞ: ð15Þ

The statistical model accounts for the errors intervening between true and the

observed drug concentrations, and with the inter-individual variability in the

model’s parameters. To deal with the first, it is assumed that for each i ¼ 1; :::;N,

yij ¼ f ðtij; hiÞ þ �ij

where yij is the observed jth drug concentration of the ith individual, obtained at time

tij, and where �ij are some i.i.d random error terms with mean 0 and variance r2
� .

Here r2
� is assumed to be the only intra-individual random effect parameter of

concern. Similarly, for modeling the inter-individual variability in the parameters,

we assume that bi :¼ logðhiÞ � ðlKa; lKe; lClÞ0, represent some random effects with

EðbiÞ ¼ b0 � ðlKa0; lKe0; lCl0Þ0 and where VarðbiÞ ¼ D � diagðr2
lKa

; r2
lKe
; r2

lClÞ, for

each i ¼ 1; :::;N. Accordingly, h0 � expðb0Þ ¼ ðKe0;Ka0;Cl0Þ0 represents the fixed-

effect population parameter. In all, there are seven population parameters, namely:

Ka0;Ke0;Cl0 and r2
Ka
; r2

Ke
; r2

Cl and r�. Because of the logarithmic scale, all these

standard deviations are dimensionless quantities and they may be regarded as

approximate coefficients of variation. We emphasize that, unlike the other cited

approaches (namely NLME and NLMIXED), our modeling here does not depend on

any specific distributional assumption (i.e. normality) for the random effects, bi nor

for the error terms �i.
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In fact, after standardization to a unit dose, (so that d0 ¼ 1 in (15)) the data on

each individual may be viewed as consisting of 10 observations. Using the

Dirichlet(1) weights in B ¼ 1000 iterations, we obtained the recycled two-stage

estimates ĥ� RTS	 of h0 ¼ EðhiÞ as well as the STS estimates, ĥ� STS for these

data. The results are presented in Table 7, which also provides the estimates for the

variance components in D and in D	, as well as the 95% confidence intervals for the

fixed parameters Ke0;Ka0 and Cl0 as where obtained directly from the corresponding

recycled sampling distributions. For sake of comparison, we also provide in Table 8

the results of NLME estimation procedure as in Lindstrom and Bates (1990) (using

nlme R package) and those obtained from the NLMIXED estimation procedure as

as were reported by Kurada and Chen (2018). We point out again that, while the

results in Tables 7 and 8 are largely similar, the estimation procedures utilized in

Table 8 (NLME and NLMIXED) hinge on the normality assumptions for the

random effect terms (both within and between). In contrast, the result presented in

Table 7 using our recycled two-stage estimation procedure are entirely free of such

specific distributional assumptions.

6 Summary and discussion

We considered the general random weights approach as a viable re-sampling

technique in the case of hierarchical nonlinear regression models involving fixed

and random effects. We revisit the Standard Two-Stage (STS) estimation procedure

for the population parameters, say h0, appropriate in this hierarchical nonlinear

regression settings. While intuitively appealing, this STS approach was studied in

the literature primarily via simulations and with an underlying normality

assumption. Here, we establish at first the asymptotic consistency and the

asymptotic normality of the STS estimator, ĥ� STS , in the more general context.

Our rigorous results, as stated in Theorems 1 and 2, do not hinge on any specific

distributional assumptions (e.g., normality) on the random component terms in the

model (both errors-terms and random effects), but rather, they are obtained largely

Table 7 The Recycled STS estimation from the PK-data on Theophylline

Parameter

Ka (hr�1) Ke (hr�1) Cl (L/hr) r2
�

ĥ� STS 1.610 0.088 0.040 0.022

ĥ� RTS	 1.639 0.089 0.040 0.017

Dii 0.588 0.039 0.082

D	
ii 0.649 0.051 0.085

95%CI (1.070, 2.513 ) (0.078,0.099 ) (0.034, 0.046)
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based on minimal moments assumptions. Next, we presented the recycled (or the re-

sampled) version, ĥ� RTS	, of the STS estimates, ĥ� STS, in this hierarchical

nonlinear regression context and established its applicability under general random

weighting scheme (Assumption W). In Theorems 3 and 4 we established, the

consistency and asymptotic normality of the corresponding re-sampled estimator,

ĥ� RTS	. These results enable us to use the recycled sampling distribution

ĥ� RTS	, as is generated by the re-sampling procedure using the random weights

technique to approximate the actual, though unknown, sampling distribution of the

STS estimator, ĥ� STS (see Corollary 5). Thereby allowing us to validly assess the

sampling properties of ĥ� STS, such as precision and coverage probabilities based

on the re-sampled (via the random weights) data. Toward that end, we augmented

our rigorous theoretical results with a detailed simulation study (covering various

sample sizes) illustrating the properties of the estimators, ĥ� STS and ĥ� RTS	

under various scenarios involving normal as well as non-normal error terms and

utilizing different choices of random weights (Multinomial, Dirichlet and
Exponential). Clearly, the effects of the choice of random weights on the numeral

minimization (optimization) procedures used by various software, will depend also

on the non-linear regression function, its curvatures and the number of data points

used. However, this choice could be instructed by experimentation. Additionally,

we provided a detailed application of our two-stage recycled estimation procedure

to the data of the Theophylline study, and provided a comparison with the

(normality-based) estimation procedures, NLME and NLMIXED. This real-data

example, with N ¼ 12 and n ¼ 10, also illustrates the applicability of our approach

even to data involving small sample sizes. In any case, we believe that the gamut of

results presented here, both theoretical and numerical, are indicative of the potential

and promise of the random weighting recycled (re-sampled) STS estimation

procedure method to other more complex hierarchical non-linear regression models

involving more structured mixed-effects parameters. For instance, extension to

cases in which (2) is generalized to hi ¼ Aih0 þ Bibi, where: Ai; Bi are some

design matrices. However, for sake of scope and space, this and other related issues

will have to be pursued elsewhere.

Table 8 Estimation Result of

the PK-data on Theophylline

using NLME and NLMIXED

(published) procedures

Parameter

Ka (hr�1) Ke (hr�1) Cl (L/hr)

NLMIXED est: 1.617 0.086 0.040

95%CI (1.038, 2.519) (0.076,0.096) (0.035, 0.045)

NLME est: 1.571 0.088 0.040

95%CI (1.069,2.306) ( 0.078,0.099) (0.034,0.047)
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7. Appendix7.1. Technical details and proofs, the STS estimation case

In this section of the ‘‘Appendix’’ we provide the technical results needed for the

proofs of Theorems 1 and 2 on the STS estimator ĥSTS in the hierarchical nonlinear

regression model. In the sequel, we let /1ijðhÞ :¼ /
0

ijðhÞ (see (11)), and set K to

denote a generic constant. Recall that (see Assumption A(1)),

a2
ni
:¼ r2

Xni

j¼1

Eðf 02ij ðh0 þ biÞÞ ! 1 as ni ! 1:

Lemma 1 Under the conditions of Assumption A, for some K[ 0

a�2
ni

sup
jtj 
K

Xni

j¼1

/1ijðbi1Þ �
1

r2
! 0 a:s:;

where bi1 :¼ b1niðtÞ is a sequence such that sup
jtj 
K

jbi1 � bi � h0j ! 0; a:s:; as

ni ! 1.

Proof of Lemma 1 Since /1ijðhÞ :¼ /
0

ijðhÞ, we have

/1ijðhÞ � f
02
ij ðhÞ � �ijf

00

ij ðhÞ � ðfijðh0 þ biÞ � fijðhÞÞf
00

ij ðhÞ:

Accordingly, we first note that,

a�2
ni

sup
jtj 
K

Xni

j¼1

/1ijðbi1Þ �
1

r2

�����

�����
 a�2
ni

sup
jtj 
K

Xni

j¼1

f
02
ij ðbi1Þ �

1

r2

�����

�����

þ a�2
ni

sup
jtj 
K

Xni

j¼1

�ijf
00

ij ðbi1Þ
�����

�����

þ a�2
ni

sup
jtj 
K

Xni

j¼1

ðfijðh0 þ biÞ � fijðbi1ÞÞf
00

ij ðbi1Þ
�����

�����:

By Assumption A (3), we have a�2
ni

sup
jtj 
K

Pni
j¼1 f

02
ij ðbi1Þ � 1

r2 ! 0 a:s:; and by

Assumption A (2) and Corollary A in Wu (1981), we also have,

a�2
ni

sup
jtj 
K

Xni

j¼1

�ijf
00

ij ðbi1Þ
�����

�����! 0 a:s::

Finally, the last term converge to 0 a.s. by Assumption A, an application of Cauchy-

Schwarz inequality and Corollary A in Wu (1981). Thus we have
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a�2
ni

sup
jtj 
K

Xni

j¼1

/1ijðbi1Þ �
1

r2
! 0 a:s::

. h

Lemma 2 Let Xi be a sequence of random variables bounded in probability and let

Yi be a sequence of random variables which satisfies 1
n

Pn
i¼1 jYij ! 0 in probability.

Then 1
n

Pn
i¼1 XiYi!

p
0:

Proof of Lemma 2 Since Xi is bounded in probability, for any �[ 0, there is K� such

that with sufficient large i, PðjXij[K�Þ\�: Then

lim
n!1

Pðj 1
n

Xn

i¼1

XiYij[ �Þ ¼ lim
n!1

Pðj 1

n

Xn

i¼1

XiYij[ �; jXij\K�Þ
" #

þ lim
n!1

Pðj 1

n

Xn

i¼1

XiYij[ �; jXij[K�Þ
" #


 lim
n!1

Pð1
n

Xn

i¼1

j Xi

K�
Yij[

�

K�
; jXij\K�Þ þ �


 lim
n!1

Pð1
n

Xn

i¼1

jYij[
�

K�
; jXij\K�Þ þ � ¼ �;

from which the desired result follows. h

Lemma 3 There exists a K[ 0 such that for any �[ 0, for any i,

P a�1
ni

Xni

j¼1

/ijðh0 þ biÞ
�����

�����[K

" #
\

�

2
:

Proof of Lemma 3 Since �ij and bi are independent, for each i ¼ 1; . . .;N, we have

that for any j1 6¼ j2,

Eð/ij1ðh0 þ biÞ/ij2ðh0 þ biÞÞ ¼E½Eð/ij1ðh0 þ biÞ/ij2ðh0 þ biÞjbiÞ�
¼E½Eð�ij1�ij2 f

0

ij1
ðh0 þ biÞf

0

ij2
ðh0 þ biÞjbiÞ�

¼E½Eð�ij1ÞEð�ij2Þf
0

ij1
ðh0 þ biÞf

0

ij2
ðh0 þ biÞ�

¼0:

Similarly,

Eð/ij1ðh0 þ biÞÞ ¼E½Eð�ij1 f
0

ij1
ðh0 þ biÞjbiÞ� ¼ E½Eð�ij1Þf

0

ij1
ðh0 þ biÞ� ¼ 0:

Hence, we have, Eð/ij1ðh0 þ biÞ/ij2ðh0 þ biÞÞ ¼ Eð/ij1ðh0 þ biÞÞEð/ij2ðh0 þ biÞÞ:
To conclude that,
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Var
Xni

j¼1

/ijðh0 þ biÞ
 !

¼
Xni

j¼1

Varð/ijðh0 þ biÞÞ

¼
Xni

j¼1

Varð�ijf
0

ijðh0 þ biÞÞ

¼
Xni

j¼1

Eð�2
ijÞEðf

02
ij ðh0 þ biÞÞ

¼r2
Xni

j¼1

Eðf 02ij ðh0 þ biÞÞ � a2
ni
:

Accordingly, there exists a K[ 0 such that for any �[ 0, for any i,

P a�1
ni

Xni

j¼1

/ijðh0 þ biÞ
�����

�����[K

" #
\

�

2
:

h

We are now ready to prove Theorem 1

Proof of Theorem 1 Let

SniðtÞ :¼ a�1
ni

Xni

j¼1

/ijðh0 þ bi þ a�1
ni
tÞ � /ijðh0 þ biÞ

h i
� t

r2
: ð16Þ

Next we will show for any given constant K,

sup
jtj 
K

jSniðtÞj ! 0 a:s: ð17Þ

By a Taylor expansion, /ijðh0 þ bi þ a�1
ni
tÞ ¼ /ijðh0 þ biÞ þ /1ijðbi1Þa�1

ni
t; where

bi1 ¼ h0 þ bi þ ca�1
ni
t for some 0\c\1. Accordingly we obtain that,

sup
jtj 
K

jSniðtÞj ¼ sup
jtj 
K

a�1
ni

Xni

j¼1

/1ijðbi1Þa�1
ni
t � t

r2

�����

�����

¼K a�2
ni

sup
jtj 
K

Xni

j¼1

/1ijðbi1Þ �
1

r2

�����

�����:

By Lemma 1, a�2
ni

sup
jtj 
K

Pni
j¼1 /1ijðbi1Þ � 1

r2 ! 0 a:s: Thus, we have proved (17).

Next, by (16),

AniðtÞ :¼ a�1
ni
t
Xni

j¼1

/ijðh0 þ bi þ a�1
ni
tÞ ¼ tSniðtÞ þ a�1

ni
t
Xni

j¼1

/ijðh0 þ biÞ þ
t2

r2
:

Thus,
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inf
jtj¼K

AniðtÞ� � K sup
jtj¼K

jSniðtÞj � Ka�1
ni

Xni

j¼1

/ijðh0 þ biÞ
�����

�����þ
K2

r2
:

By lemma 3 there exists a K[ 0 such that for any �[ 0, for any i,

P a�1
ni

Xni

j¼1

/ijðh0 þ biÞ
�����

�����[K

" #
\

�

2
: ð18Þ

So that by (18) and (17) we may choose K large enough such that for sufficiently

large ni,

Pð inf
jtj¼K

AniðtÞ� 0Þ�Pð sup
jtj¼K

jSniðtÞj þ a�1
ni

Xni

j¼1

/ijðh0 þ biÞ
�����

�����

K

r2
Þ

¼1 � P sup
jtj¼K

jSniðtÞj þ a�1
ni

Xni

j¼1

/ijðh0 þ biÞ
�����

�����[
K

r2

 !

� 1 � P sup
jtj¼K

jSniðtÞj[
K

4r2
Þ � Pða�1

ni

Xni

j¼1

/ijðh0 þ biÞ
�����

�����[
K

4r2

 !

� 1 � �:

By the continuity of
Pni

j¼1 /ijðhÞ in h, we have, for sufficiently large ni, that there

exists a constant K such that the equation

Xni

j¼1

/ijðh0 þ bi þ a�1
ni
tÞ ¼ 0;

has a root t ¼ Tni in jtj 
K with probability larger than 1 � �. That is, we have

ĥni ¼ h0 þ bi þ a�1
ni Tni; where jTnij\K in probability. Thus, by Lemma 2,

ĥSTS � h0 ¼ 1

N

XN

i¼1

bi þ
1

N

XN

i¼1

a�1
ni Tni!

p
0:

h

For establishing the asymptotic normality result as stated in Theorem 2, we need

the following Lemma.

Lemma 4 Under the conditions of Assumptions A,

1ffiffiffiffi
N

p
XN

i¼1

a�2
ni

Xni

j¼1

/ijðh0 þ biÞ!
p

0:
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Proof of Lemma 4 Let Xni :¼ a�1
ni

Pni
j¼1 /ijðh0 þ biÞ; where, by proof of Theorem 1

we have EðXniÞ ¼ 0 and VarðXniÞ ¼ 1. Thus,

1ffiffiffiffi
N

p
XN

i¼1

a�2
ni

Xni

j¼1

/ijðh0 þ biÞ ¼
1ffiffiffiffi
N

p
XN

i¼1

a�1
ni
Xni:

Now, for any �[ 0,

Pð 1ffiffiffiffi
N

p
XN

i¼1

a�1
ni
Xni

�����

�����[ �Þ

PN

i¼1
1
a2
ni

N�2
! 0:

Accordingly, we have 1ffiffiffi
N

p
PN

i¼1 a
�2
ni

Pni
j¼1 /ijðh0 þ biÞ!

p
0; as required. h

Proof of Theorem 2 We first note that by Lemma 1 and (16),

ĥni � h0 � bi ¼ �a�2
ni r

2
Xni

j¼1

/ijðh0 þ biÞ � a�1
ni
r2SniðTniÞ:

Thus,

ĥSTS � h0 ¼ 1

N

XN

i¼1

bi �
r2

N

XN

i¼1

a�2
ni

Xni

j¼1

/ijðh0 þ biÞ �
r2

N

XN

i¼1

a�1
ni
SniðTniÞ:

Recall that
PN

i¼1 bi=N ! Eðb1Þ � 0. In view of (17) and since, lim
N;ni!1

N=a2
ni\1,

we have

r2

ffiffiffiffi
N

p
XN

i¼1

a�1
ni
SniðTniÞ ! 0 a:s::

Finally, from Lemma 4,

1ffiffiffiffi
N

p
XN

i¼1

a�2
ni

Xni

j¼1

/ijðh0 þ biÞ!
p

0:

Thus, it follows that k�1
ffiffiffiffi
N

p
ðĥSTS � h0Þ ) Nð0; 1Þ: h

7.2. Technical details and proofs, the recycled STS estimation case

In this section of the ‘‘Appendix’’ we provide the technical results needed for the

proofs of Theorems 3 and 4 on the recycled STS estimator, ĥ
	
RTS, in the hierarchical

nonlinear regression model. We begin with a re-statement of Lemma 2 from Boukai

and Zhang (2018) which is concerned with the general random weights under

Assumption W.
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Lemma 5 Let wn ¼ ðw1:n;w1:n; . . .;wn:nÞt be random weights that satisfy the

conditions of Assumption W. Then With Wi ¼ ðwi:n � 1Þ=sn; i ¼ 1. . .; n and �Wn :

¼ 1
n

Pn
i¼1 Wi we have, as n ! 1, that ðiÞ 1

n

Pn
i¼1 Wi!

p	

0 ðiiÞ 1
n

Pn
i¼1 W

2
i !
p	

1 and

hence ðiiiÞ 1
n

Pn
i¼1ðWi � �WnÞ2!p

	

1.

Lemma 6 Under the conditions of Assumption W, 1
n

Pn
i¼1 wi:n � 1!p

	

0; Further, let

un ¼ ðu1; u2; . . .; unÞt denote a vector of n i.i.d random variables that is independent

of wn with EðuiÞ ¼ 0, Eðu2
i Þ\1. Then, conditional on the given value of the un, we

have 1
n

Pn
i¼1 uiwi:n!

p	

0, as n ! 1.

Proof of Lemma 6 We first note that

E	ð1
n

Xn

i¼1

ðwi:n � 1ÞÞ2 ¼E	ðsn
n

Xn

i¼1

WiÞ2

¼ s2
n

n2

Xn

i¼1

E	ðW2
i Þ þ

s2
n

n2

X

i1 6¼i2

E	ðWi1Wi2Þ

¼ s2
n

n
þ s2

n

n2
nðn� 1ÞOð1

n
Þ ! 0; as n ! 1:

To conclude that, 1
n

Pn
i¼1 wi � 1!p

	

0, as n ! 1. As for the second assertion, we note

that since

1

n

Xn

i¼1

uiwi:n ¼
sn
n

Xn

i¼1

uiWi þ
1

n

Xn

i¼1

ui;

and since
Pn

i¼1 ui=n ! 0, as n ! 1, we may only consider the first term. To that

end, we note that

E	ðsn
n

Xn

i¼1

uiWiÞ2 ¼ s2
n

n2

Xn

i¼1

E	ðu2
i W

2
i Þ þ

s2
n

n2

X

i1 6¼i2

E	ðWi1Wi2ui1ui2Þ


 1 þ ðn� 1ÞOð1
n
Þ

� �
s2
n

n2

Xn

i¼1

u2
i ! 0;

as n ! 1. We therefore conclude that 1
n

Pn
i¼1 uiwi:n!

p	

0; as required. h

Lemma 7 Under the conditions of Assumptions Aand B, we have that

a�2
ni

Pni
j¼1 /

2
ijðĥniÞ!

p
1; for all i ¼ 1; 2; . . .;N.

Proof of Lemma 7: Since ĥni!
p
h0, we have
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a�2
ni

Xni

j¼1

/2
ijðĥniÞ ¼a�2

ni

Xni

j¼1

ðyij � fijðĥniÞÞ2f
02
ij ðĥniÞ

¼a�2
ni

Xni

j¼1

�2
ijf

02
ij ðĥniÞ þ a�2

ni

Xni

j¼1

ðfijðh0 þ biÞ � fijðĥniÞÞ2f
02
ij ðĥniÞ

þ2a�2
ni

Xni

j¼1

�ijðfijðh0 þ biÞ � fijðĥniÞÞf
02
ij ðĥniÞ

�B1 þ B2 þ B3:

Write,

B1 ¼ a�2
ni

Xni

j¼1

ð�2
ij � r2Þf 02ij ðĥniÞ þ a�2

ni
r2
Xni

j¼1

f
02
ij ðĥniÞ:

The first term in B1 converges to 0 by Assumption A (3), and Corollary A of Wu

(1981) while the second term in B1 converges to 1 by Assumption A(3). Hence

B1!
p

1. As for the second and third terms, B2 and B3, it follows by a direct appli-

cation of the Cauchy-Schwarz inequality ogether with Assumption B (1), that B2!
p

0

and B3!
p

0. Accordingly, it follows that a�2
ni

Pni
j¼1 /

2
ijðĥniÞ!

p
1; as required. h

Lemma 8 Under the conditions of Assumptions A and B, for all i,

E	�snia�2
ni

sup
jtj 
Ksni

Xni

j¼1

Wij/1ijðb	i1Þ
	2 ! 0

where b	i1 ¼ ĥni þ ca�1
ni
t for some 0\c\1, as ni ! 1.

Proof of Lemma 8 We first note that since by Theorem 1, we have ĥni � bi � h0!
p

0,

and since

jb	i1 � bi � h0j ¼jĥni � bi � h0 þ ca�1
ni
tj


 jĥni � bi � h0j þ
csniffiffiffiffi
ni

p
ffiffiffiffi
ni

p

ani

jtj
sni

;

it follows under Assumption B (3) that with jtj 
Ksni , we have b	i1 � bi � h0!
p

0:
Thus,
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E	½snia�2
ni

sup
jtj 
Ksni

Xni

j¼1

Wij/1ijðb	i1Þ�
2


 s2
ni
a�4
ni

sup
jtj 
Ksni

½
Xni

j¼1

/2
1ijðb	i1Þ þ Oð1

ni
Þ
X

j1 6¼j2

/1ij1ðb
	
i1Þ/1ij2ðb

	
i1Þ�


 s2
ni
a�4
ni

sup
jtj 
Ksni

½
Xni

j¼1

/2
1ijðb	i1Þ þ Oð1

ni
Þðni � 1Þ

Xni

j¼1

/2
1ijðb	i1Þ�

¼s2
ni
a�4
ni
½Oð1

ni
Þðni � 1Þ þ 1� sup

jtj 
Ksni

Xni

j¼1

/2
1ijðb	i1Þ:

In light of Assumption B (2–3) , and that s2
ni
=ni ! 0, we only need to show, in order

to complete the proof of Lemma 8, that

lim
ni!1

a�2
ni

sup
jtj 
Ksni

Xni

j¼1

/2
1ijðb	i1Þ\1:

Toward that end, we note that,

a�2
ni

sup
jtj 
Ksni

Xni

j¼1

/2
1ijðb	i1Þ

¼a�2
ni

sup
jtj 
Ksni

Xni

j¼1

ðf 02ij ðb	i1Þ � ðyij � fijðb	i1ÞÞf
00

ij ðb	i1ÞÞ
2


 a�2
ni

sup
jtj 
Ksni

Xni

j¼1

f
04
ij ðb	i1Þ þ a�2

ni
sup

jtj 
Ksni

Xni

j¼1

ðyij � fijðb	i1ÞÞ
2f

002
ij ðb	i1Þ

þ2a�2
ni

sup
jtj 
Ksni

Xni

j¼1

f
02
ij ðb	i1Þðyij � fijðb	i1ÞÞf

00

ij ðb	i1Þ
�����

�����

�I1 þ I2 þ I3:

It is straight forward to see that by Assumption B (1), lim
ni!1

I1\1, and that by

Cauchy-Schwarz inequality lim
ni!1

I3\1. Finally we write
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I2 ¼a�2
ni

sup
jtj 
Ksni

Xni

j¼1

ð�2
ij � r2Þf 002ij ðb	i1Þ þ a�2

ni
sup

jtj 
Ksni

Xni

j¼1

r2f
002
ij ðb	i1Þ

þa�2
ni

sup
jtj 
Ksni

Xni

j¼1

ðfijðh0 þ biÞ � fijðb	i1ÞÞ
2f

002
ij ðb	i1Þ

þ2a�2
ni

sup
jtj 
Ksni

Xni

j¼1

�ijðfijðh0 þ biÞ � fijðb	i1ÞÞf
002
ij ðb	i1Þ

�����

�����:

The first term converges to 0 in probability by Assumption B (2) and Corollary A of

Wu (1981). Then, according to Assumption A (2),

lim
ni!1

a�2
ni

sup
jtj 
Ksni

Xni

j¼1

r2f
002
ij ðb	i1Þ\1:

The third term in I2 converges to 0 in probability by an application of the Cauchy-

Schwarz inequality combined with Assumption B (1) and (2). Finally, the fourth

term in I2, converges to 0 in probability again, by an application of the Cauchy-

Schwarz inequality. Thus we have lim
ni!1

I2\1. Accordingly, we have established

that as ni ! 1,

E	 snia
�2
ni

sup
jtj 
Ksni

Xni

j¼1

Wij/1ijðb	i1Þ
" #2

! 0:

h

Lemma 9 Under the conditions of Assumptions A and B, there exists a K[ 0 such
that for any �[ 0,

P	 a�1
ni

Xni

j¼1

Wij/ijðĥniÞ
�����

�����[K

" #
\

�

2
:

Proof of Lemma 9 By Lemma 7,
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V	ða�1
ni

Xni

j¼1

Wij/ijðĥniÞÞ

¼a�2
ni

Xni

j¼1

/2
ijðĥniÞ þ a�2

ni Oð
1

ni
Þ
X

j1 6¼j2

/ij1ðĥniÞ/ij2ðĥniÞ

¼a�2
ni

Xni

j¼1

/2
ijðĥniÞ þ a�2

ni Oð
1

ni
Þð
Xni

j¼1

/ijðĥniÞÞ2 � a�2
ni Oð

1

ni
Þ
Xni

j¼1

/2
ijðĥniÞ


 a�2
ni ð1 � Oð1

ni
ÞÞ
Xni

j¼1

/2
ijðĥniÞ!

p
1:

Hence we obtain,

P	ð a�1
ni

Xni

j¼1

Wij/ijðĥniÞ
�����

�����[KÞ

V	ða�1

ni

Pni
j¼1 Wij/ijðĥniÞÞ
K2

!p 1

K2
:

Accordingly, there exists a K[ 0 such that for any �[ 0,

P	 a�1
ni

Xni

j¼1

Wij/ijðĥniÞ
�����

�����[K

" #
\

�

2
:

h

Proof of Theorem 3 Let

S	niðtÞ :¼ a�1
ni

Xni

j¼1

wij /ijðĥni þ a�1
ni
tÞ � /ijðĥniÞ

h i
� t

r2
: ð19Þ

First, we will show that for any given K[ 0,

E	 s�1
ni

sup
jtj 
Ksni

jS	niðtÞj
" #2

!p
	

0: ð20Þ

By a Taylor expansion we have that /ijðĥni þ a�1
ni
tÞ ¼ /ijðĥniÞ þ /1ijðb	i1Þa�1

ni
t;

where as before, b	i1 ¼ ĥni þ ca�1
ni
t for some 0\c\1. Accordingly we obtain,

s�1
ni

sup
jtj 
Ksni

jS	niðtÞj ¼s�1
ni

sup
jtj 
Ksni

a�1
ni

Xni

j¼1

wij/1ijðb	i1Þa�1
ni
t � t

r2

�����

�����

¼K a�2
ni

sup
jtj 
Ksni

Xni

j¼1

wij/1ijðb	i1Þ �
1

r2

�����

�����


K snia
�2
ni

sup
jtj 
Ksni

Xni

j¼1

Wij/1ijðb	i1Þ
�����

�����þ K a�2
ni

sup
jtj 
Ksni

Xni

j¼1

/1ijðb	i1Þ �
1

r2

�����

�����:

Further,
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E	 s�1
ni

sup
jtj 
Ksni

jS	niðtÞj
" #2


K2E	 snia
�2
ni

sup
jtj 
Ksni

Xni

j¼1

Wij/1ijðb	i1Þ
�����

�����

2

þK2E	 a�2
ni

sup
jtj 
Ksni

Xni

j¼1

/1ijðb	i1Þ �
1

r2

�����

�����

2

þK2E	 snia
�2
ni

sup
jtj 
Ksni

Xni

j¼1

Wij/1ijðb	i1Þ
�����

����� a
�2
ni

sup
jtj 
Ksni

Xni

j¼1

/1ijðb	i1Þ �
1

r2

�����

�����:

By Lemma 8 and Lemma 1, we have

E	 snia
�2
ni

sup
jtj 
Ksni

Xni

j¼1

Wij/1ijðb	i1Þ
�����

�����

2

! 0;

and

E	 a�2
ni

sup
jtj 
Ksni

Xni

j¼1

/1ijðb	i1Þ �
1

r2

�����

�����

2

! 0:

Thus, by an application of the Cauchy-Schwarz inequality we have proved (20).

Next, in light of (19) we define

A	
ni
ðtÞ :¼ a�1

ni
t
Xni

j¼1

wij/ijðĥni þ a�1
ni
tÞ ¼ tS	niðtÞ þ a�1

ni
t
Xni

j¼1

wij/ijðĥniÞ þ
t2

r2
:

Accordingly,

inf
jtj¼Ksni

A	
ni
ðtÞ� � Ksni sup

jtj¼Ksni

jS	niðtÞj � Ksnia
�1
ni

Xni

j¼1

wij/ijðĥniÞ
�����

�����þ
K2s2

ni

r2
:

Recall that by Lemma 9, there exists a K[ 0 such that for any �[ 0,

P	 a�1
ni

Xni

j¼1

Wij/ijðĥniÞ
�����

�����[K

" #
\

�

2
: ð21Þ

Accordingly, by (21) and (20) we may choose large enough K such that for suffi-

ciently large ni,
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P	 inf
jtj¼Ksni

AniðtÞ� 0

 !
�P	 sup

jtj¼Ksni

jS	niðtÞj þ a�1
ni

Xni

j¼1

wij/ijðĥniÞ
�����

�����

Ksni
r2

" #

¼P	 sup
jtj¼Ksni

jS	niðtÞj þ a�1
ni
sni
Xni

j¼1

Wij/ijðĥniÞ
�����

�����

Ksni
r2

" #

¼1 � P	 sup
jtj¼Ksni

jS	niðtÞj þ a�1
ni
sni
Xni

j¼1

Wij/ijðĥniÞ
�����

�����[
Ksni
r2

" #

� 1 � P	 s�1
ni

sup
jtj¼Ksni

jS	niðtÞj[
K

4r2

" #
� P	 a�1

ni

Xni

j¼1

Wij/ijðĥniÞ
�����

�����[
K

4r2

" #

� 1 � �:

From the continuity of
Pni

j¼1 /ijðhÞ in h, we have for sufficiently large ni, that there

exists a K such that the equation
Pni

j¼1 wij/ijðĥni þ a�1
ni
tÞ ¼ 0; has a root, t ¼ T	

ni in

jtj 
Ksni , with a probability larger than 1 � �. That is, we have ĥ
	
ni ¼ ĥni þ a�1

ni T
	
ni;

where js�1
ni
T	
nij\K in probability. Accordingly we may rewrite ĥ

	
RTS as,

ĥ
	
RTS ¼

1

N

XN

i¼1

uiĥni þ
1

N

XN

i¼1

uia
�1
ni T

	
ni

¼ 1

N

XN

i¼1

uiðh0 þ bi þ a�1
ni TniÞ þ

1

N

XN

i¼1

uia
�1
ni T

	
ni

¼ 1

N

XN

i¼1

uih0 þ
1

N

XN

i¼1

uibi þ
1

N

XN

i¼1

uia
�1
ni Tni þ

1

N

XN

i¼1

uia
�1
ni T

	
ni:

That is,

ĥ
	
RTS � h0 ¼ 1

N

XN

i¼1

ðui � 1Þh0 þ
1

N

XN

i¼1

uibi þ
1

N

XN

i¼1

uia
�1
ni Tni þ

1

N

XN

i¼1

uia
�1
ni T

	
ni:

Additionally, by Lemma 6, we have 1
N

PN
i¼1ðui � 1Þ!p

	

0; as well as, 1
N

PN
i¼1 uibi!

p	

0.

Further, we also have that

1

N

XN

i¼1

uia
�1
ni Tni ¼

1

N

XN

i¼1

ðui � 1Þa�1
ni Tni þ

1

N

XN

i¼1

a�1
ni Tni:

Now by Lemma 2 and the fact Tni ¼ Opð1Þ, we obtain, with Ui :¼ ðui � 1Þ=sN , that
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E	ð1

N

XN

i¼1

ðui � 1Þa�1
ni TniÞ

2 ¼E	ðsN
N

XN

i¼1

Uia
�1
ni TniÞ

2


 s2
N

N2

XN

i¼1

a�2
ni T

2
ni þ ðN � 1ÞOð1

N
Þ s

2
N

N2

XN

i¼1

a�2
ni T

2
ni!

p
0;

as well as, 1
N

PN
i¼1 a

�1
ni Tni!

p
0. That is, we have established that,

E	ð1
N

PN
i¼1 uia

�1
ni TniÞ

2!p 0. Accordingly we conclude, P	ðj 1
N

PN
i¼1 uia

�1
ni Tnij[ �Þ

¼ opð1Þ. Similarly,

1

N

XN

i¼1

uia
�1
ni T

	
ni ¼

1

N

XN

i¼1

ðui � 1Þa�1
ni T

	
ni þ

1

N

XN

i¼1

a�1
ni T

	
ni;

where by Lemma 2, Assumption B (3) and the fact s�1
ni
T	
ni ¼ Op	 ð1Þ, we obtain,

E	ð1

N

XN

i¼1

ðui � 1Þa�1
ni T

	
niÞ

2 ¼E	ðsN
N

XN

i¼1

Uia
�1
ni T

	
niÞ

2


 s2
N

N2

XN

i¼1

a�2
ni T

	2
ni þ ðN � 1ÞOð1

N
Þ s

2
N

N2

XN

i¼1

a�2
ni T

	2
ni

¼ð1 þ ðN � 1ÞOð1

N
ÞÞ s

2
N

N2

XN

i¼1

s2
ni

a2
ni

s�2
ni
T	2
ni !

p
0:

Finally, by Lemma 2,

1

N

XN

i¼1

a�1
ni T

	
ni ¼

1

N

XN

i¼1

sni
ani

s�1
ni
T	
ni ! 0:

Accordingly we also conclude that, P	ðj 1
N

PN
i¼1 uia

�1
ni T

	
nij[ �Þ ¼ opð1Þ. Hence, we

have proved that P	ðjĥ	RTS � h0j[ �Þ ¼ opð1Þ. h

For the related asymptotic normality results as stated in Theorem 4, we need the

following two Lemmas.

Lemma 10 Suppose that the conditions of Assumptions A and B hold. If
sni
sN

¼ oð ffiffiffiffi
ni

p Þ
then as ni ! 1 and N ! 1,

s�1
Nffiffiffiffi
N

p
XN

i¼1

uia
�2
ni

Xni

j¼1

wij/ijðĥniÞ!
p	

0:

Proof of Lemma 10 Let
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X	
ni :¼ s�1

ni
a�1
ni

Xni

j¼1

wij/ijðĥniÞ ¼ a�1
ni

Xni

j¼1

Wij/ijðĥniÞ:

Clearly E	ðX	
niÞ ¼ 0, and X	

ni
are independent for i in 1; 2; . . .;N. Further, by

Lemma 7 we have, as ni ! 1, that

E	ðX	2
ni Þ ¼E	ða�1

ni

Xni

j¼1

Wij/ijðĥniÞÞ2

¼a�2
ni

Xni

j¼1

/2
ijðĥniÞ þ Oð1

ni
Þ
X

j1 6¼j2

/ij1ðĥniÞ/ij2ðĥniÞ
" #

¼a�2
ni

Xni

j¼1

/2
ijðĥniÞ þ Oð1

ni
Þ
Xni

j¼1

/ijðĥniÞ
 !2

�Oð1

ni
Þ
Xni

j¼1

/2
ijðĥniÞ

2

4

3

5

¼ð1 � Oð1

ni
ÞÞa�2

ni

Xni

j¼1

/2
ijðĥniÞ ! 1:

Thus, with Ui ¼ ðui � 1Þ= ffiffiffiffiffi
sN

p
,

s�1
Nffiffiffiffi
N

p
XN

i¼1

uia
�2
ni

Xni

j¼1

wij/ijðĥniÞ ¼
s�1
Nffiffiffiffi
N

p
XN

i¼1

uia
�1
ni
sniX

	
ni

¼ 1ffiffiffiffi
N

p
XN

i¼1

Uia
�1
ni
sniX

	
ni þ

s�1
Nffiffiffiffi
N

p
XN

i¼1

a�1
ni
sniX

	
ni:

Since Ui and X	
ni are independent, we obtain,

E	ð 1ffiffiffiffi
N

p
XN

i¼1

Uia
�1
ni
sniX

	
niÞ

2 ¼ 1

N

XN

i¼1

E	ðU2
i a

�2
ni
s2
ni
X	2
ni Þ

þ
X

i1 6¼i2

E	ðUi1Ui2a
�1
ni1
a�1
ni2
sni1 sni2X

	
ni1
X	
ni2
Þ

¼ 1

N

XN

i¼1

a�2
ni
s2
ni
E	ðX	2

ni Þ ! 0:

Finally, since
sni
sN

¼ oð ffiffiffiffi
ni

p Þ, we also have,

E	ðs
�1
Nffiffiffiffi
N

p
XN

i¼1

a�1
ni
sniX

	
niÞ

2 ¼ s�2
N

N

XN

i¼1

a�2
ni
s2
ni
E	ðX	2

ni Þ

¼ 1

N

XN

i¼1

s2
ni

s2
N

a�2
ni
E	ðX	2

ni Þ ! 0:

Accordingly we obtain that,

123

Recycled two-stage estimation in nonlinear mixed... 581



s�1
Nffiffiffiffi
N

p
XN

i¼1

uia
�2
ni

Xni

j¼1

wij/ijðĥniÞ!
p	

0:

h

Lemma 11 Suppose that the conditions of Assumptions A and B hold. If
sni
sN

¼ oð ffiffiffiffi
ni

p Þ
then as ni ! 1 and N ! 1,

k�1s�1
N r2

ffiffiffiffi
N

p
XN

i¼1

uia
�1
ni
SniðT	

niÞ!
p	

0:

Proof of Lemma 11 We first write

k�1s�1
N r2

ffiffiffiffi
N

p
XN

i¼1

uia
�1
ni
SniðT	

niÞ ¼
k�1r2

ffiffiffiffi
N

p
XN

i¼1

Uia
�1
ni
SniðT	

niÞ þ
k�1s�1

N r2

ffiffiffiffi
N

p
XN

i¼1

a�1
ni
SniðT	

niÞ:

By Lemma 2, Assumption B (3) and the fact s�1
N SniðT	

niÞ!
p	

0,

k�1s�1
N r2

ffiffiffiffi
N

p
XN

i¼1

a�1
ni
SniðT	

niÞ!
p	

0:

Further, it can be seen that,

E	ð 1ffiffiffiffi
N

p
XN

i¼1

Uia
�1
ni SniðT	

niÞÞ
2 
 1

N
1 þ ðN � 1ÞOð1

N
Þ

� �XN

i¼1

a�2
ni E

	ðS2
ni
ðT	

niÞÞ ! 0:

Thus we have,

k�1s�1
N r2

ffiffiffiffi
N

p
XN

i¼1

uia
�1
ni
SniðT	

niÞ!
p	

0:

h

We conclude the ‘‘Appendix’’ with a proof of Theorem 4.

Proof of Theorem 4 By Theorem 3 and (19) we express,

ĥ
	
ni � ĥni ¼ �a�2

ni r
2
Xni

j¼1

wij/ijðĥniÞ � a�1
ni
r2SniðT	

niÞ:

Accordingly we have,
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ĥ
	
SRS � ĥSTS ¼

1

N

XN

i¼1

ðui � 1Þĥni �
r2

N

XN

i¼1

uia
�2
ni

Xni

j¼1

wij/ijðĥniÞ �
r2

N

XN

i¼1

uia
�1
ni
SniðT	

niÞ;

where jT	
nij\Ksni in probability. Further,

k�1s�1
N

ffiffiffiffi
N

p
ðĥ	RTS � ĥSTSÞ ¼

k�1s�1
Nffiffiffiffi
N

p
XN

i¼1

ðui � 1Þĥni

� k�1s�1
N r2

ffiffiffiffi
N

p
XN

i¼1

uia
�2
ni

Xni

j¼1

wij/ijðĥniÞ

� k�1s�1
N r2

ffiffiffiffi
N

p
XN

i¼1

uia
�1
ni
SniðT	

niÞ

�I1 þ I2 þ I3:

By Lemma 10, I2!
p	

0, and by Lemma 11, I3!
p	

0, and therefore it remains only to

consider I1. Now, observe that,

I1 :¼ k�1s�1
Nffiffiffiffi
N

p
XN

i¼1

ðui � 1Þĥni ¼
k�1

ffiffiffiffi
N

p
XN

i¼1

Uiðbi þ h0Þ þ
k�1

ffiffiffiffi
N

p
XN

i¼1

Uia
�1
ni
Tni:

By Lemma 2,

E	ð 1ffiffiffiffi
N

p
XN

i¼1

Uia
�1
ni TniÞ

2 
 1

N

XN

i¼1

a�2
ni T

2
ni þ ðN � 1ÞOð1

N
Þ 1

N

XN

i¼1

a�2
ni T

2
ni!

p
0:

Further by Lemma 5,

�UN :¼ 1

N

XN

i¼1

Ui �
1

N

XN

i¼1

ui � 1

sN
!p

	

0;

and clearly,
ffiffiffiffi
N

p
ð �bþ h0Þ ) Nðh0; k

2Þ. Accordingly we have, k�1

N

PN
i¼1ðbi � �bÞ2 !

1 a:s: as well as
ffiffiffiffi
N

p
�Uð �bþ h0Þ!

p	

0. Further, by Lemma 4.6 of Praestgaard and

Wellner (1993), we have that

k�1

ffiffiffiffi
N

p
XN

i¼1

Uiðbi þ h0Þ ) Nð0; 1Þ:

Thus we have

k�1s�1
Nffiffiffiffi
N

p
XN

i¼1

ðui � 1Þĥni ) Nð0; 1Þ:

Finally we conclude that as ni ! 1 and N ! 1,
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k�1s�1
N

ffiffiffiffi
N

p
ðĥ	RTS � ĥSTSÞ ) Nð0; 1Þ:

h
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