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Abstract

We consider a re-sampling scheme for estimation of the population parameters in
the mixed-effects nonlinear regression models of the type used, for example, in
clinical pharmacokinetics. We provide a two-stage estimation procedure which
resamples (or recycles), via random weightings, the various parameter’s estimates to
construct consistent estimates of their respective sampling distributions. In partic-
ular, we establish under rather general distribution-free assumptions, the asymptotic
normality and consistency of the standard two-stage estimates and of their resam-
pled version and demonstrate the applicability of our proposed resampling
methodology in a small simulation study. A detailed example based on real clinical
pharmacokinetic data is also provided.

Keywords Resampling - Random weights - Hierarchical nonlinear
models - Random effects
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1 Introduction

Hierarchical mixed-effects nonlinear regression models are widely used nowadays
to analyze complex data involving longitudinal or repeated measures which are
often arising in pharmacokinetics or from medical, biological and other similar
applications (see for example Davidian and Giltinan (2003)). In such studies, the
sampling units are often “subjects” drawn from the relevant population of interest
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whereby statistical inference, primarily for the estimation of various model
parameters, is being sought, primarily on certain characteristics of the underlying
population of interest. In that context, the hierarchical nonlinear model can be
considered as an extension of the ordinary nonlinear regression models constructed
to handle and ‘aggregate’ data obtained from several individuals. Modeling this type
of data usually involves a ‘functional’ relationship between at least one predictor
variable, x, and the measured response, y. As it often the case, the assumed
‘functional’ model between the response y and the predictor x, is based on some on
physical or mechanistic grounds and is usually nonlinear in its parameters. For
instance, in pharmacokinetics, a typical (compartmental) model of drug’s concen-
tration in the plasma is obtained from a set differential equations reflecting the
nonlinear time-dependency of the drug’s disposition in the body. Figure 1 below,
illustrates such plasma concentrations profiles for a group of N = 12 patients (the
sample), each observed at n = 11 time points following the administration of the
drug under study (the Theophylline study, see for example Boeckmann et al. (1994),
Davidian and Giltinan (1995) and also Sect. 5.3 for more details about this well-
known data set).

The primary aim of such pharmacokinetic studies with data as depicted in Fig. 1,
is to make, based on the N patients’ data, generalizations about the drug disposition
in the population of interest to which the group patients belongs. Therefore such
studies require a valid and reliable estimation procedure of the population’s
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Fig. 1 The Theophylline data—drug plasma concentrations (ng/mL) profiles of N = 12 patients recorded
over time (hr)
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“typicaland” variability values for each of the underlying pharmacokinetic
parameters (e.g.: the ‘typical’ rates of absorption, elimination, and clearance)-
usually reflecting the population (hierarchical) distribution of the relevant model’s
parameters. In that context, there are three basic types of ’typical’ population
pharmacokinetic parameters. Some are viewed as fixed-effect parameters which
quantify the population average kinetics of a drug; others represent inter-individual
random-effect parameters, which quantify the typical magnitude of inter-individual
variability in pharmacokinetic parameters and the intra-individual random-effect
parameter which quantifies the typical magnitude of the intra-individual variability
(the experimental error).

The basic hierarchical linear regression model for pharmacokinetics applications
was pioneered by Sheiner et al. (1972), which accounted for both types of
variations; of within and between subjects. The nonlinear case received widespread
attention in later developments. Lindstrom and Bates (1990) proposed a general
nonlinear mixed effects model for repeated measures data and proposed estimators
combining least squares estimators and maximum likelihood estimators (under
specific normality assumption). Vonesh and Carter (1992) discussed nonlinear
mixed effects model for unbalanced repeated measures. Additional related
references include: Mallet (1986), Davidian and Gallant (1993a); Davidian and
Giltinan (1993b, 1995).

In all, the standard approach for inference in hierarchical nonlinear models is
typically based on full distributional assumptions for both, the intra-individual and
inter-individual random components. The most commonly used assumption is that
both random components are considered to be normally distributed. However, this
can be a questionable assumption in many cases. Our main results in this work offer
a more generalized framework that does not hinge on the normality assumption of
the various random terms. In fact, the rigorous asymptotic results we obtained are
established only with minimal moments conditions on the random errors and
random effect components of the underlying model and thus could be construed as a
distribution-free approach.

One simple approach for estimation in such hierarchical *population’ models is
the so-called two-stage estimation method. At the first stage one estimates the
’individual-level’ parameters and then, at the second-stage, combines them in some
manner to obtain the ’population-level’ parameter estimates. However despite of its
simplicity, the main challenge to such a two-stage estimation approach is in
obtaining the sampling distributions and related properties (accuracy, precision,
consitency, etc..) of the final estimators, either in finite or in large sample settings.
For most part, the performance of these two-stage estimation methods have been
evaluated primarily via Monte-Carlo simulations— see related references including:
Sheiner and Beal (1981, 1982, 1983), Steimer et al. (1984), and Davidian and
Giltinan (1995, 2003). Hence, an alternate and a more data oriented evaluation
methodology should be considered in assesing this type of hierarchical models.
Using a variant of the random weighting technique, Bar-Lev and Boukai (2015)
proposed a re-sampling scheme, which is termed herein recycling, as a valuable and
valid alternative methodology for evaluation and comparison of the estimation
procedure. Zhang and Boukai (2019b) studied the validity and established the
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asymptotic consistency and asymptotic normality of the recycled estimates in a one-
layered nonlinear regression model.

In the present paper we extend Bar-Lev and Boukai (2015) approach to include
general random weights in the case of hierarchical nonlinear regression models with
minimal moments assumptions on the random error-terms/effects. In Sect. 2, we
present the basic framework for the hierarchical nonlinear regression models with
fixed and random effects. In Sect. 3, we describe the Standard Two-Stage (STS)
estimation procedure for the population parameters appropriate in this hierarchical
nonlinear regression settings. Along these lines, we introduce a corresponding re-
sampling scheme especially devised, based on general random weights, to obtain the
recycled version of the STS estimators. In Sect. 4, we establish the asymptotic
consistency and asymptotic normality of the STS estimators in such general settings.
As we mentioned before, our rigorous results do not depend on specifying the
distribution(s) of the the random component terms in the model (both errors and
effects), but rather, are obtained largely based on minimal moments assumptions. As
far as we know, these are the first provably valid asymptotic results concerning the
sampling distribution and implied sampling properties of the estimators obtained
using the STS procedure in the context of hierarchical nonlinear regression. In
addition, we demonstrate the applicability via the asymptotic consistency and
normality of the recycled version of the STS estimators. These results enable us to
use the sampling distribution of the recycled version of the STS estimators to
approximate the unknown sampling distribution of the actual STS estimators in a
general ’distribution-free’ framework. The results of extensive simulation studies
and a detailed application to the Theophylline data are provided in Sect. 5. The
proofs of our main results along with many other technical details are provided in
the “Appendix”.

2 The basic hierarchical (population) model

Consider a study involving a random sample of N individuals, where the nonlinear
regression model (as in Zhang and Boukai (2019b)) is assumed to hold for each of
the i-th individuals. That is, for each i, (i = 1,2,...,N), we have available the n;
(repeated) observations on the response variable in the form of

yi := (vit, iz, - - -,ym;)ta where
yi =f(Xy; 0;) + €5, j=1,...,m, (1)

and x;; is the j-th covariate for the i-th individual, which gives rise to the response,
yij forj=1,.. ,n;and i =1,...,N. Here, f(-) is a given nonlinear function and ¢;
denote some i.i.d. (0, ¢?) error-terms. That is, if we set €; := (i1, €2, . . -, em,)t, then
E(e;) = 0 and Var(e;) = Cov(ei€;t) = 61, . In the current context of hierarchical
modeling, the parameter vector 0; = (0;1,0p, . . ., 0,-,,)t € O C IR, (with p<mn;), can
vary from individual to individual, so that 6; is seen as the individual-specific
realization of 6. More specifically, it is assumed that, independent of the error terms,
€i,
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0; := 0y + b, (2)

where 0y := (0o1, 0p, - - -, 00,,)1, is a fixed population parameter, though unknown,
and b; = (b, b, - . ., b,-p)t is a p x 1 vector representing the random effects asso-
ciated with i-th individual. It is assumed that the random effects, by, b,, ..., by are
independent and identically distributed random vectors satisfying,

E(b;) =0 and Var(b;) = Cov(b;,b}) =D.

Here o represents the within individual variability and D describes the between
individuals variability. Thus, 01, 0,,...,0y are i.i.d. random vectors with

E(0,)=0 and Var(0;,) =D.

In the simple (i.e.: standard) hierarchical modeling it is often assumed that D is
some diagonal matrix of the form D = Diag(ﬁ,)é, .. .,/112,) or even simpler, as
D = /I, for some /. > 0, and that Var(e;) = ¢°1,, for each i = 1,...,N for some
ag>0.

In the more complex hierarchical modeling, more general structures of the within
individual variability Var(e;) = I'; (for some I';) and of the between individuals
variability, D, are possible. However, even in the simplest structure, the available
estimation methods for these model’s parameters, 0y, ¢> and D are typically highly
iterative in their nature and are based on the variations of the least squares
estimation. Similarly, even when considered under some specific distributional
assumptions, such as that both, the error terms €;, and the random effects b; are
normally distributed, so that, € ~N,,(0,6°1,) and b;~N,(0,D), for each
=i=1,...,N. In fact, many of the available results in the literature hinge on the
specific normality assumption and on the ability to effectively ’linearize’ the
regression function f(+) (see for example Bates and Watts (2007)) on order to obtain
some assessment of the resulting sampling distributions fo the parameters’
estimates. We point out that here we require no specific distributional assumptions
(such as normality, or otherwise) on either the intra-individual and the inter-
individual error terms, €; nor b;, respectively.

3 The two-stage estimation procedure

For each i =1,...,N, let f;(0) denote the n; x 1 vectors whose elements are
f(x;,0),j =1,...,n; then model (1) can be written more succinctly as
yi =f£i(0:) + € 3)

Accordingly, the STS estimation procedure can be described as follows:
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On Stage For eachi=1,...,N obtain 0,; as the minimizer of

nj

0i(0) := (v; — £:(0)(y; — £:(0) = D (s —f (x5, 0))°, ()

j=1
so as to form énl , énz, . énN, based on all the M := va n; available
observations. Next, estimate the within-individual variability compo-

nent, 62, by

| .
52 . . .
Oy =37 N ;:1 0i(0,;).

On Stage Estimate the *population’ parameter 6, by the average
II:

— STS := Z 0, (5)

Next, estimate Var(0 — STS) by S* — STS/N, where

N
S* — STS := Y (0, — 0 — STS)(6,,; — 6 — STS)".

i—1
Finally estimate the between-individual variability component, D, by
D = S> — STS — min (¥, 63,) Ly, (6)

where Xy := %Zi\; ):,l[(ﬂ;i), with E;l defined as,

ZVﬁ )Vf(0 (7)

and where Vv is the smallest root of the equation
|S? — STS — vEy| = 0, see Davidian and Giltinan (2003) for details.

Bar-Lev and Boukai (2015) provided a numerical study of this two-stage
estimation procedure in the context of a (hierarchical) pharmacokinetics modeling
under the normality assumption. They also proposed a corresponding two-stage re-
sampling scheme based on specific Dirichlet(I1) random weights. However, in this
paper we consider a more general framework for the random weights to be used.

As in Zhang and Boukai (2019b), we let for each n > 1, the random weights,

Wy = (Wi, Wan, - - w,,:n)t, be a vector of exchangeable nonnegative random
variables with E(w;,,) = 1 and Var(w;,) := r ,and let W; = Wy, = (Wi — 1) /1,
be the standardized version of w;,, i = 1,...,n. In addition we also assume:

Assumption W  The underlying distribution of the random weights w,, satisfies

1. For all n> 1, the random weights w, are independent of (1, €y, .. ., en)t;
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2. 1, =o(n), E(W;W;) = O(n"") and E(W}W}) — 1 for all i # j, E(W}') <oo for
all i.

Some examples of random weights, w, that satisfy the above conditions in

Assumption w are: the Multinomial weights,
w, ~ Multinomial(n,1/n,1/n,...,1/n), which correspond to the classical boot-
strap of Efron (1979) and the Dirichlet weights, w, =n xz, where
z, ~ Dirichlet(a, o, . ..,0), with o >0 which often refer to as the Bayesian

bootstrap (see Rubin (1981), and its variants as in Zheng and Tu (1988) and Lo
(1991)).

We will assume throughout this paper that all the random weights we use in the
sequel do satisfy Assumption W. With such random weights w, at hand, we define

in similarity to (3), the recycled version 0:*1 of 6, as the minimizer of the randomly
weighted least squares criterion. With such general random weights, the recycled
version of the STS estimation procedure described in (4-7) above is:

On Stage I For eachi = 1,...,N, independently generate random weights, w; =
" (wil,wiz,...,wm‘.)t that satisfy Assumption W with Var(wy;) = r,%i

and obtain 0; ; as the minimizer of

. . 2
Q; (0) = wilyy —f(x5,0)), (8)
=1
so as to form BAZI,OAZZ, .. .,OAZN.
On Stage Independent of Stage I *, generate random weights, u =
I (u1,uz, . . .,uy)" that satisfy Assumption W with Var(u;) = 3, and

obtained the recycled version of 0 — STS as:
~ 1L .
0 — RTS" := N; w0, (9)

The recycled version D* of D can be subsequently obtained as
described in Stage II above.

4 Consistency of the STS and the recycled estimation procedures

In this section we present some asymptotic results that establish and validate the
consistency and asymptotic normality of the STS estimator, § — STS (Theorems 1

and 2) and of its recycled version 0 — RTS* (Theorems 3 and 4), obtained using the
general random weights satisfying the premises of Assumption W. We establish
these results without the ’typical’ normality assumption on the within-individual
error terms, €;, nor on the between-individual random effects b;. However, for
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simplicity of the exposition, we state these results in the case of p = 1, so that
® € [R. With that in mind, we denote for each i =1,...,N,

fi(0) = f(x,0), for j=1,... n.

Accordingly, the least squares criterion in (1), becomes

n;

0ui(0) :==> (i = £(0))%,

J=1

and the LS estimator ém- is readily seen as the solution of

0,(0) =23 6,(60) =0 (10)
=
where,
$5(0) = — (v — 150 (0), ()

Withfi;-(ﬁ) = dfj(0)/d0, for j=1...,n; and for each i =1...,N. We writefl;(e) :
12 L . .

= df;;(0)/d0 and fbij((?) = f/iqbij(Q)/dH, etc. As in Zhang and Boukai (2019b), we

also assume that f;;(0) and f;; (0) exist for all 0 near 6. However, to account for the

inclusion of the (0, )uz) random effect term, b;, in the model, we also assume that,
Assumption A Foreachi=1,....N

L a2 =03 E(f# (00 +bi)) — 00 as n; — 00, ;

. o "
2. limsup a,”>7", sup f;*(0) <oo
ni—0oQ |07007b,‘| <o

3. a2 Y f;A(0) — 2 uniformly in [0 — 0o — b;| <.

n;

In the following two Theorems we establish, under the conditions of Assumption A,

the asymptotic consistency and normality of 0575. Their proofs and some related
technical results are given in Sect. 7.1.

Theorem 1 Suppose that Assumption A holds, then there exists a sequence éni of
solutions of (10) such that 0, = Oo + b; + a,; T,i, where |T,;| <K in probability, for
each i =1,2,...,N. Further, there exists a sequence ésrs as expressed in (5) such

that éSTS - HOLO, as n; — oo, fori =1,2,....N, and as N — oc.

Theorem 2 Suppose that Assumption A holds. If Nlim N/da? <oo, for all

,N1—00
i=1,2,...,N, then there exists a sequence @STS as expressed in (5) such that
0 — STS — 0y = }VZ?/:] bi — W — N, n;, where /Ny — N, niLO. Further,
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R ::@(é—STS—@O) = N(0,1)

asn; — oo, fori=1,2,...,N, and as N — oo.

For the recycled STS estimation procedure as described in Sect. 3, the recycled
version 0; of 0,,,~ is the minimizer of (8), or alternatively, the direct solution of

0;(0) :=2) " wi¢;(0) =0, (12)
j=1
where w; = (Wi, win, .. ., wm‘.)t are the randomly drawn weights (satisfying

Assumption W), for the ith individual, i = 1,2, ..., N. For establishing comparable
results to those given in Theorems 1 and 2 for the recycled version, 0" — RTS =
Y u,ﬁ;i/N of 0—STS= Y 0,i/N, with the random weights u=
(uy,uz, ...y uN)t as in Stage II *, we need the following additional assumptions.

Assumption B In addition to Assumption A, we assume that E(ej}) <oo and that
foreachi=1,2,...,N,

: —2 5 /4

I limsup a,*>", sup f;}(0)<oo,
ni—0o0 |0—00—D;| <0
. ) n; n

2. limsup a,”> 7", sup f;*(0) <oo,
ni—0o0 |0—00—D;| <o

3. Asn — oo,nia;i2 — ¢; >0.

In Theorems 3 and 4 below we establish, under the conditions of Assumptions A
and B, the asymptotic consistency and normality of the recycled estimator

0" — RTS. Their proofs and some related technical results are given in Sect. 7.2.

Theorem 3  Suppose that Assumptions A and B hold. Then there exists a sequence
é:l- as the solution of (12) such that é:l = éniJra;ilT;i , where |T)|<Kt,, in
probability, for i =1,....N. Further for any € >0, we have P*(|9Mk — RTS —

0o > €) = 0,(1), as n; — oo, fori =1,2,...,N, and as N — .
Theorem 4 Suppose that Assumptions A and B hold. If for each i=1,2,... N,
f_’N =o(\/n;), then we have é;;TS — 9ST5 = %Ef]zl (u; — l)ém- — lﬂ;,’ni, where

{—N’Vq//;.’mio as N,n; — oo. Additionally,

R
RN = E(QRTS — 057‘5) = N(O, 1),

asn; — oo, fori=1,2,...,N, and as N — oo.

The proofs of Theorems 3 and 4 and some related technical results are given in
Sect. 7.1. The following Corollary is an immediate consequence of the above
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results. It suggest that the sampling distribution of Osrs can be well approximated by

Ak
that of the recycled or re-sampled version of it, 0.

Corollary 1 For all t € R, let Hy(t) = P(Ry <t1), and Hy(t) = P*(R) <1),
denote the corresponding c.d.f of Ry and R, respectively. Then by Theorems 2
and 4,

sup|H, (1) — H,(t)] — O in probability.
t

5 Implementation and numerical results
5.1 lllustrating the STS estimation procedure

To illustrate the main results of Sect. 4 for the hierarchical nonlinear regression
model and the corresponding STS estimation procedure as described in (4-7) above,
we consider a typical compartmental modeling from pharmacokinetics. In the
standard two-compartment model, the relationship between the measure drug
concentration and the post-dosage time ¢, (following an intravenous administration),
can be described through the nonlinear function of the form:

fltn) = me ™™ +ne™™, (13)

with 5 := (1,,7,,13,7,) being a parameter representing the various kinetics rate
constants, such as the rate of elimination, rate of absorption, clearance, volume, etc.
Since these constants (i.e. parameters) must be positive, we re-parametrize the
model with 6 = log(n) (with 0, = log(n;), k = 1,2,3,4), so that with # > 0,

£(:0) = exp(01)exp{—exp(02)1} + exp(Os)exp{—exp(0)r},  (14)

with 0 = (04, 0,, 05, 04)t € IR*. For the simulation study we consider a situation in
which the (plasma) drug concentrations {y;;} of N individuals were measure at post-
dose times #; and are related as in model (1) via the nonlinear regression model,

vij =f(t;;0;) + €,

forj=1,...,n; and i = 1,...,N. Here, as in Sect. 4, ¢; are standard i.i.d. (0,0?)
random error terms and 6; = 6y + b;, where b; are independent identically dis-
tributed random effects terms, with mean 0 and unknown variance AZI4X4.
Accordingly, we have in all a total of 6 unknown parameters, namely, 6y =
(010, 020, 93(), 940)t, o and A.

Since ¢ and A represent variation within and between individuals (respectively),
different setting for these two lead to very different situations. For instance, Fig. 2a
below, depicts the situation for N =5 and n; = n = 15, each, when ¢ = 0.1 and
A =0.1, so that the variation between individuals are similar to variation within
individuals. Figure 2b depicts the situation with ¢ = 0.05,4 =1, so that the
variation between individuals is much larger than variation within individuals.
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Fig. 2 Illustrating drug plasma concentration vs time for 5 individuals (colored) for the cases: a ¢ =
0.1,2=0.1and bo=0.05.1=1

For the simulation, we set 8y = (1,0.8,—0.5,—1), and for each i, the times
t;j,j = 1,...,n were generated uniformly from [0, 8] interval. To allow for different
"distributions’, the error terms, ¢;, as well as the random effect terms, b;, were
generated either from the (a) Truncated Normal, (b) Normal and (¢) Laplace
distributions — all in consideration of Assumption A in our main results.

For each simulation run, with the Truncated Normal distribution for the error-

terms and the random effects terms, we calculated the value of 6° sTs as an estimator
of 6y and repeated this procedure M = 1000 times to calculate the corresponding
Mean Square Error (MSE) as followed,

1 M ~k 2
MSE = MZ ||05TS — 0|
k=1

The corresponding simulation results obtained for various values of N and n, are
presented in Table 1 for 6 =0.1,A=0.1 and ¢ = 0.05,4 = 1.

Table 1 The MSE of STS estimates for truncated Normal error-terms/effects with ¢ = 0.1, 4 = 0.1 and
d=0.05.=1.0

n g=0.1 1=0.1 d=0.05 1=1.0

N 15 30 50 100 200 15 30 50 100 200

15 0.8662 0.2289 0.0465 0.0114 0.0063 1.0001 0.6383 0.5688 0.4730 0.4602
30 0.5767 0.1071  0.0244  0.0057 0.0033  0.6997 0.3950 0.3315 0.3523 0.3263
50 0.4584 0.0893 0.0210 0.0038 0.0020 0.5568 0.2944 0.2594 0.2500 0.2347
100 03785 0.0692 0.0125 0.0022 0.0010 0.3982 0.2245 0.2021 0.1973  0.2200
200 03506 0.0590 0.0089 0.0014 0.0006 0.3492 0.1945 0.1748 0.1882 0.1958
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From Table 1, we see that with n and N both increasing, the MSE is decreasing,
as expected. However, when ¢ = 0.05, 4 = 1, n increasing for a fixed N, doesn’t
contribute to smaller MSE, which is consistent with our main result Theorem 1, the
STS estimate is not consistent with only n; — oo, (this effect is more obvious in the
case 4 is relatively large).

For simulating the results of Theorem 2, we choose 0, to be the unknown
parameter, and use the main result to construct 95% Confidence Interval as
AN )

GSTS + 1.96 —),

R J
Osrs — 1.96——
( STS \/N \/N

where

05 TS

\\Mz

The estimate for 4 used here is the simple STS estimate, not the corrected one as in
(6). M=1,000 replications of such simulations were executed to determine the
percentage of times the true value of the parameter estimates was contained in the
interval. We use ¢ = 0.5, 1 = 0.5 and observed Coverage Percentages are provided
in Table 2

From these results we can observe that with n and N both increase, the Coverage
Percentage approximate to 0.95. While when n is small (15), with N increase, the
Coverage Percentage is drifting farther away from the desired level of 0.95. This
finding is consistent with our main result, the convergence require the condition

lim N/a2,<oo, which in this case becomes lim la,21/02<oo, that is
N ,ni—o0 n—

th N/n<oo is required. Hence, when N is much large than n, this condition
n—00

does not hold. Although for this model, error terms that follow the normal
distribution do not satisfy Assumption A, we used normal error terms in the
simulations, and reported the resulting MSE and Coverage Percentage for 95%
confidence interval in Tables 2 and 3. From the results we can observe that with

Table 2 Coverage Percentage of the CI for the truncated Normal and Normal error-terms/effects with
d=05,2=05

n truncated Normal Normal

N 15 30 50 100 200 15 30 50 100 200

15 0.903 0934  0.933 0.931 0.931 0.918 0.927 0.939 0.951 0.922
30 0.896 0940 0940  0.943 0.944  0.901 0.939 0.944 0.931 0.932
50 0.883 0.941 0.959 0.944 0944  0.871 0.947 0.949 0950  0.944
100 0.828 0.948 0.946 0.941 0944  0.851 0950 0.934 0.949 0.948
200  0.759 0.943 0.932 0.935 0.949 0.740 0.949 0.944 0.951 0.945
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Table 3 The MSE of STS
estimates for Normal error-

terms/effects with N 15 30 50 100 200
oc=0.1,2=0.1
15 0.7718 0.1746 0.0788 0.0112 0.0062
30 0.5548 0.1185 0.0297 0.0061 0.0032
50 0.4772 0.0928 0.0216 0.0044 0.0020

100 0.3828 0.0742 0.0122 0.0023 0.0010
200 0.3384 0.0563 0.0089 0.0014 0.0006

n and N increasing, the MSE are smaller and Coverage Percentage are closer to
0.95.

We further considered simulations using the Laplace distributions for the error
terms and random effects terms. The complete results are reported in Zhang and
Boukai (2019b) and indicate of similar conclusions.

5.2 lllustrating the recycled STS estimation procedure

Here we provide the results of the simulation studies corresponding to Theorem 3

and 4 concerning the recycled STS estimator, é;TS. We considered the same
nonlinear (compartmental) model as given in the previous subsection, however
again with p = 1. Accordingly, we choose 0, to represent the model’s unknown
parameter and set, for the simulations, 8y = 0.8, for each i. As before, we generated
the values of {#;,j = 1,...,n} uniformly from the [0, 8] interval, and drew the error
terms, ¢€; and the random effects terms, b;, from the truncated Normal distribution.

For each simulation run, we calculated the value of éSTS as in Sect. 3, then with
B = 1,000, we generated B x N independent replications of the random weights

w; = (W1, Wi, ..., wi;) and B = 1,000 independent replications of the random
weight w = (uj,uz, . ..,uy), to obtain 05, Ot ..., 0. The correspond 95%

Confidence Intervals were formed. With ¢ =1, A =1 a total of M = 2000
replications of such simulations were executed to determine the percentage of times
the true value of the parameter estimates was contained in the interval and average
confidence interval length was calculated. The Coverage Percentages with average
confidence interval lengths are reported in Tables 4 and 5.

Table 4 demonstrates the results of the asymptotic results of Sect. 4. Table 5
provide Coverage Percentages with average confidence interval lengths, with
random weights set to be Multinomial, Dirichlet or Exponential distributed . From
these results we can see with N and n both increase, the Coverage Percentages
converges to 0.95 as expected (see Corollary 5). Also notice that Coverage
Percentages derived from the recycled STS are more accurate (closer to 0.95) than
the asymptotic result, especially when n and N are small.

We further consider the case when 7 is even smaller. Table 6 provides Coverage
Percentages and the average confidence interval length when n = 10 for the case of
the Multinomial, Dirichlet or Exponential distributed random weights. As can be
seen, in these cases, our procedure produces reasonable results. However, we must
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Table 4 Simulated Coverage

Percentage of the CI for the
truncated Normal error-

terms/effects with o = 1,A =1

15 30 50 100
15 0.755 0.880 0.905 0.920
0.999 1.004 1.009 1.038
30 0.590 0.860 0.930 0.955
0.730 0.722 0.729 0.740
50 0.48 0.815 0.885 0.955
0.566 0.576 0.568 0.573
100 0.170 0.680 0.895 0.935
0.397 0.403 0.410 0.406

Table 5 Coverage Percentage of the CI for the truncated Normal error-terms/effects with ¢ = 1,4 =1
and with Multinomial random weights

n Multinomial Dirichlet Exponential
N 15 30 50 100 15 30 50 100 15 30 50 100
15 0.860 0910 0930 0940 0.810 0.905 0.930 0.950 0.810 0.895 0.920 0.945
1222 1.191 1.179 1.170 1303 1.362 1.364 1407 1296 1351 1347 1.397
30 0.780 0915 0955 0960 0.695 0.900 0.955 0.965 0.680 0.890 0.960 0.965
0.881 0.855 0.851 0.832 0.936 0.965 0.993 1.001 0.935 0965 0.990 0.999
50 0.760 0.890 0.940 0.940 0.605 0.870 0.930 0.965 0.590 0.855 0.930 0.940
0.787 0.683 0.660 0.648 0.725 0.761 0.766 0.773 0.729 0.765 0.765 0.771
100 0.500 0.850 0.935 0945 0305 0.795 0.935 0.950 0.300 0.805 0.935 0.950
0.478 0.473 0471 0458 0.509 0.534 0.550 0.546 0.507 0.532 0.550 0.546
Table 6 Coverage Percentage of
the CI for the truncated Normal n=10
error-terms/effects with o = N Multinomial Dirichlet Exponential
0.05, 2 = 1 and with different
choices of random weights 15 0.880 0.875 0.865
0.899 1.114 1.121
100 0.705 0.705 0.685
0.361 0.438 0.435

point out that the effects of a small sample size on our procedure depend also on the
dimensionality, p, of the parameter 6, on the “nature”of the non-linear regression
function f;(-) and its gradients, and on the particular minimization (optimization)
algorithm used on Q;(0) in (4) and on Q;(0) in (8). Clearly, further numerical
experimentation could be instructive in these regards.
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5.3 An example-thetheophylline data

We illustrate our proposed recycled two-stage estimation procedure with the
Theophylline data set (which is widely available as Theoph under the R package,
R Core Team (2020)). This well-known data set provides the concentration-time
profiles (see Fig. 1) as were obtained in the pharmacokinetic study of the anti-
asthmatic agent Theophylline, and reported by Boeckmann et al. (1994) and
subsequently analyzed by Davidian and Giltinan (1995) (NLME), Kurada and Chen
(2018) (NLMIXED) as well as in Adeniyi et al. (2018). In this experiment, the drug
was administered orally to N = 12 subjects, and serum concentrations were
measured at 11 time points per subject over the subsequent 25 hours. However, as in
Davidian and Giltinan (1995), we also excluded here the zero time point from the
analysis to simplify the modeling of the within-subject mean variance relationship.

For the analysis, a one-compartment version of the model in (13) in which
1, = —n3 was fitted to the data. The resulting pharmacokineticmodel is described
by the three parameters 0; = (K, ,K.., Cl)', (with K,, > K.,), representing the
absorption rate (1/hr), the elimination rate (1/hr) and fundamental clearance (L/hr),
per each of the N individual under study. Often however, the model parametrization
is given in term of the compartmental volume, V, where V = CI/K, (L). Thus, the

mean concentration at time #;, (i=1,...,N,j=1,...,n), following a single dose
of size dy administrated at time #;1, by the i-th individual, (i = 1,...,N), is,
dOKa'Kei
tii; 0)=———— —K, t;;) — —K, ti)). 1
f( by ) Cll‘(Ka[ _Kel) (exp( i j) exp( i ])) ( 5)

The statistical model accounts for the errors intervening between true and the
observed drug concentrations, and with the inter-individual variability in the
model’s parameters. To deal with the first, it is assumed that for each i = 1, ..., N,

yij = f(t; 0;) + €

where yj; is the observed j” drug concentration of the i individual, obtained at time
t;j, and where ¢; are some i.i.d random error terms with mean O and variance af.
Here o2 is assumed to be the only intra-individual random effect parameter of
concern. Similarly, for modeling the inter-individual variability in the parameters,
we assume that f; := log(0;) = (IK,, IK,,ICI)’, represent some random effects with
E(B;) = By = (IKao,K.0,1Cly)" and where Var(B;) =D = diag(ajy , 07 , 0icy), for
eachi = 1,...,N. Accordingly, 0y = exp(By) = (K.0, Kao, Cly)' represents the fixed-
effect population parameter. In all, there are seven population parameters, namely:
Ka0,Ke0, Cly and o , 0% ,0¢; and o.. Because of the logarithmic scale, all these
standard deviations are dimensionless quantities and they may be regarded as
approximate coefficients of variation. We emphasize that, unlike the other cited
approaches (namely NLME and NLMIXED), our modeling here does not depend on
any specific distributional assumption (i.e. normality) for the random effects, ; nor
for the error terms ¢;.
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In fact, after standardization to a unit dose, (so that dy = 1 in (15)) the data on
each individual may be viewed as consisting of 10 observations. Using the
Dirichlet(1) weights in B = 1000 iterations, we obtained the recycled two-stage

estimates 0 — RTS* of 0y = E(0;) as well as the STS estimates, 6 — STS for these
data. The results are presented in Table 7, which also provides the estimates for the
variance components in D and in D*, as well as the 95% confidence intervals for the
fixed parameters Ko, K o and Cly as where obtained directly from the corresponding
recycled sampling distributions. For sake of comparison, we also provide in Table 8
the results of NLME estimation procedure as in Lindstrom and Bates (1990) (using
nlme R package) and those obtained from the NLMIXED estimation procedure as
as were reported by Kurada and Chen (2018). We point out again that, while the
results in Tables 7 and 8 are largely similar, the estimation procedures utilized in
Table 8 (NLME and NLMIXED) hinge on the normality assumptions for the
random effect terms (both within and between). In contrast, the result presented in
Table 7 using our recycled two-stage estimation procedure are entirely free of such
specific distributional assumptions.

6 Summary and discussion

We considered the general random weights approach as a viable re-sampling
technique in the case of hierarchical nonlinear regression models involving fixed
and random effects. We revisit the Standard Two-Stage (STS) estimation procedure
for the population parameters, say 6y, appropriate in this hierarchical nonlinear
regression settings. While intuitively appealing, this STS approach was studied in
the literature primarily via simulations and with an underlying normality
assumption. Here, we establish at first the asymptotic consistency and the
asymptotic normality of the STS estimator, 0 — STS , in the more general context.
Our rigorous results, as stated in Theorems 1 and 2, do not hinge on any specific
distributional assumptions (e.g., normality) on the random component terms in the
model (both errors-terms and random effects), but rather, they are obtained largely

Table 7 The Recycled STS estimation from the PK-data on Theophylline

Parameter

K, (hrh) K, (hr'h) Cl (L/hr) o>
6 — STS 1.610 0.088 0.040 0.022
6 — RTS* 1.639 0.089 0.040 0.017
D;; 0.588 0.039 0.082
D; 0.649 0.051 0.085
95%CI (1.070, 2.513) (0.078,0.099 ) (0.034, 0.046)
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Table 8 Estimation Result of
the PK-data on Theophylline
using NLME and NLMIXED K, (hr 1) K, (hr") Cl (L/hr)
(published) procedures

Parameter

NLMIXED est. 1.617 0.086 0.040
95%CI (1.038,2.519)  (0.076,0.096) (0.035, 0.045)
NLME est. 1.571 0.088 0.040
95%CI (1.069,2.306)  (0.078,0.099)  (0.034,0.047)

based on minimal moments assumptions. Next, we presented the recycled (or the re-

sampled) version, é—RTS*, of the STS estimates, 0— STS, in this hierarchical
nonlinear regression context and established its applicability under general random
weighting scheme (Assumption W). In Theorems 3 and 4 we established, the
consistency and asymptotic normality of the corresponding re-sampled estimator,
0 — RTS*. These results enable us to use the recycled sampling distribution

0 — RTS", as is generated by the re-sampling procedure using the random weights
technique to approximate the actual, though unknown, sampling distribution of the

STS estimator, 8 — STS (see Corollary 5). Thereby allowing us to validly assess the

sampling properties of 0 — STS, such as precision and coverage probabilities based
on the re-sampled (via the random weights) data. Toward that end, we augmented
our rigorous theoretical results with a detailed simulation study (covering various

sample sizes) illustrating the properties of the estimators, 0 — STS and 0 — RTS*
under various scenarios involving normal as well as non-normal error terms and
utilizing different choices of random weights (Multinomial, Dirichlet and
Exponential). Clearly, the effects of the choice of random weights on the numeral
minimization (optimization) procedures used by various software, will depend also
on the non-linear regression function, its curvatures and the number of data points
used. However, this choice could be instructed by experimentation. Additionally,
we provided a detailed application of our two-stage recycled estimation procedure
to the data of the Theophylline study, and provided a comparison with the
(normality-based) estimation procedures, NLME and NLMIXED. This real-data
example, with N = 12 and n = 10, also illustrates the applicability of our approach
even to data involving small sample sizes. In any case, we believe that the gamut of
results presented here, both theoretical and numerical, are indicative of the potential
and promise of the random weighting recycled (re-sampled) STS estimation
procedure method to other more complex hierarchical non-linear regression models
involving more structured mixed-effects parameters. For instance, extension to
cases in which (2) is generalized to 0; = A;0y + B;b;, where: A;, B; are some
design matrices. However, for sake of scope and space, this and other related issues
will have to be pursued elsewhere.
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7. Appendix7.1. Technical details and proofs, the STS estimation case

In this section of the “Appendix” we provide the technical results needed for the

proofs of Theorems 1 and 2 on the STS estimator éSTS in the hierarchical nonlinear

regression model. In the sequel, we let ¢,;(0) := d);j(H) (see (11)), and set K to

denote a generic constant. Recall that (see Assumption A(1)),

ni
ay =0’ ZE(}‘I;.Z(()O +b;)) > 00 as n — oo.
=1

Lemma 1 Under the conditions of Assumption A, for some K > 0

2 sup Z(ﬁnj i) *—>0 a.s.,

\t|<K
where b;; := by, (t) is a sequence such that sup |by —b; — 0o — 0, a.s., as
lf| <K
n; — o0.
Proof of Lemma 1 Since ¢,;(0) := (;SU(H) we have
b15(0) = £;7(0) — ey (0) — (f(00 + bi) — £5(0))f; (0).
Accordingly, we first note that,
n’ ! 1
2 2
sup Y ¢y;(ban) a,”sup » fi7(bin) ——
qu v |r\s1<,; ’ a?
+a,” sup €l ;(b,l)
"<k ,221 ’
a, ‘S‘up Z(fu 0o + bi) — fii(bir) )fy; (bi)|-
1<K
By Assumption A (3), we have a, 2 sup ZJ | U( i) —%—0 as., and by

|t\ <K
Assumption A (2) and Corollary A in Wu (1981), we also have,

n;

D cify(ba)

=1

% sup —0 as..

|t\<K

Finally, the last term converge to 0 a.s. by Assumption A, an application of Cauchy-

Schwarz inequality and Corollary A in Wu (1981). Thus we have
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2 sup Z(,bl,j i) —>O a.s..

\z|<K
O

Lemma 2 Let X; be a sequence of random variables bounded in probability and let
Y; be a sequence of random variables which satisfies %Z?:l |Y:| — 0 in probability.

Then 1577 | X,Y,550.

Proof of Lemma 2 Since X; is bounded in probability, for any € > 0, there is K, such
that with sufficient large i, P(|X;| > K.) <e. Then

lim P |—ZXY\ > €) —hm

n—oo

1 n
(|;me| > €, |Xi| <K.)
i=1

+ lim

n—oo

1 n
P(|EZX,»Y,»| > €, |X;| > K,)
i=1

1 " Xi €
< 1 _ ty. _ .
< lim P(C E IK Y| > Ke,\Xz|<Ke)+6

< lim P(= Z|Y\> \X\<K)+ =,

n—oo

from which the desired result follows. [

Lemma 3 There exists a K > 0 such that for any € > 0, for any i,

> K| <

a,’ Z ¢;(00 + bi)
=

Proof of Lemma 3 Since ¢; and b; are independent, for each i = 1,...,N, we have
that for any j; # j,

E(y, (00 + bi) by, (00 + bi)) =E[E(dy;, (00 + bi)by, (00 + bi)|bi)]
=E[E(egy 5, (00 + bi)fy, (00 + bi) b))
=E[E(e5, )E(e5 )f, (00 + bi)fy, (00 + by)]
=0.

Similarly,
E(,(00 + bi)) =E[E ey fy;, (00 + bi)|bi)] = E[E(ey;, )fy;, (00 + bi)] = 0.

Hence, we have, E(¢;; (0o + b;)dy, (00 + bi)) = E(y, (0o + bi))E(¢hy;, (00 + b;)).
To conclude that,
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Var (i: 300 + bi)> B i Var(;(00 + b))
= Z Var(eyﬁ;(@o +bi))
=
_ ig(efj)E(ﬁf(ao + b))
*U2ZE(fzj 00 + b; )) =a

Accordingly, there exists a K > 0 such that for any € > 0, for any i

-1 1 €
P[anl ;¢U(00+b,) > K <§
O
We are now ready to prove Theorem 1
Proof of Theorem 1 Let
R - t
S (1) = an,] Z {%(90 +b;i + anilf) — ¢;(00 + bi)} - (16)
= 7
Next we will show for any given constant K,
sup 1Sy, (1) — 0 a.s. (17)
[f| <K
where

By a Taylor expansion, ¢;(00 + b; + a,'1) = ¢,;(00 + bi) + ¢y;(bin)a,'t,
i1 = 0o+ b; + can’ilt for some 0 <c< 1. Accordingly we obtain that,

Z¢1U 11 tz

sup |S,,(1)| = sup |a
[f| <K

By Lemma 1, a,” sup > Gy(bin) — L — 0 a.s. Thus, we have proved (17).

i<k

Next, by (16),
2

nj

A (1) = anjltz ¢(00 + b +a,'t) = 1S, (1) + a;‘tz ¢;i(00 + bi) +
=

J=1

Thus,
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n;

Z $4(00 + bi)| +

J=1

2
inf A, (1) > — Ksup|S,, (1) — Ka,'

—.
lt|=K |t|=K o

By lemma 3 there exists a K > 0 such that for any ¢ > 0, for any i,

|

So that by (18) and (17) we may choose K large enough such that for sufficiently
large n;,

€
>K| <=

2 (18)

=1

K
P(inf A, (1) 2 0) > P(sup S, (1)| + a, qu,, 0o + bi)| < =)
lt|=K |t|=K = o
K
:1—P<sup|S,,‘( |+a Z(i)u Oo + bi)| > 2)
|f]=K j= o
K I K
>1-— . —) - . ; —
>1 P(lfgg(lsn,a)l > 102~ Pla, ;¢I,(00+bl> > 462>

>1—e

By the continuity of Z;’;l $;(0) in 0, we have, for sufficiently large n;, that there
exists a constant K such that the equation

> (00 +bi+a,'t) =0,
j=1

has a root t = T,; in |¢| <K with probability larger than 1 — e. That is, we have
éni =0y + b; + a;'T,;, where |T,;| <K in probability. Thus, by Lemma 2,

Oszs — 0p = Zb +—= Za*IT,,,—>O

O

For establishing the asymptotic normality result as stated in Theorem 2, we need
the following Lemma.

Lemma 4 Under the conditions of Assumptions A,

%Z 2HZ’¢U (00 + by) 5
i=1
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Proof of Lemma 4 Let X,; == a,' Z;l;l qbij(t% + b;), where, by proof of Theorem 1
we have E(X,;) = 0 and Var(X, ) = 1. Thus,

\/“Z Z¢U (6o + bi) \/“Za_lx'”

Now, for any € > 0,

N 1
1 & 1 Dt
(\/TV,;Q"" Xu| > < = = 0.
Accordingly, we have \/—Z, | Gy ZJ 1 $4i(00 + bi )20, as required. O

Proof of Theorem 2 We first note that by Lemma 1 and (16),

0, — 00 — b = —a,d” > ¢y(00+bi) — a,' S, (Tw).
=

Thus,

N 2 N
éSTS—QOZ%Zbi Za722¢,j (6o + by) —%Za’llS
i1

i=1

Recall that " | b;/N — E(b;) = 0. In view of (17) and since, Nli.m N/a* <o
WJ1—00

we have

N
g - S, T,.) — 0 as..

3\

Finally, from Lemma 4,

ni

LSSt
Thus, it follows that A~'v/N(0szs — 0p) = N(0,1). O

7.2. Technical details and proofs, the recycled STS estimation case

In this section of the “Appendix” we provide the technical results needed for the

proofs of Theorems 3 and 4 on the recycled STS estimator, é;TS, in the hierarchical
nonlinear regression model. We begin with a re-statement of Lemma 2 from Boukai
and Zhang (2018) which is concerned with the general random weights under
Assumption W.
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Lemma 5 Let w, = (wlzn,wlzn,...,wm)t be random weights that satisfy the
conditions of Assumption W. Then With W; = (Wi, — 1)/t,, i=1....,n and W,, :

=15 Wi we have, as n — oo, that (i) 1371, Wip—*>0 (i) iy, Wizil and
hence (iii) 150 (W; — W,)* 1.

.. . r
Lemma 6 Under the conditions of Assumption W, %Z?:l Wi — 1—=0, Further, let

w, = (uy,uy, .. )t denote a vector of n i.i.d random variables that is independent
of Wy, with E(u,) = 0, E(u}) <oo. Then, conditional on the given value of the u,, we

have 15" uiwi;n—>0, as n — oo.
n i=1

Proof of Lemma 6 We first note that

n

F YO~ 1)’ =E<—Z %
i=1

11#12
2 2 1
:;n+;;n(n _ 1)0(;) — 0, as n— oo.

P .
To conclude that, 1 3% | w; — 10, as n — co. As for the second assertion, we note
that since

1< Tn o I
- E UiWin = — E uiW; +— E uj,
i=1 i=1 i=1

and since Zl": L Ui /n — 0, as n — oo, we may only consider the first term. To that
end, we note that

*(%Zu,wi) ZE 2W?) + ZE Wi, Wi ti, s, )
i=1

1I7é12

[l—l—(n—l }HZZu

as n — oo. We therefore conclude that }—12?:1 I/t,‘W,‘;np—>0, as required. O
Lemma 7 Under the conditions of Assumptions Aand B, we have that
a2 S ¢5(0,)>1, for all i = 1,2,..,N.

ni

Proof of Lemma 7: Since éniiﬁo, we have
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”Z%é *Zl]f,é V2(0,0)

‘ZZ@ 7 (0n) ‘ZZ% (00 + bi) — f(0)) 7 (0i)

2a,” Z eii(i(00 + bi) — f(00))f;? (0ni)
=
=B, + B, + Bs3.

Write,

n;

_ZZE - U ém —l—a_zazzfu 9

The first term in B; converges to 0 by Assumption A (3), and Corollary A of Wu
(1981) while the second term in B; converges to 1 by Assumption A(3). Hence

BILI. As for the second and third terms, B, and Bs, it follows by a direct appli-

cation of the Cauchy-Schwarz inequality ogether with Assumption B (1), that B, 20

and B320. Accordingly, it follows that a;iz ;’;1 qbizj((;,,,-)Ll, as required. O

Lemma 8 Under the conditions of Assumptions A and B, for all i,

E” [T”/ n2 sup ZWl/d)llj b?l)] —0

[t < Ktw; j=1
where b} = 0,; + ca, 't for some 0 <c <1, as n; — co.

Proof of Lemma 8 We first note that since by Theorem 1, we have é,,i
and since

|63, — bi — Oo| =[0,; — b — 0 + ca, 1]

~ CTy. A/ |1
<|[0ni — bi — 0o +_n‘—lu7
VI Ap; Ty,

it follows under Assumption B (3) that with |¢| < Kt,,, we have b},
Thus,
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E* [Tn,anz sup ZWUd)llj b?l)]

7] <Kty j=1

< Tﬁ,-an_,-4 sup Z ¢llj bjl + 0

[t <Kt =

n;

Sfianj-él sup Z¢ly bjl + 0

[t| <Kt =
2 —ary ]
=Ty, dn, [0(_) (l’l,‘ - 1)
i N n;

|t| <Kty j=1

Z b1y, (D) D1, (B7)]

17

ni —1 Z(l’)llj bjl

sup Z ¢ll] b?l

In light of Assumption B (2-3) , and that ri’, /n; — 0, we only need to show, in order
to complete the proof of Lemma 8, that

Toward that end, we note that,

n;

a;z sup Z¢llj bjl

[t <Kty j=

_ 2 § :

_an- sup (flj 11
f] < K1y, j

<a? su f (b%)

— “n; p ij 1l
‘l|<KT»x/ Jj=

+2a;2 sup Zf;j b:Kl Yij fJ( ll))f;j(bjl)
1

[t] < Ky, | =

=h +5L+ 5.

It is straight forward to see that by Assumption B (1),

yl]

'li

— B3V (B7))?

a’? sup

Ifl < K,

ni

=1

Z (vij

—fi(B3))f (b))

lim I} <oo, and that by
ni—00

Cauchy-Schwarz inequality lim I3 <oo. Finally we write

n;—o0
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y5) :a;,.z sup Z(Gi—az)fﬁz(b*) “;2 sup Z f,, (b))
|| <Ky =1 [t < Ktu, j=1
bap? s 3200+ b) (037
1< T j=1

n;

+2a,” sup |y eii(f(0o + bi) — f(b))f (7)) |

|t < Kt | j=1

The first term converges to 0 in probability by Assumption B (2) and Corollary A of
Wu (1981). Then, according to Assumption A (2),

lim a, 2 sup Z ozf;z(bfl) <00

n;i—00 M <K, =

The third term in I, converges to 0 in probability by an application of the Cauchy-
Schwarz inequality combined with Assumption B (1) and (2). Finally, the fourth
term in I, converges to O in probability again, by an application of the Cauchy-
Schwarz inequality. Thus we have lim I, <oco. Accordingly, we have established

n—00

that as n; — oo,
ni 2
E Tnla;2 sup Z led)lz] bjl) — 0.
‘t|<K1’,l' j=1
O

Lemma 9 Under the conditions of Assumptions A and B, there exists a K > 0 such
that for any € > 0,

N

=1

Proof of Lemma 9 By Lemma 7,
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m ZWU¢IJ
1 R R
Ay Zd)lj m +a_20( )Z¢yl(9"i)¢yz(0”i)
Z¢> )+ a2 00D 50 — 4700 > (6)

<a?(1- 0" G021,

1

Hence we obtain,

m Z WlJ ¢U

Accordingly, there exists a K > 0 such that for any € > 0,

V(a,' 27;1 Wijd)ij(éni)) r, 1
K< K2 <

o A €
ay! Z Wiihij (O 3
j=1
O
Proof of Theorem 3 Let
* n; R ¢
]ZWU[ i (Oni +a ') — ¢ij(0ni)} - (19)
First, we will show that for any given K > 0,
2
E* |7, ! sup |S% ()] 2,0. (20)
D<K,

By a Taylor expansion we have that (jb[j(ém-—i—a;i't) = (]5,7(9"1') + ¢1(bj)ay 't

where as before, b}, = 0,; + ca,j[lt for some 0 <c< 1. Accordingly we obtain,
t
—1 * —1 —1
T sup |S% (1) =1, sup |a, wiihy;i(biy) —
" <Ko, " <K, Z A Rz

1
an, sup § WU¢11/ 11 )
J=

2
[t <Kty 0

=K

<K +K|a

,2 sup Z(i)llj b)) —

[t] < Kty =1

-2
T"ia sup ZWU(rbll] zl)

[t <K j=1

Further,
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2

2
E T;l sup |S*()|:| SKZE* T":a;z sup Zled)ll/ 11)

|t <Ky, [t <Kty 5=

2
+K’E* a;z sup Z¢IU 1)

[t <Kz, G= O'

+K%E* |1, a;z sup ZW,jd),,j )

|t| <Kt i j=

-2
a,” sup E thj )

[t <Kty j=

By Lemma 8 and Lemma 1, we have

2
* -2
E*|t,a,” sup E Wii¢y;:(biy)| — 0,
|t < K1y, j=
and
2
| —2
E*|a,” sup E ¢1U 1) ——=| — 0.
[t <K, =1

Thus, by an application of the Cauchy-Schwarz inequality we have proved (20).
Next, in light of (19) we define

2

by
AL (1) =a, tzwli¢u 0,,,—|—a 1) =18, (t) +a, tZw,]quO

Accordingly,
. K2 .
inf A* > — K1y, sup [S, (1)| — Ktpa, wii;:(0i) .
o AL e 15,0 Z iy —

Recall that by Lemma 9, there exists a K > 0 such that for any € > 0,
n;

=1

Accordingly, by (21) and (20) we may choose large enough K such that for suffi-
ciently large n;,

<§. (21)
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K‘L’n
P* < ‘mf Ay, (1) >0> >P*| sup |S |+a Zw,/qblj
1=K |t|=K7,
* ok — < A Kt i
=P sup |Sm(t)| —|—ani1‘[m ZW’J¢U(6 ) S —2’1
|’|:KTU,’ j=1 o
i n Kt
=1—P"| sup IS, (1) +a,7l_lrn,. ZW,«jqﬁl-j(é) ) 2"’
[f|=K7n, =1 o
K i A K
* | —1 | ,—1
>1-P |:rnl e 8, (01> 5| —P [am ;W,,-(pij(e )| > 12

>1—e

From the continuity of Z ~1 ¢;(0) in 0, we have for sufficiently large n;, that there
exists a K such that the equation 7" wiquij(é,,i +a,'t) =0, has a root, t = T} in
|t| < K7,,, with a probability larger than 1 — €. That is, we have é:” = én, +a,;'Ts

ni’

where |r’1T* | <K in probability. Accordingly we may rewrite OZTS as,

RTS— Zu,@m—i— Zua‘lT*
N

1 - 1 S,
:Nz u,»(@o + b,' + anil Tm) + Nz u[anil Tni
i= i=1
N

:qulﬁoJr Zu,b +;]Zua’le+ Zua’lT*

i=1

That is,

é;TS_QO_%Z( —1)00 +— Zub-l- Zua_]Tm—I- Zua"T*

i=1

Additionally, by Lemma 6, we have sz (= 1)—>0 as well as, NZ, | uib; 0.
Further, we also have that

N
%ZuiamFiZ( D)y T+ Za’le
i=1 i=1

Now by Lemma 2 and the fact T,,; = O,(1), we obtain, with U; := (u; — 1) /1y, that
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N
Z Ya T,)? =E TNZ Ui, ' T,:)?

N
= 272 ]TzzvN 272 P
E a; T - 1)0(=) % a:"T>—0
)(N)NZ Ay Ly )

i—1 i—1

a T, 2.0, That is, we have established that,

i=1 Qi

E* LSV wa ' T,)* 0. Accordingly we conclude, P*(| 1SN war!' Tl > €)
= 0,(1). Similarly,

1& — 1 — 1 — 1
N;ui mle _NZ( IT + Z mle7

i=1

as well as, NZ

where by Lemma 2, Assumption B (3) and the fact ‘c’lT* 0,,*(1), we obtain,

N
Z —]T* —E* TNZ Uz —]T*

E(y.
Ry 272 LN~ 2
N_; T + )O(ﬁ)ﬁz ni Tm
=1+ (W Z ’é’ T, T30 50
Finally, by Lemma 2,
N ¢
— 1 n; —l *
N: T, = i Tm - O
Z Api Ly l:Zlam n;
Accordingly we also conclude that, P*(| 13" | wia,' | > €) = 0,(1). Hence, we
have proved that P*(|0;TS — o] > €) = 0p(1). O

For the related asymptotic normality results as stated in Theorem 4, we need the
following two Lemmas.

Lemma 10 Suppose that the conditions of Assumptions A and B hold. If = o(\/m)
then as n; — oo and N — 00,

-1 N n;

TN -2 A \P
—E ua, E Wi (0ni)—
VN& T e

Proof of Lemma 10 Let
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n; ni
1 -1 A —1 A
X = T, 4, E wijqﬁij(ﬂm) =a, E W/,jqﬁl»j(ﬂm)
j=1 Jj=1

Clearly E*(X;;) =0, and X, are independent for i in 1,2,...,N. Further, by
Lemma 7 we have, as n; — oo, that

E*(X;7) =E"(a," Y Wi (0,
j=1

—a;? [Zd,é(én Z(,b,]lé i (Oni)

j=1 méjz

=, |3 60 + 0 (Z <z>ij<ém->> ~001) Y (i)
i \J=1 i =

j=1

n;

=(1-0 n_, —22% ()

Thus, with U; = (u; — 1)/\/TN
o' S i o' 1
4 u;a, wii;:(0n) == uia, X
E e SRR o

N
—\/—_ZUa T, X +—Zaflrn, i

Since U; and X, are independent, we obtain,

N

1
E'(—=Y Ua, 't,X") E (Ula* 2 X'7)
\/N; n; ni Z n; “ni“ni

+ZE (Ui Unay, @, T, T, X5y X))
i1#£is

— E —2 2 E* X*Z O.
Finally, smce = o(4/n;), we also have,
Ty
* N -2 2
E an, T"’ m E a

N 2
Z ; —ZE* X*2 0
i=1 TN

Accordingly we obtain that,
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i

N
Z n, ZWU¢U 0

5

O

Lemma 11 Suppose that the conditions of Assumptions A and B hold. If = = o(\/n;)
then as n; — oo and N — 00,

1_12N

AT _
N E ua, lS,ll m 0.

Proof of Lemma 11 We first write

ilflzN lzN —-1_-1.2 N

S = S+ )

i=1 i=1

*

By Lemma 2, Assumption B (3) and the fact 38, (T7,) 20,

/11712N

Further, it can be seen that,

fz Uit Su(T)) < & [1 + (N~ 1)0(}\,)] > alE (S, (T,) = 0.

Thus we have,

We conclude the “Appendix” with a proof of Theorem 4.

Proof of Theorem 4 By Theorem 3 and (19) we express,
9:; — 0, = = —a, GZZWU(ﬁU )—a, azSn,( )

Accordingly we have,
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N N 2 N

s = s = 53— 10 =552y Y w0 = 5735,
j=1

i=1 i=1 i=1

where |T);| <K7t,, in probability. Further,

7—1_—-1 N

1 Ak ~ T
27V /N (O — Oszs) = N Z

1

N
Ara -

gua EWU¢U9
—1_.-1.2 N

/L Iy O
§ -1
ua S"l nl

=L+ 5L +I3.

By Lemma 10, IziO, and by Lemma 11, I3£>0, and therefore it remains only to
consider I;. Now, observe that,

i( —1)0,; =

i=1

N N

Z +00 +}_NZUza;’1Tm

i=1

—1 —1
Aty

11 =

3
3\"

By Lemma 2,
T0) Ly TP NOE) X Y a 21220
ZUam ni —N;am’ ni+(N_ )O(N)N; ni Lni™”

Further by Lemma 5,

1N 1T uy—1p
N::ﬁ;Ui:ﬁ; —0,

N

and clearly, v/N(b + 0y) = N (0o, /*). Accordingly we have, %va:l (bi — b)* —

1 as. as well as VNU(b + Ho)p—iO. Further, by Lemma 4.6 of Praestgaard and
Wellner (1993), we have that

N
Z /(b + 00) = N(0,1).

)

Thus we have
-1_-1 N

NN — 10 = N(0,1
\/— (0, 1).

Finally we conclude that as n; — oo and N — oo,
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A7V VN (Ogrg — Oss) = N(0,1).
0
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