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Abstract
Consider a data set as a body of evidence that might confirm or disconfirm a hypothesis

about a parameter value. If the posterior probability of the hypothesis is high enough,

then the truth of the hypothesis is accepted for some purpose such as reporting a new

discovery. In thatway, the posterior probabilitymeasures the sufficiencyof the evidence

for accepting the hypothesis. It would only follow that the evidence is relevant to the

hypothesis if the prior probability were not already high enough for acceptance. A

measure of the relevancy of the evidence is the Bayes factor since it is the ratio of the

posterior odds to the prior odds. Measures of the sufficiency of the evidence and mea-

sures of the relevancy of the evidence are not mutually exclusive. An example falling in

both classes is the likelihood ratio statistic, perhaps based on a pseudolikelihood func-

tion that eliminates nuisance parameters. There is a sense in which the likelihood ratio

statistic measures both the sufficiency of the evidence and its relevancy. That result is

established by representing the likelihood ratio statistic in terms of a conditional pos-

sibility measure that satisfies logical coherence rather than probabilistic coherence.

Keywords Deductive closure � Deductive cogency � General law of

likelihood � Likelihood paradigm � Possibility measure � Possibility
theory � Pure likelihood methods � Restricted parameter space � Strength
of statistical evidence

A DOG, crossing a bridge over a stream with a piece of flesh in his mouth, saw
his own shadow in the water and took it for that of another Dog, with a piece of
meat double his own in size. He immediately let go of his own, and fiercely
attacked the other Dog to get his larger piece from him. He thus lost both: that
which he grasped at in the water, because it was a shadow; and his own,
because the stream swept it away.
(Aesop’s Fables, translated by George Fyler Townsend, Amazon Digital

Services, Inc., p. 18)
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1 Introduction

Scientists seek to publish observations that constitute sufficient evidence to accept a

theory or a working hypothesis as a contribution to scientific knowledge. That

contrasts with the position of Fisher that a null hypothesis can be rejected but never

accepted, as Patriota (2017) discussed. The disagreement may be more apparent

than real. For example, there is nothing self-contradictory about accepting a

scientific theory as a working hypothesis because it is consistent with a 99%

confidence interval. Even though each of those parameter values, when considered

as a null hypothesis, has a p value greater than 0.01, none is accepted for that reason

alone.

For measuring the strength of evidence involving scientific or statistical

hypotheses, the likelihood paradigm may have advantages over the frequentist

and Bayesian paradigms (Edwards 1992; Royall 1997; Blume 2011; Bickel 2012;

Rohde 2014). In this paradigm, the likelihood ratio serves as a measure of the

strength of statistical evidence for one hypothesis over another through the lens

of a family of distributions (Royall 1997, 2000a). That differs from the more

familiar uses of the likelihood function as a tool for the construction of point

estimators, p values, confidence intervals, and posterior probabilities. It has been

used to analyze data both in basic domains such as genetics (Strug and Hodge

2006a, b; Strug et al. 2007; Hodge et al. 2011; Strug et al. 2010; Strug 2018)

and in more applied domains such as health care (Blume 2002; Hoch and Blume

2008). Rohde (2014) provides an accessible exposition of the likelihood

paradigm.

The paradigm has roots in the likelihood intervals of R. A. Fisher. In a certain

sense, a scalar parameter value h is ‘‘consistent with the observations’’ at some level

K if and only if h� Kð Þ� h� hþ Kð Þ, where h� Kð Þ; hþ Kð Þ
� �

is the interval of

parameter values with likelihood within a factor of K of the maximum likelihood,

provided that K[ 1 (Royall 1997, p. 26). For example, Fisher (1973, pp. 75–76)

considered K ¼ 2; 5; 15, flagging parameter values outside the h� Kð Þ; hþ Kð Þ
� �

intervals as ‘‘implausible’’ and those outside even the h� 15ð Þ; hþ 15ð Þ
� �

interval as

‘‘obviously open to grave suspicion’’ (cf. Barnard 1967; Hoch and Blume 2008). In

that context, Fisher (1973, p. 71; cf. 74–75) remarked that the p value is ‘‘not very

defensible save as an approximation’’ (see Bickel and Patriota 2019). Royall (1997)

instead used K ¼ 23 for strong evidence and K ¼ 25 for very strong evidence;

Bickel and Rahal (2019) suggest additional gradations. For vector parameters, the

level-K likelihood set is the set of parameter values with likelihood within a factor

of K of the maximum likelihood.

Just as nested confidence sets may be inverted to define a p value for each

parameter value, likelihood sets may be inverted to obtain the likelihood ratio of

each parameter value relative to the maximum likelihood. Edwards (1992) and

Royall (1997) interpreted the likelihood ratio as the strength of evidence, carefully

limiting the scope to comparisons between simple (point) hypotheses, in which case

the Bayes factor is the likelihood ratio. According to the (special) law of likelihood
attributed to Hacking (1965), the likelihood ratio between two simple hypotheses
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quantifies the strength of evidence of one hypothesis over the other, apart from prior

distributions, loss functions, and the sample size (Edwards 1992; Royall 1997). This

contrasts with the more generally applicable practice of measuring statistical

evidence for general hypotheses with the Bayes factor (cf. Jeffreys 1948).

The primary motivation for the limitation to simple hypotheses was to avoid

specifying the prior distributions needed to define a Bayes factor for composite

hypotheses, for the Bayes factor is the ratio of the likelihood means with respect to a

prior distribution conditional on each hypothesis compared. To achieve applicability

to composite hypotheses without a prior distribution of the interest parameter, the

prior mean likelihood given each composite hypothesis is replaced with the

maximum likelihood over the parameter values of each composite hypothesis. The

resulting ratio of maximum likelihoods is interpreted as the weight of the statistical

evidence that supports one composite hypothesis over another under the general law
of likelihood (Bickel 2012, §2.2.3), applicable to pseudolikelihood as well as to

likelihood. For instance, K is the weight of the evidence substantiating the

hypothesis that h� Kð Þ� h� hþ Kð Þ over the hypothesis that h 62 h� Kð Þ; hþ Kð Þ
� �

.

Denoting the function for the weight of evidence by W, that can be concisely

expressed as

W h� Kð Þ; hþ Kð Þ
� �

; h� Kð Þ; hþ Kð Þ
� �c� �

¼ K; ð1Þ

where the complement h� Kð Þ; hþ Kð Þ
� �c

is �1; h� Kð Þ� ½ [ hþ Kð Þ;1
� �

. With an

eye toward clinical trials, Zhang and Zhang (2013a) recommended a special case of

the general law for regular models and sufficiently large samples. Motivated by

different concerns, Dubois et al. (1997), Walley and Moral (1999), Giang and

Shenoy (2005), and Coletti et al. (2009) had previously considered a general form

of L h� Kð Þ; hþ Kð Þ
� �� �

, the normalized maximum likelihood of the hypothesis that

h� Kð Þ� h� hþ Kð Þ.

Example 1 Bickel(2012, Example 4, altered). Let h represent a cosmological

theory, with h ¼ 0 for the big bang theory and h ¼ 1 for the steady state theory. Let

f0 xð Þ ¼ 2�3 and f1 xð Þ ¼ 2�7 be the probabilities of the sample x of astronomical

data under h ¼ 0 and h ¼ 1, respectively. More generally, with h as any real

number, each corresponding to an astronomical theory, suppose the probability of

observing x given a theory would be

fh xð Þ ¼
2�3 if h ¼ 0

2�7 if 0\h� 1

0 otherwise

8
><

>:
:

The maximum likelihood estimate is bh ¼ 0 since f0 xð Þ[ fh xð Þ for all h 6¼ 0. For

K ¼ 23 and K ¼ 25, the likelihood intervals are
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h� 23
� �

; hþ 23
� �� �

¼ h : fbh xð Þ=fh xð Þ� 23
n o

¼ 0; 0½ �;

h� 25
� �

; hþ 25
� �� �

¼ h : fbh xð Þ=fh xð Þ� 25
n o

¼ 0; 1½ �:

The weight of the evidence substantiating the big bang theory as opposed to the set

of all other theories is

W 0f g; h : h 6¼ 0f gð Þ ¼ f0 xð Þ
suph6¼0 fh xð Þ ¼

2�3

2�7
¼ 24:

Likewise, the weight of the evidence substantiating the big bang theory as opposed

to the set of all theories, including the big bang, is

W 0f g;Hð Þ ¼ f0 xð Þ
suph fh xð Þ ¼

2�3

2�3
¼ 1;

in which H is the real line.

This example can be extended to problems of null hypothesis significance testing

by letting h ¼ 0 correspond to the null hypothesis. N

Although the general law of likelihood overcomes multiplicity paradoxes without

resorting to a prior distribution and has been applied to genomics data (Bickel 2012;

Bickel and Rahal 2019) and genetics data (Strug 2018), it remains controversial.

Blume (2013), while advocating the special law of likelihood, does not recognize a

need for assigning a strength of evidence to a composite hypothesis, maintaining

that the level-K likelihood set simply indicates which distributions are better

supported than the others by the data (cf. Zhang and Zhang 2013b).

Further, it is often thought that the likelihood ratio cannot be directly compared

to a fixed threshold K but that it requires calibration (Severini 2000; Kalbfleisch

2000; Morgenthaler and Staudte 2012; Spanos 2013). For example, Vieland and

Seok (2016) made several adjustments to the case of L �ð Þ defined in Zhang and

Zhang (2013a). Frequentist calibrations include those that Bickel (2018) bases on

the fixed-confidence likelihood intervals of Sprott(2000, §5.3), and Patriota (2013)

proposed a quantity based on the likelihood ratio test. Frequentist calibration would

indeed be needed to achieve specified repeated-sampling coverage rates since a

level-K likelihood set can cover the true value of the parameter with much less than,

say, 95% confidence even if K is relatively high. Likewise, from a Bayesian

perspective, a level-K likelihood set can have a very low posterior probability.

Largely due to those concerns, the most commonly used extension of the special

law of likelihood to composite hypotheses is the Bayes factor rather than the general

law’s W �; �ð Þ. Being defined as the posterior odds divided by the prior odds, the

Bayes factor captures the intuitive appeal of the special law. Indeed, Edwards

(1992) commended the special law for its compatibility with data analyses in the

presence of priors, and Royall (2000b) interpreted the likelihood ratio as the Bayes

factor for the case of comparing two simple hypotheses. To overcome the objection

against the Bayes factor as a measure of evidence for composite hypotheses, Bickel

(2013a) presented general classes of prior-free approximations to Bayes factors.
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The Bayes factor is a well known measure of how relevant the data are when

considered as evidence for or against a composite hypothesis. The degree of that

relevance is known as the relevancy of the evidence to whether some hypothesis is

true (Koehler 2002). The many other proposed measures of the relevancy of the

evidence include the relative belief ratio, which is the posterior probability of a

hypothesis divided by its prior probability (Evans 2015), and the relevance measure
of Carnap (1962, §67); see Koscholke (2017).

The data or other evidence can be relevant to the truth of a hypothesis without

warranting the conclusion that the hypothesis is true or the conclusion that it is false.

That is why the relevancy of the evidence, also called the probative value of the

evidence, is distinguished from the sufficiency of the evidence to justify drawing a

conclusion about the hypothesis (Kaye and Koehler 2003). (The concept of

sufficient evidence should not be confused with the idea of sufficient statistics. The

evidence is sufficient to reach a conclusion if there is enough information in the data

to come to the conclusion. The sufficiency of a data set as evidence is its

‘‘enoughness’’ for drawing a conclusion about a hypothesis.)

While the Bayes factor succeeds in quantifying the relevancy of the data to the

truth of the hypothesis, it fails to quantify the sufficiency of the data to warrant a

conclusion about the hypothesis (Lavine and Schervish 1999). Conversely, the

posterior probability and the posterior odds of a hypothesis quantify the sufficiency

of the data to justify a conclusion but not the relevancy of the data. Fiducial

probability defined as an observed confidence level is an alternative measure of the

sufficiency of the evidence (Bickel 2011).

Nonetheless, the Bayes factor qualifies as a measure of the sufficiency of the data

as well as its relevancy when the prior probability of the hypothesis is fixed at 50%,

for the Bayes factor is then equal to the posterior odds. The commonly used

thresholds for Bayes factors to achieve certain scales of evidence were originally

intended for that case (Jeffreys 1948).

Another measure of both the sufficiency and relevancy of data is the weight of

evidence under the general law of likelihood, defined in Section 2. That section also

defines a generalization of L �ð Þ as a particular conditional possibility measure that is

dual to a necessity measure, as those terms are used in possibility theory (§2.2).

Section 3 derives the general law from idealizations of sufficiency and relevancy as

opposed to the idealization of inference to the best explanation found in Bickel

(2012). Section 4 summarizes the paper’s developments.

Appendix A of Bickel (2019) contrasts this paper’s approach to possibility theory

with the interpretation of possibility as an upper probability. Walley and Moral

(1999) used the latter interpretation to argue against an application of possibility

theory.
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2 Weight of evidence

2.1 Preliminary notation and definitions

Let x denote an observed scalar, vector, or matrix in some set X of possible

observations. This x, a realization of a random element X, may be a statistic that

depends on other observations.

Consider a set H and a family of density functions fh0 : h0 2 Hf g such that the

parameter is identifiable in the sense that fh0 6¼ fh (except in a set of measure zero)

for all h0; h 2 H : h0 6¼ h. If the interest parameter value were equal to h, then fh xð Þ
would be the probability density or probability mass of the observation that X ¼ x.
The likelihood function ‘ is a function on H such that ‘ hð Þ is proportional to fh xð Þ
for all h 2 H. Thus, the maximum likelihood estimate is

bh ¼ arg sup
h2H

‘ hð Þ ¼ arg sup
h2H

fh xð Þ;

where the supremum rather than the maximum will be used throughout in case H or

a subset used in its place is not a closed set; see Example 4 of Sect. 2.4.

The function ‘ may be any pseudo-likelihood function such that ‘ hð Þ is

approximately proportional to a probability density for every h 2 H. Thus, ‘ may be

a marginal, conditional, estimated, or integrated likelihood, eliminating a nuisance

parameter. If the profile likelihood does not approximate a density for a particular

model, it may nevertheless be corrected to approximate a conditional or marginal

likelihood in certain cases (Severini 2000, pp. 310–312, 323). The prefix ‘‘pseudo’’

is somewhat misleading: even the ‘‘true’’ likelihood function might be considered a

pseudo-likelihood function since a statistical model cannot completely capture the

data-generation process (Lindsey 1996, §6.5).

An anonymous reviewer suggested letting ‘ be an extended likelihood function

(Bjornstad 1990) or a hierarchical likelihood function (Lee and Nelder 1996; Lee

et al. 2006) for applications to predicting random quantities of interest. The

relationship between that approach to random parameters and the distinction that

Bickel (2012) made between complex hypotheses and intrinsically simple

hypotheses has not been investigated.

Each hypothesis about h may be expressed as ‘‘h 2 H’’ for an H � H. Thus, all

possible hypotheses about h correspond to members of H, a set of subsets of H. For

example, if H is the real line, H is the set of Borel subsets of H, and 0f g is the

complement Hn 0f g of 0f g, then the hypothesis that h 6¼ 0 is the hypothesis that

h 2 0f g, corresponding to the subset 0f g, which is a member of H.

A restricted parameter space (Mandelkern 2002; Zhang and Woodroofe 2003;

Marchand and Strawderman 2004; Wang 2006; Wang 2007; Marchand and

Strawderman 2013; Marchand and Strawderman 2006; Fraser 2011; Bickel 2020a;

Bickel and Patriota 2019; Bickel 2020b) is denoted by R, a measurable subset of H.

In order to overcome pathology, R is assumed to have at least one parameter value.

That assumption is reasonable since a restricted parameter space in a real
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application would only be empty if the statistical model were inadequate for the

purpose at hand.

2.2 Likeliness and unlikeliness

For any H 2 H and R 2 Hn ;f g, call

L Hð Þ ¼ suph2H ‘ hð Þ
suph2H ‘ hð Þ ¼

suph2H fh xð Þ
suph2H fh xð Þ ð2Þ

the marginal likeliness of the hypothesis that h 2 H and, if L Rð Þ[ 0,

L HjRð Þ ¼ L H\Rð Þ
L Rð Þ ð3Þ

the conditional likeliness of the hypothesis that h 2 H given h 2 R (Bickel and

Rahal 2019). Here, the supremum is the least upper bound in ½0;1½, sup ; � 0. It

follows that L Hð Þ 2 0; 1½ � and L HjRð Þ 2 0; 1½ �.
The likeliness of a hypothesis is insufficient as a measure of its strength of

evidence since the likeliness of the hypothesis’s alternative must also be considered.

For that reason, it is convenient to define the marginal unlikeliness of the hypothesis

that h 2 H as U Hð Þ ¼ L H
� �

and the conditional unlikeliness of the hypothesis that

h 2 H given h 2 R as U HjRð Þ ¼ L HjR
� �

, where H is the complement of H. The

likeliness and unlikeliness of a hypothesis are combined into a single measure of

evidence in Section 2.4. According to possibility theory, L �ð Þ is a possibility

measure, and 1� U �ð Þ is a necessity measure (Bickel and Rahal 2019).

Example 2 Example 1, continued. The marginal likeliness of the big bang theory is

L 0f gð Þ ¼ f0 xð Þ
suph2H fh xð Þ ¼

2�3

2�3
¼ 1:

Likewise, the conditional likeliness of the big bang theory, given that the truth is

between the big bang theory and the steady state theory, is

L 0f gj 0; 1½ �ð Þ ¼ L 0f gð Þ
L 0; 1½ �ð Þ ¼

f0 xð Þ
suph2 0;1½ � fh xð Þ ¼

2�3

2�3
¼ 1: ð4Þ

In the same way, the marginal likeliness that the true theory is any other theory is

L h : h 6¼ 0f gð Þ ¼
suph6¼0 fh xð Þ
suph2H fh xð Þ ¼

2�7

2�3
¼ 2�4;

and the conditional likeliness that the true theory is any theory other than the big

bang theory, given that the truth is between the big bang theory and the steady state

theory, is
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L h : h 6¼ 0f gj 0; 1½ �ð Þ ¼ L h 2 0; 1½ � : h 6¼ 0f gð Þ
L 0; 1½ �ð Þ ¼

sup0\h� 1 fh xð Þ
suph2 0;1½ � fh xð Þ ¼ 2�7

2�3
¼ 2�4:

ð5Þ

A more extreme case is the conditional likeliness for the truth of a theory between

the big bang theory and the steady state theory, given the truth of a theory between

the big bang theory and the steady state theory:

L 0; 1½ �j 0; 1½ �ð Þ ¼ L 0; 1½ � \ 0; 1½ �ð Þ
L 0; 1½ �ð Þ ¼ L 0; 1½ �ð Þ

L 0; 1½ �ð Þ ¼ 1: ð6Þ

Finally, the conditional likeliness for the falsity of every theory between the big

bang theory and the steady state theory, given the truth of a theory between the big

bang theory and the steady state theory, is

L h : h 62 0; 1½ �f gj 0; 1½ �ð Þ ¼ L h : h 62 0; 1½ �f g \ 0; 1½ �ð Þ
L 0; 1½ �ð Þ ¼ 0

2�3
¼ 0 ð7Þ

since h : h 62 0; 1½ �f g \ 0; 1½ � ¼ ;. N

2.3 Marginal and conditional weight of evidence

Suppose H1;H2 2 H. According to the general law of likelihood (§1), the weight of
evidence in the observation that X ¼ x substantiating the hypothesis that h 2 H1, as

opposed to the hypothesis that h 2 H2, is the extended real number

W H1;H2ð Þ ¼

suph2H1
‘ hð Þ

suph2H2
‘ hð Þ ¼

suph2H1
fh xð Þ

suph2H2
fh xð Þ if suph2H1

‘ hð Þ	 0; suph2H2
‘ hð Þ[ 0

1 if suph2H1
‘ hð Þ[ 0; suph2H2

‘ hð Þ ¼ 0

1 if suph2H1
‘ hð Þ ¼ 0; suph2H2

‘ hð Þ ¼ 0

8
>>><

>>>:

ð8Þ

That will be called the marginal weight of evidence to distinguish it from the

conditional weight of evidence, defined below. For a simple special case, recall

Eq. (1) of the introduction. If f� xð Þ is a profile likelihood function and

W H1;H2ð Þ 6¼ 1, then W H1;H2ð Þ reduces to the quantity considered by Zhang and

Zhang (2013a), as discussed in Bickel (2013b).

In the rest of this paper, likelihood ratios with a denominator of 0 are to be

understood in analogy with Eq. (8) to prevent explicitly listing all the cases.

Example 3 shows how a 0 might appear in the denominator.

The conditional weight of evidence in the observation that X ¼ x substantiating

the hypothesis that h 2 H1 as opposed to the hypothesis that h 2 H2 given h 2 R is

W H1;H2jRð Þ ¼ W H1 \R;H2 \Rð Þ ð9Þ

for all H1;H2;R 2 H such that L Rð Þ[ 0. This is connected to the likeliness of

Section 2.2 as follows.
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Theorem 1 For any H1;H2;R 2 H such that L Rð Þ[ 0,

W H1;H2jRð Þ ¼ L H1jRð Þ
L H2jRð Þ : ð10Þ

For any set H0 � H such that
S

H02H0
H0 ¼ H,

L HjRð Þ ¼ suph2H\R fh xð Þ
suph2R fh xð Þ ¼ sup

H02H0

L H0jRð Þ: ð11Þ

As Bickel and Rahal (2019) claimed, for any partition P � H of H such that
L Rð Þ[ 0 for all R 2 P,

L Hð Þ ¼ sup
R2P

L Rð ÞL HjRð Þ: ð12Þ

Proof By equs. (2, 8 and 9),

W H1;H2jRð Þ ¼
suph2H1\R fh xð Þ
suph2H2\R fh xð Þ ¼

suph2H1\R fh xð Þ= suph2R fh xð Þ
suph2H2\R fh xð Þ= suph2R fh xð Þ ;

which is the right-hand side of Eq. (10) according to Eq. (3). Equation (2 and 3)

imply that

L HjRð Þ ¼ L
[

H02H0

H0jR
 !

¼
supH02H0

suph2H0\R fh xð Þ
suph2R fh xð Þ ¼ sup

H02H0

suph2H0\R fh xð Þ
suph2R fh xð Þ ;

yielding L HjRð Þ ¼ supH02H0
L H0jRð Þ. The other portion of formula (11) is

established by substituting hf g : h 2 Hf g for H0. Since P � H is a partition,

L Hð Þ ¼ L H \Hð Þ ¼ L H \
[

R2P
R

 !

¼ L
[

R2P
H \Rð Þ

 !

¼ L
[

R02P Hð Þ
R0

0

@

1

A;

where P Hð Þ ¼ R 2 P : R 
 Hf g. Thus, using Eq. (11),

L Hð Þ ¼ sup
R02P Hð Þ

L R0ð Þ ¼ sup
R2P

L H\Rð Þ ¼ sup
R2P

L Rð ÞL HjRð Þ;

with the last equality following from Eq. (3). h

Example 3 Example 2, continued. The conditional weight of evidence substanti-

ating the big bang theory, as opposed to the hypothesis that the truth is any other

theory, given that the truth is between the big bang theory and the steady state

theory, is
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W 0f g; h : h 6¼ 0f gj 0; 1½ �ð Þ ¼ L 0f gj 0; 1½ �ð Þ
L h : h 6¼ 0f gj 0; 1½ �ð Þ ¼ 24 ð13Þ

according to equs. (4–5) and (10). Similarly, the conditional weight of evidence

substantiating the truth of a theory between the big bang theory and the steady state

theory, given the truth of a theory between the big bang theory and the steady state

theory, is

W 0; 1½ �j 0; 1½ �ð Þ ¼ W 0; 1½ �; h : h 62 0; 1½ �f gj 0; 1½ �ð Þ ¼ L 0; 1½ �j 0; 1½ �ð Þ
L h : h 62 0; 1½ �f gj 0; 1½ �ð Þ ¼

1

0
¼ 1

by equs. (6, 7). N

Equation (11) is the foundation of the multiple hypothesis method of Bickel and

Rahal (2019).

2.4 Absolute weight of evidence

The strength of evidence favoring the hypothesis that h 2 H can also be quantified

without explicit reference to a second hypothesis by taking that second hypothesis to

be the alternative to the first (i.e., the hypothesis that h 62 H). The conditional
weight of evidence in the observation that X ¼ x substantiating the hypothesis that

h 2 H given h 2 R is W HjRð Þ ¼ W H;HjR
� �

. Likewise, the marginal weight of

evidence in the observation that X ¼ x substantiating the hypothesis that h 2 H is

W Hð Þ ¼ W HjHð Þ.
The word ‘‘absolute’’ could be added to those terms to prevent confusion with the

terms defined in Sect. 2.3. Doing so, however, could make them too cumbersome to

use in practice. The conditional and marginal weights of evidence are instead

designated as absolute by the absence of the relative hypothesis. For example,

whereas

marginal weight of evidence substantiating the big bang theory

is absolute,

marginal weight of evidence substantiating the big bang theory as

opposed to the steady state theory

is relative. The words ‘‘absolute’’ and ‘‘relative’’ would then be redundant but could

be added as needed for additional clarity.

Corollary 1 Under the assumptions of Theorem 1, for any H;R 2 H,

W HjRð Þ ¼ L HjRð Þ
U HjRð Þ ¼

L H \Rð Þ
L RnHð Þ ¼ suph2H\R fh xð Þ

suph2RnH fh xð Þ ð14Þ
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W HjRð Þ ¼
supR2P L Rð ÞL HjRð Þ
supR2P L Rð ÞL HjR

� � : ð15Þ

Proof The claims followdirectly fromU HjRð Þ ¼ L HjR
� �

and fromequs. (2, 10, 12).

h

Example 4 Examples 1, 2, and 3, continued. The conditional weight of evidence

substantiating the big bang theory, given that the truth is between the big bang

theory and the steady state theory, is

W 0f gj 0; 1½ �ð Þ ¼ W 0f g; h : h 6¼ 0f gj 0; 1½ �ð Þ ¼ 24

by Eq. (13). In the same way, the conditional weight of evidence substantiating the

truth of a theory between the big bang theory and the steady state theory, given the

truth of a theory between the big bang theory and the steady state theory, is

W 0; 1½ �j 0; 1½ �ð Þ ¼ W 0; 1½ �; h : h 62 0; 1½ �f gj 0; 1½ �ð Þ ¼ L 0; 1½ �j 0; 1½ �ð Þ
L h : h 62 0; 1½ �f gj 0; 1½ �ð Þ ¼

1

0
¼ 1

by Eqs. (6, 7). N

Equation (14) (Bickel and Rahal 2019) indicates that W HjRð Þ is a coherent

measure of evidence in the sense to be defined in Sect. 3. As will be seen, that

property supports calling W HjRð Þ the weight of evidence.

2.5 Likeliness and unlikeliness from the weight of evidence

While the weight of evidence is the ratio of the likeliness to the unlikeliness (14), it

is convenient in some applications to derive the likeliness and unlikeliness from the

weight of evidence.

Lemma 1 Given H;R 2 H such that L Rð Þ[ 0, it follows that L HjRð Þ ¼ 1 and

U HjRð Þ ¼ 1
W HjRð Þ if W HjRð Þ	 1 but that L HjRð Þ ¼ W HjRð Þ and U HjRð Þ ¼ 1 if

W HjRð Þ\1.

Bickel and Rahal (2019) proves the result and relates it to the theory of ranking

functions treated in Spohn (2012, §5.2).

3 Derivation from coherence and Bayes compatibility

3.1 Theory of coherence and Bayes compatibility

Let P stand for a probability measure on H� X ;H � Xð Þ, where X is a r-algebra of
subsets of X , and H � X is the smallest r-field that contains H � X. Consider a

random parameter # of prior distribution P0 ¼ P � � Xð Þ on H;Hð Þ such that the

posterior probability that # 2 H is
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P # 2 Hjxð Þ ¼
P0 # 2 Hð Þ

R
H fh xð ÞdP0 hjHð Þ

R
fh xð ÞdP0 hð Þ :

This is considered a function of P such that, if Q were the joint distribution on

H� X ;H � Xð Þ, the posterior distribution would be Q # 2 Hjxð Þ with Q in place of

P and Q0 ¼ Q � � Xð Þ in place of P0. The increase in the odds ratio due to the

observation that X ¼ x in favor of the hypothesis that h 2 H given h 2 R is the ratio

of the conditional posterior odds to the conditional prior odds:

D H;PjRð Þ ¼ P # 2 Hjx;Rð Þ=P # 62 Hjx;Rð Þ
P0 # 2 HjRð Þ=P0 # 62 HjRð Þ ¼

R
H\R fh xð ÞdP0 hjH;Rð Þ
R
RnH fh xð ÞdP0 hjH;R

� � : ð16Þ

The conditional Bayes factor B HjRð Þ as a function of H and R, is defined such that

B HjRð Þ ¼ D H;PjRð Þ for some fixed probability measure P on H� X ;H � Xð Þ.
The requirement of Edwards (1992) that a measure of support for one hypothesis

over another be compatible with Bayes’s theorem is generalized to composite

hypotheses by the following definition, differing from the generalization that often

forbids accepting a hypothesis of sufficiently high weight of evidence (Bickel

2013a). Any function u : H2 ! 0;1½ � measures the odds ratio increase due to the

observation that X ¼ x if, for every H 2 H, there is a probability measure PH on

H;Hð Þ such that

u HjRð Þ ¼ D H;PHjRð Þ ð17Þ

for all R 2 H satisfying L Rð Þ[ 0. Functions that measure the odds ratio increase

quantify the relevancy of the body of evidence to whether or not a hypothesis is true.
On the other hand, a property of a measure of the sufficiency of the body of

evidence for concluding that a hypothesis is true is the avoidance of asserting that

contradictory statements are individually supported by the evidence (Schervish

1996; Lavine and Schervish 1999; Zhang and Zhang 2013a). More generally, the

functions v : H ! 0;1½ � and v : H2 ! 0;1½ � are logically coherent if

v H0ð Þ� v H1ð Þ () h 2 H0)h 2 H1ð Þ ð18Þ

v H0jRð Þ� v H1jRð Þ () h 2 H0 \R)h 2 H1 \ Rð Þ ð19Þ

for allH0;H1 2 H and allR 2 H. The main Bayesian logically coherent measure is

the posterior probability. A frequentist logically coherent measure is the compati-

bility or c value, a generalization of the p value (Bickel and Patriota 2019).

In short, whereas the odds ratio increase quantifies the relevancy of the evidence,

logical coherence is a minimal requirement of a measure of the sufficiency of

evidence. Putting them together leads to the following definition and theorem.

Definition 1 A function w : H2 ! 0;1½ � measures the relevancy and sufficiency of

the evidence if it both measures the odds ratio increase and is logically coherent.
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Theorem 2 If bhH\R ¼ arg suph2H\R fh xð Þ and bhRnH ¼ arg suph2RnH fh xð Þ are

unique, then a function w : H2 ! 0;1½ � measures the relevancy and sufficiency
of the evidence if and only if it is the weight of evidence function W �j�ð Þ.

Proof ð(Þ. The following statements apply for all H;H0;H1 2 H and all R 2 H.

Let d �; bhH\R

� �
and d �; bhRnH

� �
denote the Dirac probability measures on H;Hð Þ

with mass at bhH\R and bhRnH, respectively. By Eq. (14),

W HjRð Þ ¼

R
fh xð Þdd h; bhH\R

� �

R
fh xð Þdd h; bhRnH

� � : ð20Þ

There is a probability measure P on H� X ;H � Xð Þ such that P0 �jH;Rð Þ ¼

d �; bhH\R

� �
and P0 �jH;R

� �
¼ d �; bhRnH

� �
, in which case Eqs. (16, 20) imply that

W HjRð Þ ¼ D H;PjRð Þ. Thus, W �j�ð Þ measures the odds ratio increase. The fact

that W H0;Rð Þ�W H1;Rð Þ if and only if H0 
 H1 demonstrates Eq. (19).

Therefore, W �j�ð Þ is logically coherent. Thus, both criteria of Definition 1 are

satisfied.

)ð Þ. Let w : H2 ! 0;1½ � denote a function that measures the relevancy and

sufficiency of the evidence. By Definition 1, w both measures the odds ratio

increase and is logically coherent. Assume that there are H 2 H and R 2 H and,

contrary to the w ¼ W claim and Eq. (14), such that

w HjRð Þ 6¼ suph2H\R fh xð Þ
suph2RnH fh xð Þ ð21Þ

in order to prove the claim by contradiction. Since w ¼ v, equs. (16, 17 and 19)

yield

Z

H0\R
fh xð ÞdP0 hjH0;Rð Þ�

Z

H1\R
fh xð ÞdP0 hjH1;Rð Þ () H0 
 H1:

Since bhH\R

n o

 H \R,

Z

H\R
fh xð ÞdP0 hjH;Rð Þ	

Z

bhH\R

� 	 fh xð ÞdP0 hj bhH\R

n o
;R

� �

¼
Z

fh xð Þdd h; bhH\R

� �
¼ sup

h2H\R
fh xð Þ;

but that requires that
R
H\R fh xð ÞdP0 hjH;Rð Þ ¼ suph2H\R fh xð Þ (cf. Coletti et al.

2009). Analogous reasoning leads to
R
RnH fh xð ÞdP0 hjH;Rð Þ ¼ suph2RnH fh xð Þ.

Thus, Eqs. (16, 17 and 19) establish Eq. (14), contradicting Eq. (21), thereby

proving the w ¼ W claim. h
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Theorem 2 says the weight of evidence uniquely measures both the relevancy

and the sufficiency of the evidence. That raises questions about the senses in which

the posterior probability and the Bayes factor fall short as measures of the relevancy

and sufficiency of the evidence. Lavine and Schervish (1999) demonstrated that the

posterior probability but not the Bayes factor is coherent as a measure of evidence.

This is restated in the following corollaries in addition to whether each measures the

odds ratio increase.

Corollary 2 Given any probability measure P on H� X ;H � Xð Þ satisfying the
above conditions, the conditional Bayes factor function B measures the odds ratio
increase but is not necessarily logically coherent.

Proof By the definition of the conditional Bayes factor B HjRð Þ ¼ D H;PjRð Þ.
Thus, u ¼ B yields Eq. (17), establishing the first claim. The second claim is

established by noting that, according to Theorem 2, B is only logically coherent in

the special case that B HjRð Þ ¼ W HjRð Þ for all H 2 H and all R 2 H. h

The next corollary uses the posterior odds function, the function odds �jx; �ð Þ
defined on H2 such that odds Hjx;Rð Þ ¼ P # 2 Hjx;Rð Þ=P # 62 Hjx;Rð Þ for all

H;R 2 H.

Corollary 3 Given any probability measure P on H� X ;H � Xð Þ satisfying the
above conditions, the posterior odds function is logically coherent but does not
necessarily measure the odds ratio increase.

Proof Consider an R 2 H that satisfies L Rð Þ[ 0 and H0;H1 2 H such that

H0 
 H1. By the additivity of probability measures,

P # 2 H0jx;Rð Þ�P # 2 H1jx;Rð Þ, from which odds H0jx;Rð Þ� odds H1jx;Rð Þ
follows. Likewise, any H0;H1 2 H such that odds H0jx;Rð Þ� odds H1jx;Rð Þ are
related by H0 
 H1. Thus, v ¼ odds �jx; �ð Þ yields Eq. (19), establishing the first

claim. The second claim is established by noting that, according to Theorem 2,

odds �jx; �ð Þ only measures the odds ratio increase in the special case that

odds Hjx;Rð Þ ¼ W HjRð Þ for all H 2 H and all R 2 H satisfying L Rð Þ[ 0. h

Lavine and Schervish (1999) likewise argued that the posterior probability is

coherent as a measure of evidence.

3.2 Examples of coherence and Bayes compatibility

The (counter)examples of this section build on Examples 1, 2, 3, and 4.

Example 5 Let P0 denote the Lebesgue measure that is the uniform prior distribution

on the real line. The conditional Bayes factor for the big bang theory, given the truth of

a theory between the big bang theory and the steady state theory, is

B 0f gj 0; 1½ �ð Þ ¼ D 0f g;Pj 0; 1½ �ð Þ ¼ f0 xð Þ
R 1
0
fh xð Þdh

¼ 2�3

2�7
¼ 24;

as per Eq. (16). However, the conditional Bayes factor for the truth of a theory
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between the big bang theory and the steady state theory, given the truth of a theory

between the big bang theory and the steady state theory, is

B 0; 1½ �j 0; 1½ �ð Þ ¼ D 0; 1½ �;Pj 0; 1½ �ð Þ ¼
R 1
0
fh xð Þdh

R 1
0
fh xð Þdh

¼ 2�7

2�7
¼ 1:

Even though h 2 0; 1½ � is a consequence of h 2 0f g, the former hypothesis has a

smaller conditional Bayes factor, in violation of logical coherence. This coun-

terexample illustrates Corollary 2. N

Example 6 The conditional posterior odds for the big bang theory, given the truth

of a theory between the big bang theory and the steady state theory, is

odds 0f gj 0; 1½ �ð Þ ¼ D 0f g;Pj 0; 1½ �ð Þ ¼ P # ¼ 0jx; 0; 1½ �ð Þ
P # 6¼ 0jx; 0; 1½ �ð Þ ¼ 0:

But for any P, the odds ratio increase of Eq. (16) satisfies D 0f g;Pj 0; 1½ �ð Þ	 1 since

f0 xð Þ	 fh xð Þ for all h 2 0; 1½ �, contradicting D 0f g;Pj 0; 1½ �ð Þ ¼ 0. It follows that the

posterior odds function does not necessarily measure the odds ratio increase. That

counterexample illustrates Corollary 3. N

Example 7 From Example 4, we see that W 0; 1½ �j 0; 1½ �ð Þ[W 0f gj 0; 1½ �ð Þ, which
illustrates how conditional weight of evidence satisfies logical coherence, in

contrast with Example 5. In addition, since W 0; 1½ �j 0; 1½ �ð Þ and W 0f gj 0; 1½ �ð Þ are

likelihood ratios, they satisfy the condition of measuring the odds ratio increase, in

contrast with Example 6. Those properties hold not only in this example but also for

all weights of evidence (Theorem 2). N

4 Discussion

Recall the distinction that Sect. 1 made between the sufficiency of the evidence and

the relevancy of the evidence. It is often assumed that measures of the sufficiency of

the evidence and measures of the relevancy of the evidence are mutually exclusive.

While it is in fact the case that measures of evidence commonly used in practice fall

into either one category or the other, the weight of evidence defined in Sect. 2 falls

into both categories.

That claim is made precise and strengthened as follows. While the Bayes factor

measures the odds ratio increase and the posterior probability is logically coherent,

the weight of evidence is the only quantity with both properties in the sense of Sect.

3.
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