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Abstract
In this paper we study a finite Gaussian mixture model with an additional uniform

component that has the role to catch points in the tails of the data distribution. An

adaptive constraint enforces a certain level of separation between the Gaussian

mixture components and the uniform component representing noise and outliers in

the tail of the distribution. The latter makes the proposed tool particularly useful for

robust estimation and outlier identification. A constrained ML estimator is intro-

duced for which existence and consistency is shown. One of the attractive features

of the methodology is that the noise level is estimated from data. We also develop

an EM-type algorithm with proven convergence. Based on numerical evidence we

show how the methods developed in this paper are useful for several fundamental

data analysis tasks: outlier identification, robust location-scale estimation, cluster-

ing, and density estimation.

Keywords Mixture models � Noise component � Robustness � Model-based

clustering � EM algorithm � Outlier identification � Density estimation

1 Introduction

We study a class of mixture models for univariate data sets that can be used for

several distinct goals: outlier identification, robust location-scale estimation, robust

clustering, and density estimation.

Atypical outlying samples can break down most routine procedures such as

location-scale estimation, visualization, density approximation, etc. There may be

different reasons why one would flag an observation as an outlier. However, a

universal definition for outliers does not exist. In homogenous populations, they are
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thought of as points lying at some distance from the distribution center. However,

extreme points may well be non-atypical when they reflect the heavy tail structure

of the underlying generating mechanism. In clustered populations, the distinction

between outlying vs. non-outlying points is even more problematic; what we would

qualify as a subset of atypical points could constitute a special cluster instead.

Following Banfield and Raftery (1993) and Coretto and Hennig (2011, 2016) among

the others, in this paper we consider a model strategy that accommodates the

presence of ‘‘noise’’. By noise, we mean a mechanism that: (i) generates outlying

points that arise in low-density regions of the data space; (ii) generates observations

that have an unstructured behavior compared with the majority of the data set so that

they are considered outside the scope of the modeling. To motivate the methods

proposed in this paper, we introduce three data sets that will be analyzed in Sect. 6.

TiO2 concentration: the data set was introduced in Reimann et al. (2000). A

totalof n = 768 measurements of elements in soil samples around the Baltic Sea

weretaken. Extensive details about how these concentration measures are

constructedare given in the aforementioned paper. We focus on TiO2 (Titanium

dioxide)concentration.

pH of blood: the data set is obtained from Hartigan (1975) and contains n=40

samplesof various compounds in cerebrospinal fluid and blood for acidosis

patients.A total of 6 variables are sampled, in this paper, we focus on pH of blood.

Realized volatility: the data set has been studied in Coretto et al. (2020), it

containsa cross-sectional measurement of realized volatility for n = 123 traded on

theNew York Stock Exchange (NYSE) market between years 1998–2008. Here

weconsider a cross-section taken on 25/Aug/1998.

In Fig. 1 we report kernel density estimates of the distributions of the three data

sets. Kernel estimates are computed using the Epanechnikov kernel function and the

adaptive optimal bandwidth estimator of Sheather and Jones (1991). Other data-

driven bandwidth selectors have been tried, but the method of Sheather and Jones

(1991) provided the most credible results. The common characteristics of these data

distributions are that: (i) they have an elongated right tail with few scattered points

that sometimes appear far from the main bulk of the data; (ii) for all of them the tail

Fig. 1 Kernel density estimates for the three real data sets introduced in Sect. 1. Each panel shows the
stripchart of the observed data points on the horizontal axis. Panel a TiO2 (Titanium dioxide)
concentration data set. Panel b pH of blood data set Panel c realized volatility data set.
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behavior affects the optimal bandwidth estimate, which introduces undersmoothing

so that these extreme points are fitted essentially alone by the kernel function. This

is particularly evident in Panel (c) of Fig. 1; (iii) in all panels there is evidence of

multimodality which may indicate the existence of groups. However, this

multimodality may well be introduced by the undersmoothing issue, and therefore,

the existence of groups in the data is not clear. The discovery of clusters in the

presence of noise is a challenging issue, for an in-depth discussion consider Hennig

(2004) and Ritter (2014), and references given therein.

In this paper, we study estimation methods and algorithms for a model consisting

of a mixture of Gaussian distributions with the addition of a uniform component that

has the role to capture the noise, and that is constrained to overlap with the main

location-scale components in a user-controlled way. The model was introduced in

Coretto et al. (2020) as an extension of a general class of models of this kind

proposed in Coretto and Hennig (2011), which in turn generalized an original

proposal of Banfield and Raftery (1993). We introduce a model restriction that

ensures that the overlap between the noise and non-noise components can be

controlled by the user. The model restriction is embodied in the formulation of a

constrained ML estimator for which existence and consistency are studied. A

feasible EM algorithm is shown to approximate the constrained ML estimator. A

detailed treatment of the computational properties of the algorithm is given.

Other robust approaches can handle groups in the data. Coretto and Hennig

(2016) and Coretto and Hennig (2017) propose the addition of a noise component

with an improper distribution. But there exists another approach where outliers are

represented as points arising from the tail regions of the mixture components. In this

direction, McLachlan and Peel (2000a) proposed to achieve robustness with ML

estimation for mixtures of Student-t distributions. Punzo and McNicholas (2016)

and Farcomeni and Punzo (2020) recently proposed ML methods for mixtures of

contaminated Gaussian distributions. Another body of work defines the outliers as

points drawn from a ‘‘spurious’’ distribution not specified at the modeling stage.

Within the previous framework, robustness is typically achieved through trimming

methods. Gallegos and Ritter (2005), and Garcı́a-Escudero et al. (2008) introduced

ML-type procedures for partition models with trimming that discards a fixed

proportion of observations treated as outliers. For an review of the main ideas in

robust model-based clustering see Ritter (2014), Farcomeni and Greco (2015), and

Hennig et al. (2016).

Most well established robust methods treat the tails of the distribution

symmetrically. The model presented here is particularly useful when contamination

processes affect the data distribution asymmetrically, in the sense that noise affects

one of the two tails only. This is a specific situation, but it occurs often in practice as

shown in the examples of Fig. 1. An additional advantage of the proposed

methodology is that it estimates the noise level from the data so that the method

decides whether or not contamination affects the data (see Sect. 6). The latter is

important when expert supervision is not possible, for example when thousands of

features are machine scanned for outlier identification (e.g. this is routinely done in

genomic studies, see) Marshall 2004. The methodology can be also used to

investigate group structures in the data by applying model-based clustering
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techniques. In Sects. 5 and 6 we show how the method under study applies to

fundamental tasks in data analysis: density approximation, robust estimation, outlier

identification, and clustering.

The present paper is organized as follows: in Sect. 2 we introduce and discuss the

model and its possible applications; in Sect. 3 we analyze the ML estimation

method, and we propose a feasible EM algorithm; in Sect. 5 an extensive Monte

Carlo experiments are performed to assess the finite sample properties of the

proposed methods; in Sect. 6 we analyze the three data-set discussed above. Finally,

in Sect. 7 we conclude the paper with some final remarks.

2 Gaussian mixtures with tail uniform noise

Let us fix some notation first. For g ¼ 1; 2; . . .;G define a collection of normal

densities /ðx; hgÞ. /ðx; hgÞ is the density at a point x 2 R, where hg ¼ ðlg; rgÞ 2
R� ð0;þ1Þ is the mean and standard deviation parameter vector. Let IAðxÞ be the
usual indicator function, that is IAðxÞ ¼ 1 if x 2 A, and IAðxÞ ¼ 0 otherwise. Let

ðp0; p1; . . .; pGÞ be a vector of mixing proportions such that pg 2 ð0; 1Þ for all

g ¼ 0; 1; . . .;G and p0 þ p1þ; . . .;þpG ¼ 1: The density function

f ðx; hÞ :¼ p0
I½b1;b2�ðxÞ
b2 � b1

þ
XG

g¼1

pg/ðx; hgÞ; ð1Þ

is a finite mixture model of G Gaussian densities with uniform noise. The parameter

vector h0 ¼ ðb1; b2Þ, with b1\b2, contains the limits of the support of the uniform

distribution. The mixing proportions have the usual sampling interpretation

McLachlan and Peel (2000a) in an iid sample from a distribution having density (1)

a proportion pg of points is expected to be sampled under the g-th component

density /ð�; hgÞ, while a proportion p0 of points is expected to be generated under

the uniform component. The model parameter vector is defined as

h ¼ ðp0; b1; b2; p1; l1; r1; . . .; pG; lG; rGÞ, or in more compact form

h ¼ ðp0; h0; p1; h1; . . .; pG; hGÞ.
Originally, this class of models was introduced in Banfield and Raftery (1993)

with the main goal of performing robust model-based clustering. The uniform

component had the role of catching outliers. Banfield and Raftery (1993) proposed

to fix ½b1; b2� to be equal to the data range. Coretto and Hennig (2011) generalized to
the case of mixtures of general location-scale densities with an arbitrary finite

number of uniform distributions having disjoint supports.

It is well known that mixtures of normal distributions can fit almost any

distribution in a semiparametric way. Here the uniform distribution in (1) is called

the ‘‘noise component’’. Such a model can be used so that the Gaussian mixture part

represents most of the data structure, while the uniform noise component is meant to

represent regions of the data that do not have a clear shape or structure. Moreover,

we want to use model (1) so that the uniform distribution is specifically designed to

catch ‘‘atypical’’ points when these arise from one of the two tails of the

distribution.
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Although the estimator and algorithms developed in Coretto and Hennig (2011)

should be able to cope with the situations described above, in some situations, their

method is not able to distinguish the tails of the normal mixture part of the model

from the uniform component as noted in Coretto and Hennig (2010). The latter

would result in estimates where both the location and the variance of the normal

components are seriously biased. For these reasons, Coretto et al. (2020) used

model (1) to cluster financial data, and they modified the algorithm of Coretto and

Hennig (2011) to ensure a certain separation between the tails of the normal

components and the uniform component. In order to achieve the previous goal, we

introduce three ‘‘model-constraints’’. By ‘‘model-constraints’’, we mean constraints

on the parameters that translate the interpretation of the model that needs to be

addressed by the fitting procedure. Consider the following constraints

Since /ð�Þ is symmetric about lg, the constraints (RS) and (LR) imply that the

support of the uniform component has a bounded amount of overlap with the region

where the location-scale components put most of their mass. The degree of overlap

is controlled by c. For example, assume G ¼ 2 with r1 ¼ r2 and l1\l2. Take
c ¼ z0:98, i.e. c is the 98% quantile of standard Gaussian distribution. Now, if (RS)

holds, the second Gaussian component (the component with the right-most peak)

can only overlap with the uniform noise component in the region corresponding to

its 2% tail probability. Moreover, since (RS) has to hold for all other g, the first

component cannot overlap with the uniform support more than the second one. The

constraints (RS) and (LS) are mutually exclusive, in fact, only one of them can hold.

The third constraint is called the ‘‘noise proportion constraint’’ (NPR). It bounds

the noise level, i.e. the expected fraction of points generated from the uniform

distribution under (1). The NPR rules out the possibility that the noise becomes the

majority if pmax\50%. The latter corresponds to the robust statistic’s classical

assumption that one cannot distinguish outliers if they are a majority. However, in

clustering applications one would set pmax not smaller than the smallest fraction of

points that would be genuinely considered as a ‘‘cluster’’.

A model like (1) can be used with different aims: density approximation, robust

estimation, robust model-based clustering, etc. Some of the applications will be seen

in Sect. 5. The use of the word robust here does not mean formal robustness. Hennig

(2004) showed that MLE corresponding to the model (1) could break-down in the

presence of arbitrarily large observations. In practice, this is not common, and in

fact, we will show that the proposed MLE can adapt to heavy tails and strong

skewness showing good resistance to outliers.

2.1 Clustering

Insights into the clusters generating ability of (1) are central for the subsequent

developments. Consider an iid sample fX1;X2; . . .;Xng, where Xi 2 R; for all

i ¼ 1; 2; . . .; n, and Xi has a distribution having density f ð�; hÞ. Let xn :¼
fx1; x2; . . .; xng be the observed sample. If the component densities of (1) are

sufficiently separated one would observe G distinct clusters of points, and if p0 [ 0
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an additional group of more ‘‘unstructured points’’ would appear in the sample

depending on the size of the interval ½b1; b2�. Define the following quantities

s0ðx; hÞ ¼
p0

I½b1 ;b2 �ðxÞ
b2�b1

f ðx; hÞ ; and sgðx; hÞ ¼
pg/ðx; hgÞ
f ðx; hÞ ; for g ¼ 1; 2; . . .;G ð2Þ

(2) will have a crucial role. These ratios are called ‘‘posterior membership proba-

bilities’’, because in the iid sampling case sgðxi; hÞ is the posterior probability that a

point xi has been generated by the g-th component of (1) at h conditional on the

observed sample. Assuming that h is known, the optimal assignment rule mini-

mizing the misclassification rate is the following Bayes assignment

Aðxi; hÞ :¼ argmaxg¼0;1;...;G sgðxi; hÞ; ð3Þ

In reality h is not known, and typically the assignment is based on its estimate,

usually an ML estimate.

3 Estimation

This section gives a detailed account of the ML estimation and computation for

fitting h. First, we consider G fixed and known. Data-driven choice of G will be

considered in 1 and Sect. 5. ML estimation for finite Gaussian mixtures has been a

fascinating problem studied for a long time. A framework that allows for simple

existence and consistency proofs does not exist. Chen (2017) is the most recent

comprehensive account of this subject’s main theoretical contributions.

The log-likelihood function associated with an observed data set xn from an iid

sample from (1) is given by

LnðhÞ ¼
Xn

i¼1

log f ðxi; hÞ: ð4Þ

Day (1969) noted a fundamental issue connected to the unboundedness of LnðhÞ. In
fact, fix lg ¼ xi for arbitrary i and g, and it happens that taking rg ! 0 implies

LnðhÞ ! þ1. The same happens if we fix an arbitrary b1\xi for some i, and then

taking b2 ! b1 the variance of the uniform component ðb2 � b1Þ2=12 ! 0 and

LnðhÞ ! þ1. Therefore, the ML estimation needs to take into account constraints

that bound scale parameters from below. One can simply require for example that

rg [ ¼ r0 [ 0, but: (i) these constraints will not produce a scale-equivariant ML;

(ii) the choice of an effective r0 is not trivial and it is shown to affect the fitting.

There are several alternative approaches, although none of them translates into

simple numerical approximating algorithms. The ML theory developed in Coretto

and Hennig (2011) is based on scale constraints proposed by Dennis (1981) and

Hathaway (1985) that are scale-equivariant. In the multivariate setting these con-

straints where rediscovered later due to Ingrassia (2004). However, these are not

feasible here. In fact, the (RS) and (LS) constraints are an additional complication in

the numerical optimization of (4). Define scale parameters
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sg :¼
rg ifg = 1; 2; . . .;G;
b2 � b1ffiffiffiffiffi

12
p ifg = 0:

8
<

:

Fix 0\d\1, and consider the constraint sg � smin ¼ expð�ndÞ studied in Tanaka

and Takemura (2006). Although these constraints are not scale-equivariant at fixed

n, they are asymptotically scale-equivariant since smin ! 0 as n ! þ1. Suppose

that n ¼ 1300 and that we fix d ¼ 0:5, the resulting constraint would be

sg � smin ¼ 2:22�10�16, where smin is equal to the so called machine epsilon. The

latter means that for any n[ 1300, in practical computations, we would treat smin as

it was a positive number that numerically cannot be distinguished from zero. (RS)

and (LS) are mutually exclusive, hence it is simpler to treat them separately, and

finally, we will give some ideas on how to choose between them. We treat esti-

mation with (RS) in mind because positively skewed data are more common in

applications. The second constraint for model-interpretation is the (NPR) constraint.

While the previous scale constraint is the method’s regulation tool for obtaining a

well-defined and consistent ML estimator, the (RS), (LS), and (NPR) constraints

restrict the domain of the parameters to gain a certain interpretation of the model.

We look for the maximizer of LnðhÞ over the following constrained parameter

space

Hn :¼ h 2 H j sg � expð�ndÞ; lg þ crg � b1; p0 � pmax ðg ¼ 0; 1. . .;GÞ
� �

;

ð5Þ

for fixed 0\d\1 and c[ 0 constants. The constrained sample ML estimator is

defined as

ĥn :¼ argmaxh2Hn
LnðhÞ: ð6Þ

For simplicity we defined the ML estimator in the (RS) case, for the (LS) case one

replaces lg þ crg � b1 in (5) with b2 � lg þ crg. Note from (5) that, contrary to the

classical case, here the parameter space changes with n. Moreover, because of the

uniform component, the objective function of the ML problem is not continuous.

Therefore, the existence of the ML in both finite and infinite samples is not obvious.

The next 1 state the finite sample existence of the sample ML estimator.

Proposition 1 LnðhÞ achieves its maximum over Hn.

The proof of the statement above is given in the final Appendix. The next 2 states

the consistency of the ML estimator. Finite mixture can only be identifiable up to

component label switching, in fact, in this case any permutation of the indexes

g ¼ 1; . . .;G, leads to the same mixture model (1). As in Teicher (1963) we state

consistency on a quotient space of the original parameter space. In practice we look

for the consistency with respect to one of such permutation of the Gaussian

components’ indexes. Define
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hðhÞ :¼ fh0 2 H j f ðx; hÞ ¼ f ðx; h0Þ 8xg;

For A;B � H, define dist ðA;BÞ :¼ infh2A infh02B dist ðh; h0Þ, where dist ðh; h0Þ is

the ordinary Euclidean distance.

Proposition 2 Let h0 2 H, and suppose that (RS) holds for h0. Let h0 be the
generating parameter vector, in the sense that the sample fX1; . . .;Xng is an iid
sequence from a distribution having density f ð�; h0Þ. Then

Pr lim
n!1

dist ðhðĥnÞ; hðh0ÞÞ
n o

¼ 1: ð7Þ

The proof of the statement above is given in the final Appendix. We treated G as

fixed and known. However, in density estimation, G controls the number of peaks in

the final density estimate. In clustering applications, often G coincides with the

number of clusters. There are several approaches to select an appropriate G. The
most popular approach is to rely on information-theoretic quantities discussed in

more detail in Sect. 5.

Remark 1 For univariate samples, the choice of the appropriate constrained model,

i.e. deciding about (RS) vs. (LS), could be based on subject-matter considerations

and visual inspection of the data. However, in cases where data are processed in an

unsupervised way, it may be possible to choose the model version that fits that data

better in terms of expected log-likelihood. This appears as an approach technically

correct because, for a given G, both (RS) and (LS) have the same number of

parameters. The joint tuning of constraints’ hyperparameters and G is more

problematic here. In the mixture context, the most popular approach for choosing

the number of mixture components G is to use information criteria such as the AIC

and the BIC. Classical approximate estimators of the information criteria have the

form: (fitted likelihood - penalty), where the penalty term increases with the number

of parameters. The number of parameters is generally interpreted as a proxy for

model complexity and degrees of freedom. Observe that for a given G different

specifications of ðc; pmax; dÞ modify the ability of the model to adapt to the data

distribution, which in practice means that constraints will change the ‘‘effective

degrees of freedom’’ of the model. A ‘‘more constrained parameter space’’ allows

the fitting of the model to adapt less to the data, and therefore it will lead to a

‘‘simpler’’ model. Thus, the well-known bias-variance trade-off arising from the

model selection is certainly affected by changing the parameter constraints.

However, classical estimators of the AIC and the BIC will not reflect the effects of

the constraints. Model selection frameworks that account for these effects exist only

for specific cases (for instance see)Kuiper et al. 2011. In practice, we suggest that

whenever G needs to be selected, classical information criteria are used for a fixed

set of model’s hyperparameters ðc; pmax; dÞ.
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4 MEMR algorithm

It is well known that, even in the one-dimensional case, computation of the sample

ML estimator in the finite mixture context is not an easy task due to the highly

complex likelihood function surface (see) McLachlan and Krishnan 1997.

Moreover, the uniform distribution here adds some more difficulties due to its

discontinuities and the fact that it introduces many local maxima in Lnð�Þ (see the

proof of 1). The Expectation-Maximization (EM) algorithm of Dempster et al.

(1977) is a popular choice for approximating the MLE of finite mixture models. We

exploit the discontinuities of Lnð�Þ, and we propose the ‘‘multiple EM runs’’
(MEMR) Algorithm 1. We show that the MEMR algorithm is monotonic and

converges to a stationary point of the likelihood surface.

Let s ¼ 0; 1; . . . be the iteration index. Let aðsÞ be the quantity a computed at the

s-th step of the algorithm. Define

Qðh; hðsÞÞ ¼
Xn

i¼1

XG

g¼0

sgðxi; hðsÞÞ log pg þ
Xn

i¼1

s0ðxi; hðsÞÞ log
I½b1;b2�ðxiÞ
b2 � b1

� �
þ

þ
Xn

i¼1

XG

g¼1

sgðxi; hðsÞÞ log/ðxi; lg; rgÞ:
ð8Þ

By applying Theorem 4.1 in Redner and Walker (1984) it can be established that if

there exists h0 such that Qðh0; hðsÞÞ �QðhðsÞ; hðsÞÞ, then Lnðh0Þ � LnðhðsÞÞ. Therefore,
iteratively increasing (8) with an appropriate choice of a sequence fhðsÞg, one

obtains a monotonically increasing sequence fLnðhðsÞÞg. This is the a standard EM

algorithm that is not feasible in our case. Rewrite (8) according to the following

decomposition

Qðh; hðsÞÞ ¼ Quðhu; hðsÞÞ þ Q/ðh/; hðsÞÞ þ Qpðhp; hðsÞÞ; ð9Þ

where

Quðhu; hðsÞÞ ¼
Xn

i¼1

s0ðxi; hðsÞÞ log
I½b1;b2�ðxiÞ
b2 � b1

� �
;

Q/ðh/; hðsÞÞ ¼
Xn

i¼1

XG

g¼1

sgðxi; hðsÞÞ log/ðxi; lg; rgÞ;

Qpðhp; hðsÞÞ ¼
Xn

i¼1

XG

g¼0

sgðxi; hðsÞÞ logðpgÞ:

The sequential maximization of Qð�Þ is separable in its three components above.
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Remark 2 The usual M-step for Gaussian parameters does not work here, and the

optimal solution for Q/ð�Þ cannot be calculated with a closed-form formula as in the

case of the unconstrained Gaussian mixture model. Because of the scale and the

(RS) constraint, the optimization concerning h/ requires numerical optimization. In

our implementation (see Sections 5 and 6), we perform the M1-step using the

gradient-based algorithm of Svanberg (2001) included in the NLOpt library of

Johnson (2020). Although solving the M1-step requires iterative numerical

optimization, both the gradient and the Jacobian of the objective function are

computed in closed form.

Quð�Þ is not differentiable, and it introduces many stationary points into Qð�Þ. The
latter is related to the multiple local maxima behavior of Lnð�Þ seen in the proof of 1.
The next 3 characterizes this behavior that is rather central in developing the

MEMR algorithm.

Proposition 3 Assume hð0Þ 2 Hn such that ½bð0Þ1 ; bð0Þ2 � contains at least a data point.

Consider an ‘‘improving’’ sequence fhðsÞ	 g in the sense that

Qðhðsþ1Þ
	 ; hðsÞ	 Þ�QðhðsÞ	 ; hðsÞ	 Þ for all s ¼ 0; 1; . . .. Assume hð0Þ	 2 Hn. Then, the

uniform parameters change at most in the first step, that is bðsÞ1	 ¼ minfxi 2
xn j xi � bð0Þ1	 g bðsÞ2	 ¼ maxfxi 2 xn j xi � bð0Þ2	 g for any s ¼ 1; 2; . . .

Proof of 3 is given in the Appendix. The previous statement is crucial because it

handles the likelihood’s discontinuities caused by the uniform component. The local

maxima of Quð�Þ, and therefore the local maxima of Qð�Þ and Lnð�Þ, are such that the

corresponding hu coincides with a pair of distinct data points. In the Algorithm 1,

the previous argument is exploited to decompose the optimization of Lnð�Þ into

multiple local searches where for each pair of distinct data points (that are local

optimal for ðb1; b2Þ), the optimization is performed on the remaining parameters

ðh/; hpÞ.

Remark 3 3 does not depend on whether we implement (RS) or (LS) constraint.

The Algorithm 1 can be adapted to find a solution with (LS) constraints rather

easily. In particular two modifications are required: (i) the trimmed set into the

initialization step fxi 2 xn j xi\bð0Þ1 g is replaced with the trimmed set

fxi 2 xn j xi [ bð0Þ2 g; (ii) the second inequality constraint in M1 is replaced with

bð0Þ2 � lg þ crg � 0 for all g ¼ 1; 2; . . .;G.

The proportion parameters belong to the compact set P ¼ ½0; pmax� � ½0; 1�G. The
M2-step in the Algorithm 1 takes care of the noise proportion constraint. The next

proposition states that at any step s, the updating given in M2a-M2b maximizes

Qpð�Þ fulfilling the noise proportion constraint.

Proposition 4 Assume that Algorithm 1 is performed for steps 1; 2; . . .; S. M2a-M2b
solve the following optimization program
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maximize
hp2P

Qpðhp; hðsÞÞ;

subject to

p0 � pmax � 0;

pg 2 ½0; 1� for all g ¼ 1; 2; . . .;G:

ð10Þ

Proof of the previous 4 is given in the Appendix. 4 establishes that the updates in

M2a and M2b of the Algorithm 1 implement the closed-form solutions for the

constrained M-step with respect to the proportion parameters. Although the

implementation of the noise proportion constraint into the MEMR algorithm is

similar to the RIMLE algorithm of Coretto and Hennig (2017), there are substantial

differences. Here the M-step is unconditional, and it is based on closed formula

calculations, whereas the RIMLE relies on conditional optimization and the noise

proportion update requires solving nonlinear equations iteratively.

Proposition 5 (Convergence of MEMR algorithm) For every r-th pair of distinct

data points fxðrÞi ; x
ðrÞ
j g 2 xn such that x

ðrÞ
i \x

ðrÞ
j and x

ðrÞ
j � x

ðrÞ
i �

ffiffiffiffiffi
12

p
expð�ndÞ, the

following holds

1. LnðhðsÞÞ is increased in every step s ¼ 1; 2; . . .;

2. the sequence fhðsÞg produced by Algorithm 1 converges to a stationary point

hðrÞ 2 Hn.

The proof of the previous Proposition is given in the Appendix. 5 ensures that for

an appropriate small e (stopping criterion), hðrÞ approximates a local optimum of the

log-likelihood function, or unfortunately, a stationary point of the likelihood

surface. The initialization strategy forms all possible candidates for ML estimates of

the uniform parameter, each of which will qualify a local maximum of Lnð�Þ.
Therefore the last step of the algorithm selects the best of such local maxima, hðr	Þ,
for a candidate global solution of the sample ML problem.

Remark 4 The algorithm requires several iterations, one for each pair of distinct

data points that initialize the uniform parameter. The latter requires too many EM

runs if n is large. In both (RS) and (LS) cases, we seek models where the uniform

component captures noise in the tails. Therefore a possible strategy is not to run the

EM iteration for all pairs fxðrÞi ; x
ðrÞ
j g of 5 but for a subsample of the data. Random

subsampling is a possibility, although, in experiments, it introduced additional

variability. For n[ 500, our software implementation allows switching to faster

options that work as follows.

Option A Compute ˜xn = fQn(ak); k = 1;2; : : : ;Kg, where Qn(a) is the

empiricalquantile function at a, fakg is an appropriate sequence of probabilities

(e.g.˜xnare empirical percentiles), and K\n. Note that an empirical quantile is
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always anobserved data point. Form all pairs fx(r)i ;x(r)j g of Proposition 5 from

the data subset̃xn. In this case the number of pairs used to initialize the uniform

parametersdepend on K and not n.

Option B This is similar to option A but it excludes further non-tail points from

.....depending on.....If the (RS) version is fitted, set minfak; k = 1;2; : : : ;Kg

=(1pmax). Otherwise, if (LS) version is fitted, set maxfak; k = 1;2; : : : ;Kg

=pmax: This shortcut strategy exploits the fact that the noise level is bounded

bypmax, and since the separation constraints pushes the uniform component in

thetails, it is not necessary to look for (b1;b2) everywhere on the data range.

We experimented extensively with samples of size n[ 250 using both A and B,

and we never experimented with significantly detrimental effects. On the other

hand, we obtained significant gains in computational efficiency.

5 Numerical experiments

5.1 Experimental settings

In this section, we assess the proposed ML estimator’s finite sample performance,

and we provide comparisons with existing methods in the literature. We consider

three different data-generating mechanisms to show possible different uses of the

proposal in the context of semiparametric density estimation, mixture parameters

estimation, clustering, outlier identification, and robust location-scale estimation.

We want to assess the methodology under three different circumstances embodied

in the following three sampling designs.

MIXs. Data are generated from the following Gaussian mixture model with the

uniform noise acting on the right tail:

p0 Uð50; 123Þ þ ð1� p0Þ f0:6 Nð0; 50Þ þ 0:4 Nð27:5; 50Þg; ð11Þ

where Uðb1; b2Þ denotes the uniform distribution on the interval ½b1; b2�, and

Nðlj; r2j Þ is the Gaussian distribution with mean lj and variance r2j for j ¼ f1; 2g.
Three values of the expected proportion for the uniform component are considered:

p0 2 f0:05; 0:1; 0:25g. The choice of the parameters is based on the following

arguments. The three values of p0 will produce increasing level of uniform noise.

The separation ratio between Gaussian components is jl1 � l2j=r ¼ 4:5, which is

sufficient enough to produce a multimodal density McLachlan and Peel (2000a).

The variance is set equal for both components to calibrate the separation ratio easily.

PrfN ðl2; r22Þ� b1g ¼ 0:9993, therefore, there is a small overlap between the right-

most Gaussian component and the uniform component. Given b1 ¼ 50, the value

b2 ¼ 123 is fixed so that, when p0 ¼ 10%, the density contribution of the second

Gaussian component in (11) at its 99%-quantile matches the density contribution of

the uniform noise. This setting is challenging because it makes difficult to distin-

guish the normal tails from the uniform component. The MIXs data generating

123

Estimation and Computations for Gaussian mixtures... 439



process fulfills the model assumption of the proposed method producing points that

are ‘‘clearly’’ clustered, plus an elongated right tail.

MIXo. This is a variation of MIXs that changes the separation between the

Gaussian components by reducing l2. The data generating model is

p0 Uð50; 123Þ þ ð1� p0Þ f0:6 Nð0; 50Þ þ 0:6 Nð17:5; 50Þg: ð12Þ

Now the separation jl1 � l2j=r is roughly about 2.5 producing a strong overlap that

leads to unimodality. Note that now PrfN ðl2; r22Þ� b1g 
 1, and in practice the

uniform component and the right-most Gaussian distribution do not overlap. With

the MIXo sampling design, we again have a data generating process fulfilling the

model assumptions, but it does not have a multimodal distribution and it does not

produce well-clustered points.

ASY. Points are sampled from the following non-Gaussian mixture distribution

p0 Uð20; 50Þ þ ð1� p0Þ v2ð3Þ; ð13Þ

where v2ðmÞ denotes the v2 distribution with m degrees of freedom. The aim of the

ASY experiments is different from that of the previous MIX cases. ASY model has

skewed density, and its right-tail is much heavier from what we would expect under

a v2ð3Þ. Model assumptions for the proposed method are not fulfilled here. The core

of the non-tail part of the sampling mechanism is not Gaussian, and it is not

symmetric. For the ASY model we also consider p0 2 f0:05; 0:1; 0:25g.
For each of the three sampling designs, we experiment with sample size

n 2 f50; 100; 1000g. The proposed method is compared against alternative methods

depending on the investigated aspect. In order to ease the presentation, each method

is labeled as follows.

GM EM approximation of the MLE for Gaussian mixture models.

SGM EM approximation of the MLE for skew Gaussian mixture model-

sproposed by Lin et al. (2007). Software implementation:

EMMIXskewpackage of Wang et al. (2018) available via the

‘‘Comprehensive RArchive Network’’ (CRAN).
GUM EM approximation of the MLE for Gaussian mixture models with

uniformcomponent proposed in Coretto and Hennig 2011.

GRUM The method proposed in this paper, that is, the EM approximation

(Algorithm1) of the MLE for Gaussian mixture models with the

uniformcomponent under separation constraints.

KEM Kernel density estimator computed with Epanechnikov’s kernel

function,and optimal bandwidth estimator developed by Sheather

and Jones1991. Software implementation: KernSmooth package of

Wand (2020)available on (CRAN).

AO ‘‘Adjusted Outlyingness’’ method for outlier detection developed by

Bryset al. (2005) and Hubert and Vandervieren (2008). Software

implementation:mrfDepth package of Segaert et al. (2020) available

on (CRAN).
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TRIMADSE Location-scale estimation based on Trimean and Mad estimators.

Location-scale estimation based on the sampling mean and the

standarddeviation

Software for GM, GUM, and GRUM methods have been specifically imple-

mented to manage all their common elements exactly in the same way. For example,

in Coretto and Hennig (2011), the GUM is implemented with a different class of

scale constraints. Here it is implemented with the same scale constraints proposed

for the GRUM method. Moreover, the work of Coretto and Hennig (2011) did not

consider the noise proportion constraint that here we implemented as for the GRUM

method. Initialization for all mixture-based methods is performed in the same

manner as for the GRUM method, eventually ignoring the uniform component’s

initialization. Throughout the experiments, hyperparameter settings are: d ¼ 0:5,
c ¼ z0:975 (the 97.5%-quantile of standard normal distribution), pmax ¼ 50%. For

sample size n[ 500, we perform GRUM computations using the fast option B

explained in the 4. For the GUM computations, we consider option A because the

method does not constraint the uniform component to catch the data distribution

tails. For each combination of the sample design, n, and p0, we perform 1000 Monte

Carlo replicates.

5.2 Experimental results

This study investigates parameter estimation, model selection and density fit, outlier

identification, clustering, and robust location-scale estimation.

Parameter estimation. The comparison only involves MIXs and MIXo designs

and GUM and GRUM methods whose parameters are consistent with the ground

truth. The number of Gaussian mixture components is fixed at G ¼ 2, and true

parameters are compared with estimated parameters in terms of Mean Squared Error

(MSE). Since the three classes of parameters (proportions, locations, scales) play a

different role, the MSE is given for sub-vectors of parameters p ¼ ðp0; p1;p2Þ,
l ¼ ðl1; l2Þ, r ¼ ðr1; r2Þ, b ¼ ðb1; b2Þ. Results are shown in Fig. 2. The estimation

of the mean parameters is satisfactory for both methods. However, GRUM

outperforms GUM in terms of estimation of scales and uniform parameters. The

latter is because the GRUM method often fails to identify b1, and it tempts to

confuse the tail of the right-most Gaussian with the uniform component. The GUM

bias is larger for the case when p0 ¼ 10% because, as explained before, this is the

case where, by construction, it’s harder for a method to distinguish between tails of

non-uniform components and uniform component.

Model Selection and density estimation. With a non-fixed G, the model can fit the

data distribution in a semiparametric fashion. The information criteria are popular

methods for performing model selection in the mixture framework McLachlan and

Peel (2000a). The Akaike Information Criterion (AIC), and the Bayesin Information

Criterion (BIC) are not specific to the mixture context (see) Konishi and Kitagawa

2008. In this work, we also consider the Integrated Completed Likelihood criterion

(ICL) of Biernacki et al. (2000), which is specifically designed for selecting G when

the mixture model is fitted to recover clusters. Whenever the AIC is reported in this
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work, it is corrected for small sample bias. In other words, we computed what in the

literature is known as AICc (see) Konishi and Kitagawa 2008. All the mixture-based

methods under comparison have been fitted for G 2 f1; 2; . . .; 10g, and the three

information criteria are used to select G. We then compared the fitted density

against the true underlying density in terms of Mean Integrated Squared Error

(MISE). The MISE’s computation requires numerical integration, which has been

performed using stratified Monte Carlo integration with the strata adaptively chosen

to achieve an integration error never larger than 10�4.

In terms of density estimation, the AIC selection performed the best, although the

BIC was fairly close. The latter was expected since it is known that the AIC is not

generally consistent in model-selection, but provides better fits of the data

distribution in a non-parametric sense Burnham and Anderson (2002). In Fig. 3 we

report the MISE performance, while Fig. 4 we report results about the AIC
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Fig. 2 Barplots representing Monte Carlo estimates of the MSE for parameter sub-vectors. Error bars are
‘‘1-standard-error intervals’’ for the corresponding Monte Carlo average.
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Fig. 3 Barplots of the Monte Carlo estimates of the MISE obtained from models selected by the AIC.
Each panel a–c displays a sampling design. Colors represent methods according to the bottom legend.
Error bars are ‘‘1-standard-error intervals’’ for the corresponding Monte Carlo estimate.
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Fig. 4 Monte Carlo estimates of the proportion of times that the AIC selects a given G. Each panel a–c)
displays refers to a sampling design. Colors represent methods according to the bottom legend.
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selection. For both MIX and ASY designs, all mixture methods outperformed

nonparametric kernel density with asymptotically optimal bandwidth selection

(KERN). For large n, all mixture-based methods perform remarkably well. For

smaller n SGM does overall marginally better. It is interesting to note that AIC

selects the model so adaptively that the noise level does not affect the performance.

The sample size drives the MISE. As expected for the ASY case, SGM does

particularly better than the other mixture model-based competitors, although the gap

almost disappears for n ¼ 1000. Figure 4 shows that SGM, GUM, and GRUM need

fewer components to fit the data than GM. The latter is because the elongated tails

can be captured by the uniform component in GUM and GRUM and the skewness

parameters in the SGM method.

Outlier identification. True outliers are defined as points sampled under the

uniform distribution. Both GUM and GRUM can be used to detect outliers applying

the assignment rule (3) and using the estimated h with G selected based on one of

the three information criteria. Points assigned to the uniform noise component are

flagged as ‘‘positives’’, i.e., outliers. While there are many effective methods to

identify outliers in the elliptical-symmetric family framework, the world of

asymmetrical contamination is less explored due to the intrinsic difficulty to define

outliers in such circumstances. We compare GUM and GRUM with the ‘‘adjusted

outlyingness’’ (AO) method developed by Brys et al. (2005) and Hubert and

Vandervieren (2008) that extends Stahel-Donoho outlyingness towards skewed

distributions (see) Stahel 1981. For both GUM and GRUM, G needs to be fixed. The

idea is that the method should be able to distinguish between a majority of points

having a more compact shape, and a minority points (the outliers) not consistent

with the main mass of the data. Because AIC showed better behavior in recovering

the underlying density, in this case, we fix G based on the AIC.

In Fig. 5 we report the true negative rate (TNR, also known as specificity); the

True Positive Rate (TPR, also known as sensitivity); and the Precision. Recall that

Precision = 1-FDR, where the FDR is the False Discovery Rate. The proposed

method outperforms its competitors in all situations for each of the three metrics.

AO is the second best, although its performance is far from that of GRUM, even in

the ASY case, where it is expected to be at its best. For different reasons, both AO

and GUM cannot detect the location where the uniform component takes over.

Again, comparing the performance metrics in each case, the GRUM tends to

confuse the Gaussian tails with the uniform contribution.

Clustering. We assess clustering on MIXs and MIXo designs. The ASY sampling

does not produce clustered points. Evaluation of the clustering performance requires

the definition of a ‘‘true’’ partition. The true cluster label of a point is defined as the

mixture component from which the point is drawn. To compute misclassification

rates (expected 0–1 loss), for mixture-based methods, we only consider the fitting

with G fixed at the true G ¼ 2. Only GUM and GRUM are considered because the

other mixture-based methods do not have a noise component. In Fig. 6 we report

Misclassification Rates [%] of GRUM and GUM compared to the Bayes Optimal
Classifier (OBC). OBC is the classifier that one would build if one knew the true

model parameters. In other words, the OBC is obtained using the assignment rule 3

with the true generating mixture parameters. The latter implies that the MCR
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obtained for OBC in Fig. 6 represents the optimal Bayes risk. Under the usual 0–1

loss, the Bayes risk gives the best possible MCR. Comparing with the OBC is

particularly convenient in situations with strong overlap as for the MIXo. GRUM

outperforms GUM for smaller sample size, and its performance is closer to the

optimal error rate corresponding to the OBC’s error. The performance gap between

GUM And GRUM is clearer in the case of overlapped clusters (MIXo).

If one wants to estimate the number of clusters as the number of non-noise

mixture component G, probably the ICL and the BIC do the best job. ICL performed

slightly better, and for brevity, we only report its performance in Fig. 7. In the

separated case (MIXs), G ¼ 2 clusters have a clear intuition because of the

separation. In the latter case, GRUM and GUM often pick G ¼ 2. GRUM shows an

overall advantage over its competitor. In the MIXo case, the clustering is not

obvious, and in fact, the ICL tempts to choose G ¼ 1 for GRUM and GUM, and it

chooses G ¼ 2 for the remaining methods. In the clustering perspective, probably

G ¼ 1 is a more sensible choice for MIXo.

Robust location–scale estimation. In a non-clustered population like the ASY

model, one could be interested in estimating the location and the scale of the

uncontaminated data robustly. For the ASY model, true location and scale are

defined as the mean and the standard deviation of the v2ð3Þ component. Here we

compare the mixture-based methods GUM and GRUM with AO, TRIMAD, and SE.

In Fig. 8 we report MSE for location and scale parameters.

For GUM, GRUM, and AO, we define robust location–scale estimates as the

weighted average and standard deviations pairs:

location ¼ 1

W

Xn

i¼1

wðxiÞxi; scale ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W

Xn

i¼1

wðxiÞðxi � locationÞ2
s

;

where W ¼
Pn

i¼1 wðxiÞ. For GUM and GRUM, xi is weighted by the estimated

posterior probability that xi does not belong to the uniform noise component, i.e.

wðxi; hÞ ¼ 1� s0ðxi; hÞ. These weights are smooth. For the AO methods wðxiÞ ¼ 1

if the xi is not flagged as outlier, and wðxiÞ ¼ 0 otherwise. GRUM and GUM

require, again, a decision about how to select G. In this case, the underlying model

is used to fit the data distribution and not for finding the groups in the data.

Therefore, the GRUM and GUM parameters are fitted based on the AIC selection.

TRIMAD consists of the Tukey’s Trimean and the MAD from the Trimean. Tukey’s

Trimean is a particularly effective measure of location in situations deviating from

symmetry. The Trimean and the MAD are very easy to compute, and they are robust

routine alternatives to the sampling estimators (SE). SE estimates are included as

non-robust benchmarks. There is a huge catalog of robust location-scale estimators

for one–dimensional data, and considering all of them is outside the scope of this

paper. GRUM and TRIMAD report the best performance, although, for larger

b Fig. 5 Barplots of the Monte Carlo estimates for outlier detection performance measures. Panel a–c refer
to sampling designs. Colors represent methods according to the bottom legend. Error bars are ‘‘1-
standard-error intervals’’ for the corresponding Monte Carlo estimate of TNR, TPR and Precision. Each
method classifies outliers (positives) based on the AIC selection.
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contamination rates, GRUM does better. Note that the nominal breakdown point of

the TRIMEAN is 25%. Therefore, in finite samples, we would expect a deterioration

of the performance even before p0 hits 25%. The GUM and AO’s problematic

performance was expected based on the outlier detection performance documented

in Fig. 5.

6 Applications to real data sets

This section presents an application of the GRUM method to the three data sets

introduced in Sect. 1. We considered G ¼ 1; 2; . . .; 10, and the corresponding AIC

and BIC values are shown in Fig. 9. GRUM’s hyperparameters are set as in the

numerical experiments of Sect. 9. In Fig. 9, the information criteria have been
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Fig. 6 Barplots of Monte Carlo estimates of misclassfication rates (%). Cluster is obtained fitting the
mixture model with the true G ¼ 2. Each panel (a)–(c) refers to a sampling design. Colors represent
methods according to the bottom legend. Error bars are ‘‘1-standard-error intervals’’ for the
corresponding Monte Carlo estimate.
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individually rescaled onto the interval [0,100] in order to ease the comparison.

Overall the ordering of the fitted models provided by the AIC and the BIC agrees

with some exceptions. ICL behaves differently, pursuing a more parsimonious

representation of the data distribution. The latter confirms the tendency of the ICL in

detecting clustered regions rather than the distribution fit pursued by the AIC and

the BIC. The BIC has the most monotonic behavior, whereas the ICL is on the

opposite side.

TiO2 concentration data. Both AIC and BIC choose G ¼ 2 Gaussian compo-

nents, while the estimated noise proportion p0 ¼ 1:526% The corresponding density

estimate is shown in Panel (a) of Fig. 10. With G ¼ 2 the GRUM fits two

overlapped Gaussian components with means ðl1; l2Þ ¼ ð0:3090:606Þ, variances
ðr21; r22Þ ¼ ð0:016; 0:032Þ, and proportions ðp2;p2Þ ¼ ð50:125%; 48:350%Þ. In the
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Fig. 7 Monte Carlo estimates of the proportion of times that the ICL selects a given G. Each panel a–
c refers to a sampling design. Colors represent methods according to the bottom legend.
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non-uniform part of the data distribution there seems to be some skewness rather

then a clustering structure.

The fact that GRUM fits a p0 [ 0 is an indication that the tail behavior of the

data distribution can be distinguished from the shape of the main part of the

distribution. ICL selects G ¼ 1, completely merging the previous two Gaussian

components fitted by both AIC and BIC. The interesting thing here is that the set of

points assigned to the uniform component remain unchanged under all three

information criteria.

The density fitted by both AIC and BIC is not dramatically different from that

produced by the kernel method shown in Panel (a) of Fig. 1. However, GRUM

provides a smoother approximation, although carefully looking at the density plot,

there is a discontinuity at the estimated b1.
PH of blood data. In Fig. 9 all three information criteria select G ¼ 1. GRUM

assigns 15.114% of the observed data to the uniform noise component. The latter

can be seen form the density estimate in Panel (b) of Fig. 10.

The GRUM’s mean estimate of the pH of Blood concentration is 38.71, while the

sample mean is 41.55. The GRUM estimates a pH of blood variance of 9.3, while

the sample variance is 74.54.
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Fig. 8 For the ASY design, we report barplots of the Monte Carlo estimates of the MSE for location and
scale estimators. The fitted model is selected based on the AIC. Error bars are ‘‘1-standard-error
intervals’’ for the corresponding Monte Carlo estimate. Competing methods are represented by colors
given in the bottom legend.
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Further checks showed that the GRUM method does not agree with some of the

best performing robust univariate location-scale estimators. For example the

optimal M-estimator computed at 95% efficiency (implemented in the
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Fig. 9 AIC, BIC and ICL information criteria for the GRUM method fitted on the real data sets
introduced in Sect. 1. The tree information criteria are individually rescaled onto the interval [0,100] in
order to ease the comparison. Panel a TiO2 (Titanium dioxide) concentration data set. Panel b pH of
blood data set Panel c realized volatility data set.
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Fig. 10 Density fitted with the GRUM method on the real data sets introduced in Sect. 1. G is selected
based on the AIC. Cluster=0 denotes points assigned to the uniform component. The remaining cluster
labels denote points assigned to the Gaussian components of the fitted model. Panel a TiO2 (Titanium
dioxide) concentration data set. Panel b pH of blood data set Panel c realized volatility data set.
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Fig. 11 Density fitted with the GRUM method on the real data sets introduced in Sect. 1. Here G is
selected based on the ICL. Cluster=0 denotes points assigned to the uniform component. The remaining
cluster labels denote points assigned to the Gaussian components of the fitted model. Panel a TiO2
(Titanium dioxide) concentration data set. Panel b pH of blood data set Panel c realized volatility data set.

123

Estimation and Computations for Gaussian mixtures... 451



RobStatTM package of Yohai et al. (2020)) estimates the distribution’s center at

39.96 and a squared dispersion (proxy for variance) of 14.29. Overall the density

fit shown in Panel (b) of Fig. 10 looks rather credible compared with Panel (b) of

Fig. 1.

Realized volatility data. The AIC and the BIC both agree on G ¼ 2 plus a

uniform noise component representing a small group of 3 data points (estimated

p0 ¼ 2:329%). See Panel (c) in Fig. 10. The effect of these 3 data points on the

optimal bandwidth estimation for kernel density is enormous. To see the latter,

Panel (c) in Fig. 10 is compared with Panel (c) in Fig. 1. With the G ¼ 2 selected by

AIC and BIC, the GRUM method fits two normal components of almost equal size

ðp1; p2Þ ¼ ð57:309%; 40:362%Þ, with means ðl1;l2Þ ¼ ð0:00092; 0:00255Þ, and

variances ðr21; r22Þ ¼ ð1:13�10�7; 1:04�10�6Þ.
As explained before, the GRUM’s d hyperparameter is always set to d ¼ 0:5 for

all computations in this paper. For this data set, the scale lower bound in terms of

the minimum variance would be 5:4�10�20. Hence, none of the fitted mixture

components hits the border of the parameter space. With G ¼ 2, we obtain a

multimodal density that may correspond to the low-vs-high volatility clusters of

stocks in the data sets. In this case, the two identified volatility clusters may be

conveniently used to transform a continuous notion (volatility) into two easy to

interpret categories that are particularly useful for risk analysts. In fact, in risk

analysis is not essential the absolute level of volatility but how the volatility of an

asset compares with the cross-sectional distribution at some time point. The three

outliers correspond to three exceptional risky assets traded on 28/Aug/1998, and

these are ‘‘Nationstar Mortgage HO’’, ‘‘Micron Technology’’ and ‘‘Intuit Inc’’.

The ICL chooses G ¼ 1, merging the two Gaussian components found by both

AIC and BIC. The set of identified outlying data remains almost unchanged except

that for one data point. We note that the ICL has a more ‘‘unstable’’ behavior

(Fig. 11).

7 Conclusions and final remarks

In this paper, we study a model that is a mixture where atypical observations on one

of the two tails are represented by a uniform noise component whose separation

from the main Gaussian components is controlled by the user. The proposed method

can be used for several purposes: cluster analysis, outlier identification, robust-

location scale estimation in unclustered populations, semiparametric density

estimation. As most flexible tools (e.g. robust estimators, nonparametric density

estimators, etc.), the GRUM method requires hyperparameters’ settings, and these

hyperparameters can be easily interpreted.

We showed theoretical results, and we supported the analysis with both artificial

data experiments and real data applications. The extension of the methods studied

here to the multidimensional setting is difficult both theoretically and computa-

tionally. High-dimensional analysis plays a crucial role in modern applications, but
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the proposed method is a valid tool for the many one-dimensional analysis that we

continue to perform routinely.

Appendix: Poofs of statements

Proof Proof of 1. The argument is organized in three steps. The idea of the proof is

as follows: first, we show that the mean, scale, and uniform parameters maximizing

Lnð�Þ are bounded (steps 1–3); the parameter space is compactified (step 4); the

discontinuity introduced by (b1; b2) is treated in step 5 where we show that the set of

all local maxima of Lnð�Þ is finite (step 5); the proof is concluded selecting the best

local maxima.

Step 1. Take h0 2 Hn with l0g �mn for some g ¼ 1; . . .;G. Consider the vector

h00 2 Hc that is equal to h0 except that now l00g ¼ minðxnÞ. This implies that

Lnðh0Þ � Lnðh00Þ. By analogy, l0g [ maxðxnÞ can be ruled out.

Let h0 be such that b01 ¼ minðxnÞ � e for some e[ 0, take also h00 be such that h00

is the same as h0 except that b001 ¼ minðxnÞ. This implies that Lnðh0Þ � Lnðh00Þ for
every e[ 0 such that the scale constraint is still satisfied. If the constraint cannot be

satisfied at b001 ¼ minðxnÞ, take b001 ¼ minðxnÞ � a with the smallest a[ 0 such

that the scale constraint is satisfied at b001, and note that Lnðh0Þ � Lnðh00Þ for any

choice e[ a. By the same arguments we can show that, in order to improve LnðhÞ,
either one chooses b2 ¼ maxðxnÞ, or if the scale constraints binds one chooses

b2 ¼ maxðxnÞ þ a with the smallest a[ 0 such that the scale constraint is satisfied.

Because of the scale constraint all standard deviations, including that of the

uniform component, are such that sg � smin [ 0, where smin ¼ expð�ndÞ. Step 1 and

2 imply that the optimal choice of h 2 Hn is such that all means and uniform

parameters will be finite. Because of the (RS) constraint

rg � smax ¼ mingfðb1 � lgÞ=cg\þ1.

Also note that for all h 2 Hn, the proportion parameters must belong to the

compact set P ¼ ½0; pmax� � ½0; 1�G.

Step 2. Fix smax\þ1, �1\a\b\þ1, and define the compact set _Hn �
Hn as

_Hn :¼ h 2 Hn j minðxnÞ� lg � maxðxnÞ; a� b1\b2 � b; smin � sg � smax; ;pg 2 P
� �

:

Based on Step 1, we conclude that suph2Hn
LnðhÞ ¼ suph2 _Hn

LnðhÞ for some suit-

able choice of smax; a; b. The latter means that the optimal solution to (6) belongs to

a compact subset of the parameter space.

Step 3. By applying Lemma 2 in Coretto and Hennig (2011), and taking into

consideration the additional (RS) constraint, we note that if ~h 2 _Hn is a local

maximum of LnðhÞ, then ð~b1; ~b2Þ either coincides with a pair of distinct points in xn,
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or ð~b1; ~b2Þ is such that ~b2 � ~b1 ¼
ffiffiffiffiffi
12

p
smin (the scale constraint binds) and ½~b1; ~b2�

contains at least one data point.

All possible values of the uniform parameters for which the corresponding h is a

candidate for a local maximum can be obtained from the previous argument. The

latter leads to only finitely many possible values for LnðhÞ. Consider the vector

tð~b1; ~b2Þ are fixed to be one of the many local maxima described in Step 3. Note that

tð~b1; ~b2Þ will be contained in a compact set because of previous Steps 1.

Lnðtð~b1; ~b2ÞÞ is continuous with respect to tð~b1; ~b2Þ for every choice ð~b1; ~b2Þ,
moreover since such tð~b1; ~b2Þ is contained in a compact set, then Lnðtð~b1; ~b2ÞÞ has a
well defined maximum. Applying this argument for all finitely many possible choice

of ð~b1; ~b2Þ, we can find all possible local maxima of LnðhÞ on _Hn, and hence among

these we get the global maximum.

Proof Proof of 2. The present framework is consistent with the setup of Tanaka and

Takemura (2006). For brevity we refer to Assumptions 1–4 in Tanaka and Take-

mura (2006) as TT1–TT4. It suffices to show that TT1–TT4 are satisfied in the case

considered in this paper. First notice that both the Gaussian density and the uniform

density have tails that that are of order smaller than oðjxj�qÞ for q[ 1, therefore

TT1 is satisfied. Also the Gaussian density and uniform density can be bounded

above inH, therefore TT2 is fulfilled. TT4 is also trivially satisfied because it can be

easily seen that
R
j logðf ðx; h0ÞÞjf ðx; h0Þdx\1. TT3 requires some specific care.

First TT3 is fulfilled if for any sequence fhðmÞg taken in a compact subset A � H

and h0 2 A such that hðmÞ ! h0, the limit f ðx; hðmÞÞ ! f ðx; h0Þ holds except perhaps
on a set E which may depend on h0 and of which the Lebesgue measure is zero.

Since f ð�Þ is a linear combination, it suffice to check the condition on the summands

on of f ð�Þ. /ð�Þ is continuous with respect to both x and parameter, however the

uniform distribution is discontinuous with respect the parameters for a given x.If

x 6¼ b01 and x 6¼ b02 TT3 holds because I½b1;ðmÞ;b2;ðmÞ�ðxÞ ! I½b01;b02�ðxÞ. However, the

latter is not true for the set E ¼ fx1 ¼ b01; x2 ¼ b02g. Hence, TT3 holds except that

for x 2 E that has zero Lebesgue measure. Since TT1–TT4 are fulfilled, Theorem 2

in Tanaka and Takemura (2006) holds which proves the result.

Proof Proof of 3. The proof just follows proof of Theorem 4 in Coretto and Hennig

(2011) by taking their q ¼ 1 and their gð�Þ ¼ /ð�Þ.

Proof Proof of 4. For now, we ignore the third constraint. We will show that any

solution to (10) without the third constraint will automatically fulfill it. The

objective function in (10) is strictly concave and the equality constraint is linear.

The Karush–Kuhn–Tucker (KKT) conditions are necessary for a globally optimal

solution (see) Bertsekas 1999. Such a solution will be a stationary point of the

Lagrangian function
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Kðhp; l1; l2Þ :¼ Qpðhp; hðsÞÞ þ l1 1�
XG

j¼0

pj

 !
þ l2ðpmax � p0Þ;

where l1 and l2 are the KKT dual variables. Let rg denote the gradient of Kð�Þ with
respect to the g-th component of hp. Let h

	
p the optimal solution. KKT conditions

establish that there exist ðl	1; h	2Þ such that the first order conditions are fulfilled for

all g, i.e.

rg Qpðh	p; h
ðsÞÞ � l	1 � l	2p

	
0 ¼ 0; for all g� 0; ð14Þ

and also the KKT’s complementary conditions are satisfied, that is

l	2ðp	0 � pmaxÞ ¼ 0; l	2 � 0: ð15Þ

Recall the notation T
ðsÞ
g ¼

Pn
i¼1 sgðxi; h

ðsÞÞ. Consider now an optimal solution that

does not hit the border of the parameter space, and label this solution ð~hp; ~l1; ~l2Þ. For
an interior solution ~l2 ¼ 0. Therefore, from (14) it holds true that T

ðsÞ
g =~pg � ~l1 ¼ 0

for all g� 0. Solve the latter for ~pg, use the equality constraint

~p0 þ ~p1 þ . . .;þ~pG ¼ 1, and also use the fact that
PG

g¼0 T
ðsÞ
g ¼ n, and obtain ~l1 ¼ n

and

~pg ¼
T
ðsÞ
g

n
for all g� 0: ð16Þ

Consider the second case when the optimal solution hits the border of the parameter

space, denote the border solution with ð�hp; �l1; �l2Þ. For a border solution �l2 [ 0. The

condition (14) implies again that T
ðsÞ
g =�pg � �l1 ¼ 0 for all g� 1. As before, solve the

previous equation for �pg, use the equality constraint �p1 þ �p2þ; . . .;þ�pG ¼ 1� �p0,

and obtain �l1 ¼
PG

g¼1 T
ðsÞ
g =ð1� �p0Þ. Since

PG
g¼1 T

ðsÞ
g ¼ n� T

ðsÞ
0 , then

�pg ¼
1� �p0

n� T
ðsÞ
0

T ðsÞ
g for all g� 1; and �p0 ¼ pmax: ð17Þ

Plug both the interior and the border solution, (16) and (17) respectively, into the

objective function Qpð�Þ and obtain

T
ðsÞ
0

n
log �p0ð Þ þ

XG

g¼1

T
ðsÞ
g

n
log

1� �p0

n� T
ðsÞ
0

TðsÞ
g

 !
�
XG

j¼0

T
ðsÞ
g

n
log

T
ðsÞ
g

n

 !
;

which holds with equality if and only if �p0 ¼ ~p0 ¼ T
ðsÞ
0 =n. Therefore, if the interior

solution is feasible, that is if �p0 ¼ T
ðsÞ
0 =n� pmax, the objective function is globally

maximized by (16). If this is not the case, i.e. T
ðsÞ
0 [ npmax, the optimal solution is

(17). The proof is completed by noting that the selection between (16) and (17),

corresponds to the updating rules (M2a) and (M2b).
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Proof Proof of 5. First we need to show that for every pair fxðrÞi ; x
ðrÞ
j g 2 xn such that

x
ðrÞ
i \x

ðrÞ
j and x

ðrÞ
j � x

ðrÞ
i �

ffiffiffiffiffi
12

p
expð�ndÞ, it happens that Lnðhðsþ1ÞÞ[ LnðhðsÞÞ for

every s ¼ 1; 2; . . .. Using Theorem 4.1 in Redner and Walker (1984) it suffices to

show that Qðhðsþ1Þ; hðsÞÞ �QðhðsÞ; hðsÞÞ.
Consider the decomposition of Qð�Þ in equation (9). For every pair fxðrÞi ; x

ðrÞ
j g,

h0u ¼ ðxðrÞi ; x
ðrÞ
j Þ 2 Hn because the initialization step is constructed so that the initial

uniform parameters are contained in Hn. Moreover, because of 3 the algorithm does

not update the uniform parameters and Quðhðsþ1Þ
u ; hðsÞÞ ¼ QuðhðsÞu ; hðsÞÞ ¼

Quðh
ð0Þ

u ; hðsÞÞ for any s ¼ 1; 2; . . ..

Now consider the optimization program M1. By construction hðsþ1Þ
/ 2 Xn.

Observe that the objective function is concave and the inequality constraints are

linear, therefore a global optimal solution exists (see) Bertsekas 1999. This implies

that for all s ¼ 1; 2; . . ., Q/ðhðsþ1Þ
/ ; hðsÞ/ Þ�QðhðsÞ/ ; hðsÞ/ Þ.

By 4, the M2-steps, i.e. M2a and M2b, solve the optimization program (10).

Therefore Qpðhðsþ1Þ
p ; hðsÞp Þ�QðhðsÞp ; hðsÞp Þ. Hence, each component of Qðh; hðsÞÞ is

increased or let constant in each step, therefore Qðhðsþ1Þ; hðsÞÞ �QðhðsÞ; hðsÞÞ which,
by Theorem 4.1 in Redner and Walker (1984) implies that fLnðhðsÞg is a mono-

tonically increasing sequence. And this proves part 1 of the statement.

Because of the compactness of Hn, and since 1 guarantees that a maximum of

Lnð�Þ exists, the sequence fhðsÞg converges to a stationary point in Hn by Theo-

rem 4.1 in Redner and Walker (1984). The latter proves the second part of the

statement.
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