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Abstract
A weighted likelihood approach for robust fitting of a finite mixture of linear

regression models is proposed. An EM type algorithm and its variant based on the

classification likelihood have been developed. The proposed algorithm is charac-

terized by an M-step that is enhanced by the computation of weights aimed at

downweighting outliers. The weights are based on the Pearson residuals stemming

from the assumption of normality for the error distribution. Formal rules for robust

clustering and outlier detection are also defined based on the fitted mixture model.

The behavior of the proposed methodologies has been investigated by numerical

studies and real data examples in terms of both fitting and classification accuracy

and outlier detection.

Keywords Classification � EM � Mixture � Outliers detection � Pearson
residuals � Regression � Robustness � Weighted likelihood

1 Introduction

The problem of clustering around linear structures is particularly appealing and has

received growing interest in the literature. Latent class regression has applications in

many fields, including engineering, genetics, biology, econometrics, marketing,

computer vision, pattern recognition, tomography, fault detection, among others.

The reader is pointed to Garcı́a-Escudero et al. (2009) for a large collection of

references. This paper is motivated by the fact that noisy data frequently appear in
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every field of application. When the sample data is contaminated by the occurrence

of outliers, it is well known that maximum likelihood estimation (MLE) is likely to

lead to unreliable results. In a mixture setting, the bias of at least one of the

component parameters estimate can be arbitrarily large and the true underlying

clustering structure might be hidden. Therefore, there is the need for a suitably

robust procedure providing protection against outliers. The reader is pointed to the

book by Farcomeni and Greco (2015a) for a gentle introduction to robustness issues.

The problem of robust fitting of a mixture of linear regressions has been already

tackled in the literature. In general, the robust solutions are driven by a

suitable modification of the EM algorithm for mixtures or the classification EM

algorithm (CEM), concerning the M step, which is enhanced by some robust

estimation approach in place of maximum likelihood. Some existing proposals are

based on the idea of (hard) trimming: estimation is performed over a subset of the

original data obtained after discarding those units with the lowest contributions to the

likelihood function. According to such trimming strategies, potential outliers are

discarded in the estimation process, that is observations are given crispy weights in

0; 1f g. Neykov et al. (2007) introduced a mixture fitting approach based on the

trimmed likelihood, Garcı́a-Escudero et al. (2010) extended the TCLUST method-

ology, developed in Garcı́a-Escudero et al. (2008) for mixtures of multivariate

Gaussian distributions, exploiting the idea of impartial trimming in TCLUST-REG, a

related proposal has been presented in Garcı́a-Escudero et al. (2009) and an adaptive

hard trimming procedure has been described in Riani et al. (2008) based on the

Forward Search methodology. In particular, TCLUST-REG is characterized by

group scatter constraints aimed at making the mixture fitting a well-posed problem

and the addition of a second trimming step to mitigate the effect of outliers in the

space of explanatory variables acting as leverage points. A very recent adaptive

version of TCLUST-REG has been discussed in Torti et al. (2019). An alternative

approach meant to automatically take into account leverage points has been

considered by Garcı́a-Escudero et al. (2017) where trimming and restrictions have

been introduced to get a robust version of the cluster weighted model, named

Trimmed Clustered Weighted Restricted Model (TCWRM). In this approach

restrictions concern both the set of eigenvalues of the covariance matrix evaluated on

the X-space and the variances of the regression error term. The reader is pointed to

Torti et al. (2019) for a comparative analysis of TCLUST-REG and TCWRM under

general settings. The benefits of trimming for robust regression clustering have been

also investigated in Dotto et al. (2017) where a fuzzy approach has been developed.

In a different but complementary fashion, Bashir and Carter (2012) and Bai et al.

(2012) modified the M step by resorting to soft rather than hard trimming procedures.

Actually, they replaced the single component MLE problems by M- (and S-)

estimation problems for linear regression (see also Campbell (1984) and Maronna

et al. (2019)). In particular, in both papers the authors developed an EM-type

algorithm featured by componentwise weights but this approach can be extend to

obtain robust versions of the CEM algorithm based on M- and S-estimation, as well.

According to a soft trimming strategy, observations are attached a weight lying in

[0, 1] according to somemeasure of outlyingness. Potential outliers are expected to be

heavily downweighted, whereas genuine observations receive a weight close to one.
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It is worth to mention that there are different proposals aimed at robust latent

class linear regression estimation that are not based on soft or hard trimming

procedures in which the assumed model is embedded in a larger one to account for

outliers. Yao et al. (2014) considered a mixtures of linear regression models with

Student t error distributions; Punzo and McNicholas (2017) developed an approach

based on the Contaminated Gaussian Cluster Weighted Model in which each

mixture component has some parameters controlling the proportion of (different

type of) outliers; Yu et al. (2017) proposed a case-specific and scale-dependent

mean-shift mixture model and a penalized likelihood approach to induce sparsity

among the mean-shift parameters.

Here, we propose the use of the weighted likelihood methodology (Markatou

et al. 1998) as a valid alternative to the existing methods. Weighted likelihood is an

appealing robust techniques for estimation and testing (Agostinelli and Markatou

2001). In particular, reliable statistical tools have been developed for linear

regression (Agostinelli and Markatou 1998; Agostinelli 2002), generalized linear

models (Alqallaf and Agostinelli 2016) and multivariate analysis (Agostinelli and

Greco 2019). Recently, Greco and Agostinelli (2020) also introduced weighted

likelihood estimation of mixtures of multivariate normal distributions. The authors

explored the behavior of both EM and CEM type algorithms and found that

weighted likelihood gives powerful devices for robust estimation, classification and

outliers detection. Then, the same ideas can be extended to the context of mixtures

of linear regressions.

Weighted likelihood belongs to the group of soft trimming techniques and the

weighted likelihood estimator (WLE) can be thought as an M-estimator. The main

differences are in the genesis of the weights and in their asymptotic behavior at the

assumed model. Actually, weighted likelihood estimation can correspond to a

minimum disparity estimation problem (Basu and Lindsay 1994). Then, the WLE is

expected to be highly robust under contamination but, conversely to M-estimators,

also asymptotically efficient at the assumed model. Some necessary preliminaries

on weighted likelihood estimation are given in Sect. 2. The weighted EM and

penalized CEM algorithms for robust fitting of mixtures of regressions are

introduced in Sect. 3. Section 4 highlights some computational details, Sect. 5 is

devoted to a very general result about consistency and aymptotic normality of the

proposed estimator. Then, the outlier detection rule is described in Sect. 6 and some

illustrative examples based on simulated data are presented in Sect. 7. In Sect. 8

some strategies to select the number of latent classes are presented. Section 9 gives

some numerical studies whereas a real data example is discussed in Sect. 10.

Concluding remarks end the paper.

2 Background

Let y ¼ ðy1; � � � ; ynÞ
T

be a random sample of size n drawn from a r.v. Y with

distribution function Mðy; hÞ and probability (density) function mðy; hÞ, which is an

element of the parametric family of distributions

M ¼ fMðy; hÞ; h 2 H � Rd; d� 1; y 2 Yg. Let F̂ be the empirical distribution
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function. The WLE ĥw is defined as the root of the Weighted Likelihood Estimating

Equations (WLEE)

Xn

i¼1

wðyi; h; F̂Þsðyi; hÞ ¼ 0; ð1Þ

where sðy; hÞ ¼
Pn

i¼1 sðyi; hÞ is the score function. The WLEE in (1) is a modified

version of the (system of) likelihood equations, since a data dependent weight,

wi ¼ wðyi; h; F̂Þ 2 ½0; 1�, is attached to each individual score component. The

weights are meant to be small for those data points that are in disagreement with the

assumed sampling model. The degree of agreement between the data and the

assumed model is measured by the Pearson residual function. Let

f �ðyÞ ¼
Z

Y
kðy; t; hÞdF̂ðtÞ

be a non parametric kernel density estimate and

m�ðy; hÞ ¼
Z

Y
kðy; t; hÞmðt; hÞ dt

a smoothed version of the model density obtained by using the same kernel function

k(y; t, h). Then, the Pearson residual is

dðyÞ ¼ f �ðyÞ � m�ðy; hÞ
m�ðy; hÞ ;

with dðyÞ 2 ½�1;þ1Þ. By smoothing the model, the Pearson residuals converge to

zero with probability one for every y under the assumed model; the reader is pointed

to Basu and Lindsay (1994), Markatou et al. (1998) and references therein. When

the model is discrete, f �ðyÞ is the empirical probability function and m�ðy; hÞ simply

reduces to mðy; hÞ. In this paper, we will make use of the Pearson residuals

established in Agostinelli and Greco (2019). Actually, a valid WLEE can be also

obtained by using Pearson residuals that are defined as

dðyÞ ¼ f �ð~yÞ � m�ð~yÞ
m�ð~yÞ ;

where ~y ¼ gðy; hÞ is a pivot at the assumed model whose (smoothed) distribution

does not depend on the parameter value.

Large values of the Pearson residual function correspond to regions of the

support of Y where the model fits the data poorly. According to this approach,

outliers can be defined as observations that are highly unlikely to occur under the
assumed model (Markatou et al. 1998), rather than from a geometric point of view

as observation that are far from the model fitted to the bulk of the data, as in the

classical theory of M-estimators.

The weight function is defined as
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wðdðyÞÞ ¼ AðdðyÞÞ þ 1½ �þ

dðyÞ þ 1
; ð2Þ

where ½��þ denotes the positive part and AðdÞ is the Residual Adjustment Function

(RAF, Basu and Lindsay (1994)). The RAF plays the role to bound the effect of

large Pearson residuals on the fitting procedure. By using a RAF such that

jAðdÞj � jdj both outliers and inliers (whose nature will be described in the fol-

lowing) will be downweighted. The RAF function is connected to minimum dis-

parity estimation problems. Actually, it is defined as AðdÞ ¼ ðdþ 1ÞG0ðdÞ � Gð0Þ,
with prime denoting differentiation, where Gð�Þ is a strictly convex function over

½�1;þ1Þ and thrice differentiable, which determines a disparity measure, that, in

the continuous case, is defined as

qðf �ðyÞ;m�ðy; hÞ ¼
Z

Y
GðyÞm�ðy; hÞ dy:

In principle, by following the approach developed in Markatou et al. (1998), it is

possible to build a WLEE matching a minimum disparity objective function. One

can consider the families of RAF stemming from the Symmetric Chi-Squared

divergence, the family of Power divergence or Generalized Kullback–Leibler

divergence measures. The resulting weight function is unimodal and decline

smoothly to zero as dðyÞ ! �1 or dðyÞ ! þ1. The weighting function corre-

sponding to a Symmetric Chi-Squared divergence, which is driven by GðdÞ ¼ 2d2

dþ2
, is

given in Fig. 1.

Under the assumptions given in Markatou et al. (1998) and Agostinelli and

Markatou (2001), that establish some regularity conditions on the model, the kernel

and the weight function, at the assumed model, we have that:

1. ĥw is a consistent and first order efficient estimator of h, that is
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Fig. 1 Weighting function
corresponding to a Symmetric
Chi-Squared divergence
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ffiffiffi
n

p
ðĥw � hÞ!d Nð0; I�1

1 ðhÞÞ

where I1ðhÞ ¼ E½uðY ; hÞ2� is the expected Fisher information;

2. supjwðy; ĥw; F̂Þ � 1j!a:s:0 (Agostinelli and Greco 2013);

3. the weighted versions of the likelihood ratio, Wald and score test all share the

usual asymptotic behavior (Agostinelli and Markatou 2001).

For what concerns the robustness properties of the WLE, the reader is pointed to

Lindsay (1994); Markatou et al. (1998). In particular, the the robust behaviour of the

WLE in finite samples is characterized by the curvature parameter A00ð0Þ being

negative, despite an unbounded influence function that is just that of the MLE.

Furthermore, the WLE has a strong breakdown point equal to 0.5.

It is worth to claim that the shape of the kernel function has a very limited effect

on weighted likelihood estimation. On the contrary, the smoothing parameter

h allows to control the robustness/efficiency trade-off of the methodology in finite

samples. Actually, large values of h lead to Pearson residuals all close to zero and

weights all close to one and, hence, large efficiency, since the kernel density

estimate is stochastically close to the postulated model. On the other hand, small

values of h make the kernel density estimate more sensitive to the occurrence of

outliers and the Pearson residuals become large for those data points that are in

disagreement with the model.

2.1 Weighted likelihood for linear regression

Let us consider a linear regression model with normally distributed errors, i.e.

y ¼ Xbþ r�, where y is the response, X ¼ ½x1; . . .; xp� is the n	 p design matrix,

b ¼ ðb1; . . .; bpÞ
T

is the vector of regression coefficients, r is a scale parameter and

�
Nð0; 1Þ. In this setting, Pearson residuals and the weights can be evaluated over

the scaled residuals e ¼ gðy; b; rÞ ¼ ðy� XbÞ=r. An appealing strategy to compute

Pearson residuals consists in using a normal kernel with bandwidth equal to h. In

such a way, the smoothed model density is still normal with variance ð1þ h2Þ, that
is

dðyÞ ¼ f �ðeÞ
1ffiffiffiffiffiffiffiffi
1þh2

p / effiffiffiffiffiffiffiffi
1þh2

p
� �� 1 ; ð3Þ

where /ð�Þ denotes the standard normal density function. Then, the WLE of ðb; rÞ is
obtained as the result of weighted least squares. Clearly, the computation of the

WLE of ðb; rÞ yields an iterative procedure. At each iteration, based on the current

parameter estimates, scaled residuals are obtained. Then, their non parametric

density estimate is fitted based on the chosen kernel and Pearson residuals and

weights are updated according to (3) and (2).
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3 Robust fitting of a latent class linear regression model

Let us assume a latent class regression model featured by K components, where K is

fixed in advance, with density function denoted by

mðy; x; sÞ ¼
XK

k¼1

pk/ðy; lk; rkÞ; ð4Þ

where lk ¼ Xbk, pk is the prior probability of component k, ðbk; rkÞ are the com-

ponent specific parameters and s ¼ ðp1; . . .; pK ; b1; . . .; bK ; r1; . . .; rKÞ
T

is the vector

of all parameters.

The mixture loglikelihood function based on a sample of size n is

‘ðsÞ ¼
Xn

i¼1

log
XK

k¼1

pk/ðyi; lik; rkÞ: ð5Þ

Maximum likelihood estimation is commonly performed by the EM algorithm, that

works with the classification loglikelihood

‘cðsÞ ¼
Xn

i¼1

XK

k¼1

logðpk/ðyi; lik; rkÞÞuik; ð6Þ

where uij is an indicator of the ith unit belonging to the jth cluster. The EM

algorithm iterates, over the index s, between the E step, in which posterior mem-

bership probabilities are evaluated as

u
ðsÞ
ik ¼

pðs�1Þ
k / yi; l

ðs�1Þ
ik ; rðs�1Þ

k

� �

PK
k¼1 p

ðs�1Þ
k / yi; l

ðs�1Þ
ik ; rðs�1Þ

k

� �

and the M step, where parameters’ estimates are updated as

pðsÞk ¼
Pn

i¼1 u
ðsÞ
ik

n

bðsÞk ¼ ðXTU
ðsÞ
k
XÞ�1X

TU
ðsÞ
k

yr
2ðsÞ
k

¼
y�l

ðsÞ
kð Þ

TU
ðsÞ
k

y�l
ðsÞ
kð Þ

n

where U
ðsÞ
k is a diagonal matrix with elements uik.

At convergence, cluster assignments can be pursued according to a Maximum a

Posteriori (MAP) rule: units are assigned to the most likely component. In the CEM

algorithm, after the E step, a classification step is performed (together they form the

CE step). Let ki ¼ argmaxku
ðsÞ
ik , then u

ðsÞ
iki

¼ 1 and u
ðsÞ
ik ¼ 0 for k 6¼ ki and UðsÞ

becomes a dummy matrix. Conversely to the EM algorithm, the CEM directly

provides a classification of the units at convergence. Actually, the classification

approach is aimed at maximizing the classification loglikelihood over both the

mixture parameters and the individual components’ labels.

Weighted versions of the above algorithms can be designed by introducing the

computation of the weights defined in (2) before the M step at the current parameter
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value. In particular, the weighted EM (WEM) will require componentwise sets of

weights, wheres in the weighted CEM (WCEM) weights will be computed

conditionally on the current cluster assignments driven by the CE step. More in

details, the WEM algorithm iterates between the classical E step and an M step in

which the single components MLE problems are replaced by K one-step WLE

problems. The single iteration is summarized in Algorithm 1. On the contrary, the

WCEM algorithm iterates between the standard CE step and K one-step weighted

likelihood based M-step in which weights are evaluated conditionally to the current

cluster assignment and not for each component anymore, that is uik ¼ 1 for k ¼ ki
and zero otherwise. Furthermore, the proposed algorithm can be successfully

augmented by introducing scatter similarity restrictions as described by Garcı́a-

Escudero et al. (2010). These constraints are posed by fixing a constant cr such that

max rk
min rk

� cr; k ¼ 1; 2; . . .;K ð7Þ

and are needed to avoid spurious solutions and make the mixture fitting and clas-

sification well defined problems (see also Fritz et al. (2013); Garcia-Escudero et al.

(2015); Greco and Agostinelli (2020)).

Here, as one referee pointed out, the interest focuses on a general mixture model

in which all parameters are class-dependent. However, in some applications a more
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parsimonious model may be needed, that is characterized by homogeneous slopes

and is nested into the more general one. Maximum likelihood estimation can be

performed by using a different set of estimating equations in the M-step and its

weighted counterpart can be obtained as well. For instance, let us consider a mixture

model whose components only differ in the intercept term, i.e

b ¼ ðb01; . . .; b0K ; b�0Þ, where b�0 is the p�0 dimensional vector of common

slopes with p�0 � 1. Then, the M-step in Algorithm 1 changes as follows:

bðsþ1Þ
�0 ¼

XK

k¼1

XT ~W ðsÞX
� ��1

XT ~W ðsÞ y� bðsÞ0k

� �

bðsþ1Þ
0k ¼

Pn
i¼1 yi � xib

ðsÞ
�0

� �
~wik

Pn
i¼1 ~wik

; k ¼ 1; 2; . . .;K:

ð8Þ

4 Computational details

One of the first issues to deal with the estimation of a mixture model by the EM or

CEM algorithm and their robust counterparts is the choice of a suitable starting point. A

solution is represented by subsampling (Markatou et al. 1998; Neykov and Müller

2003; Neykov et al. 2007; Torti et al. 2019). A subsample of size n� is selected

randomly from the data sample, then the model is fitted to these n� observations by the

classical EM (or CEM) algorithm to get a trial estimate. This approach shows some

limitations since from the one hand n� should be as small as possible in order to

increase the chance of drawing at least one outlier free subsample, but from the other

hand a larger trial sample size will avoid the algorithm to fail in finding a solution.

Here, in a different fashion, a deterministic initialization will be considered: first

units are assigned to the different components by running TCLUST to the multivariate

data (y, X), then cluster specific parameters’ estimates are initialized by running a robust

regression conditionally on clusters’ assignments. In particular, weighted likelihood

regression has been used but M-type regression could be used as well. This strategy is

well justified since in Garcı́a-Escudero et al. (2010) it is stated that TCLUST could

serve as starting point for others approaches. The initial clustering depends on a couple

of tuning constants that allow control of TCLUST: the level of trimming a and the

eigen-ratio constraint factor (Garcı́a-Escudero et al. 2008; Fritz et al. 2013), that will be

denoted by c to avoid confusion with the scatter constraint factor cr in (7)

characterizing the proposed WEM and WCEM algorithms.

An alternative deterministic initial solution may be obtained by computing the

trimmed likelihood estimator of Neykov et al. (2007); other candidate initial

solutions can be evaluated according to the approach discussed in Coretto and

Hennig (2017) that is based on a combination of nearest neighbor denoising and

agglomerative hierarchical clustering. Further starting points can be obtained by

randomly perturbing the deterministic starting solution and/or the final one obtained

from it (Farcomeni and Greco 2015b).
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When using TCLUST, in order to avoid the algorithm to be dependent on the

initial partition of the data and trapped in (spurious) local optima, a general advise is

to run it (several times) for different values of ða; cÞ and then select the final fitted

model according to one criterion. For instance, when the initial TCLUST is not

properly robust with respect to the actual amount of contamination in the data, then

the fitted model could exhibit lack of robustness as well. On the contrary, a large

level of trimming can lead to solutions that are characterized by an excess of

downweighting. As well, the choice of the eigen restriction factor could be crucial.

Formal solutions to the problem of root selection in weighted likelihood estimation

have been provided in Markatou et al. (1998), Agostinelli (2006), Agostinelli and

Greco (2019). Here, we decided to select the root leading to the minimum fitted

approximate disparity as defined in Agostinelli and Greco (2019), that is

~qðf �;m�Þ ¼ 1

n

Xn

i¼1

GðdiÞ þ di
di þ 1

ð9Þ

where the Pearson residuals di are evaluated conditionally on the final cluster

assignments, that is di ¼ diki , at convergence.
Another remarkable aspect is represented by the selection of the bandwidth

parameter h. The tuning of the smoothing parameter h could be based on several

quantities of interest stemming from the fitted mixture model: a safe selection can

be achieved by monitoring the unit specific weights, residuals or the empirical

downweighting level ð1� �̂xÞ as h varies (Markatou et al. 1998; Greco 2017;

Agostinelli and Greco 2018), with �̂x ¼ n�1
Pn

i¼1 ŵi and the weights are evaluated

conditionally on the final cluster assignments, that is ŵi ¼ ŵiki .

An abrupt change in the monitored empirical downweighting level or in the

residuals may indicate, for instance, the transition from a robust to a non robust fit

(Agostinelli and Greco 2018) or to an extremely robust fit leading to the detection of

an even intolerable number of false outliers, as shown in the bottom right panel of

Fig. 10. Hence, monitoring can aid in the selection of a value of h that gives an

appropriate compromise between efficiency and robustness at finite samples. A

monitoring approach is commonly applied to select the trimming level in TCLUST,

TCLUST-REG and TCWRM, for instance. The reader is pointed to Cerioli et al.

(2018b) for a recent general account on the benefits and potentials of monitoring.

5 WEM and WCEM as special cases

The WEM and WCEM are obtained by replacing maximum likelihood by a

different set of estimating equations, characterized by the introduction of weights

aimed at bounding the effect of outliers on the fit. In a fashion similar to what stated

in Bai et al. (2012), the proposed algorithms represent a special case of the

algorithm first introduced by Elashoff and Ryan (2004), where an EM algorithm has

been established for very general estimating equations. Here, in the M-step, it is

suggested to solve a complete data estimating equation of the form
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Wðy;X; sÞ ¼ ðWpðy;X; sÞ;Wbðy;X; sÞ;Wrðy;X; sÞÞ
T¼0 ð10Þ

with

Wpðy;X; sÞ ¼ ðWp1ðy;X; sÞ; . . .;WpK ðy;X; sÞÞ
T;

Wbðy;X; sÞ ¼ ðWb1ðy;X; sÞ; . . .;WbK ðy;X; sÞÞ
T;

Wrðy;X; sÞ ¼ ðWr1ðy;X; sÞ; . . .;WrK ðy;X; sÞÞ
T

and

Wpðy;X; sÞ ¼
Xn

i¼1

wpjðyi; sÞuij ¼
Xn

i¼1

wðyi; s; F̂Þspjðyi; sÞuij;

Wbðy;X; sÞ ¼
Xn

i¼1

wbj
ðyi; sÞuij ¼

Xn

i¼1

wðyi; s; F̂Þsbjðyi; sÞuij;

Wrðy;X; sÞ ¼
Xn

i¼1

wrjðyi; sÞuij ¼
Xn

i¼1

wðyi; s; F̂Þsrjðyi; sÞuij:

Very general conditions for consistency and asymptotic normality of the solution to

(10) are given in Elashoff and Ryan (2004), whereas Bai et al. (2012) gives con-

ditions in the case of M-estimators. The main requirements are that

1. w defines an unbiased estimating function, i.e. Es½wðY ;X; sÞ� ¼ 0;

2. Es½WðY ;X; sÞWðY;X; sÞ
T�
exists and is positive definite;

3. Es½oWðY ;X; sÞ=os� exists and is negative definite, 8s.

This conditions are satisfied by the proposed WLEE, that are characterized by

weighted score functions as in (10) (see also the Supplementary material in

Agostinelli and Greco (2019)). Since the WLEE can be considered as M-type

estimating equations and all the above requirements are fulfilled, one can state the

following result, along the lines of Bai et al. (2012). Under the regularity conditions

of Sect. 2, under the further identifiability conditions of the model (4) given in

Hennig (2000), existence, consistency and asymptotic normality of the WLE ŝw

implicitly defined by equation (10) hold. In particular, the asymptotic covariance

matrix of ŝw can be obtained in the usual sandwich fashion. Consistency is defined

conditionally on the true labels and concerns the case in which the WLEE admits a

unique solution. In the presence of multiple solutions, the selection of the consistent

root can be effectively pursued according to the strategies described in Sect. 4.

6 Outlier detection

The WEM and WCEM algorithms lead to classify all the sample units, both genuine

and contaminated observations, meaning that also outliers are assigned to a cluster.

Actually, we are not interested in classifying outliers and for purely clustering
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purposes outliers have to be discarded. Outlier detection should be based on the

robust fitted model and performed separately by using formal rules. The key

ingredients in outlier detection are the (scaled) residuals. For a fixed significance

level a, an observation is flagged as an outlier when the corresponding residual in

absolute value exceeds a fixed threshold, corresponding to the ð1� a=2Þ-level
quantile of the reference standard normal distribution. In the case of finite mixtures,

the main idea is that the outlyingness of each data point should be measured

conditionally on the final assignment (Greco and Agostinelli 2020), i.e. an

observation is flagged as outlying when

jyi � l̂iki j
r̂ki

[ z1�a
2

ð11Þ

with l̂iki ¼ xib̂ki . Popular choices are a ¼ 0:05 and a ¼ 0:01. The process of outlier

detection may result in type-I and type-II errors. In the former case, a genuine

observation is wrongly flagged as outlier (swamping), in the latter case, a true

outlier is not identified (masking). Swamped genuine observations are false posi-

tives, whereas masked outliers are false negatives. A measure of the level of the test

is provided by the rate of false positives, whereas the power of the testing procedure

is given by the rate of true positives. A large number of flagged outliers is expected

to lead to high power but, then, genuine observations are likely to be misclassified,

that is swamping also increases. On the other side, with a low rate of correctly

flagged true outliers, the power and the level are expected to both decrease. The

outliers detection process could also be designed to take into account multiplicity

arguments in the simultaneous testing of all the n data points. For instance, one

could base the outlier detection rule on the False Discovery Rate (FDR, Cerioli and

Farcomeni (2011)).

7 Illustrative examples with synthetic data

The overall behavior of WEM and WCEM is illustrated in the following examples

based on simulated data. The proposed methodology has been tested on some data

configurations that have been already used in the literature concerning robust fitting

of mixtures of regression lines. The interest lies on both fitting and classification

accuracy and in the outlier detection testing rule. The WLEE are based on a

symmetric Chi-squared RAF. For each example, we display the data with their

original clustering and the true regression lines superimposed and, in separated

panels, the results stemming from WEM and WCEM. The outlier detection rule

relies on the FDR at a 5% level. We use different symbols and colors for the clusters

with a black þ standing for the detected outliers (and the true outliers in the panel

with the true assignments). In every situation the classical EM and CEM algorithms

give unreliable results because of contamination in the sample at hand.

Example 1 Let us consider a mixture of three simple normal linear regressions. The

regression lines were generated according to the models
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y1 ¼ 3þ 1:4xþ 0:1�

y2 ¼ 3� 1:1xþ 0:1�

y3 ¼ 0:2xþ 0:1�

8
><

>:

with �
Nð0; 1Þ (Neykov et al. 2007). The clusters’ sizes are 70, 70, 60, respec-

tively. Then 50 outliers were added that are uniformly distributed in the rectangle

that contains the genuine data points. Outliers are such that their distance from the

true regression lines, as measured by the scaled residual in absolute value, is above

the 0.95-level quantile of the standard normal distribution. The data, the fitted

models and the final classification are displayed in Fig. 2: the left panel gives the

true assignments and the true lines, the middle panel and the right panel display the

results stemming from WEM and WCEM, respectively, with cr ¼ 2. The weighted

likelihood methodology provides quite satisfactory outcomes both in terms of fitting

and classification accuracy.

To illustrate the problem concerning the initialization of the WEM and WCEM

algorithms combined with the choice of cr and the selection of the best root, we

consider different starting points obtained by varying the tuning parameters of

TCLUST ða; cÞ, for a fixed h ¼ 0:015 and cr ¼ 2; 20. The top row panels of Fig. 3

display the empirical downweighting level at convergence stemming from WEM. In

each monotoring plot, three groups of solutions are apparent: in the central part we

find the majority of solutions leading to a correct downweighting level (root 1), in

the bottom left corner there are some solutions characterized by insufficient

downweighting (root 2), whereas in the top right corner there are those solutions

characterized by an excess of downweighting (root 3). Examples of root 2 and root 3

are given in the bottom row panels of Fig. 3, respectively. The root selection

criterion based on the minimum fitted approximate disparity (9) leads to choose the

right solution: we have ~qðf �;m�Þ ¼ 0:96 for root 1, ~qðf �;m�Þ ¼ 1:31 for root 2 and

~qðf �;m�Þ ¼ 1:58 for root 3.

Example 2 Let us consider a mixture of two regression lines. Genuine data are

drawn according to the model
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Fig. 2 Example 1. True assignments (left), WEM (middle), WCEM (right)
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y1 ¼ 1þ xþ �

y2 ¼ 3þ 5xþ �

�

with �
Nð0; 1Þ (Bai et al. 2012). Each group is composed by 100 points. By

looking at the plots in Fig. 4, we notice that the two clusters are overlapped and the

regression lines share the same sign of the slope. Then, 20 clustered bad leverage

points are added in the top left corner that violate the patterns exhibited by the

genuine points. In this scenario, both the classical EM and CEM lead to a fitted

mixture in which one fitted component is wrongly rotated and attracted by the

outliers, whereas the other is not able to fit neither of the two true linear structures.

On the contrary, the behavior of the robust techniques is satisfactory. Here we set

ða; c; crÞ ¼ ð0:25; 2; 2Þ.

Example 3 Let us consider a data constellation inspired by Garcı́a-Escudero et al.

(2009). We have a mixture of three linear models disposed according to a slanted p
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Fig. 3 Example 1. Top row: monitoring of 1� �w by varying ða; cÞ of the intial TCLUST for cr ¼ 2 (left)
and cr ¼ 20. Bottom row: WEM root 2 (middle) and WEM root 3 (right)
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configuration. The sample size is 300, data are simulated according to equal

membership probabilities. There are 50 outliers that are of two types: 25 are

scattered in the rectangle that contains the genuine observations, 25 are inliers, since

they lie between the linear patterns. Figure 5 displays the data and the results. The

weighted likelihood methodology still provides accurate and satisfactory results.

Here we set ða; c; crÞ ¼ ð0:25; 50; 2Þ.

Example 4 Here, we consider a data constellation similar to that analyzed in

Garcı́a-Escudero et al. (2017) (see their Fig. 6). The solutions displayed in the

middle and right panel of Fig. 6 have been obtained for cr ¼ 5. The initial TCLUST

settings are ða; cÞ ¼ ð0:25; 10Þ. The results are in strong agreement with those

stemming from TCWRM, that, nevertheless, needs the specification of a further

constraint on the eigenvalues in the covariates’ space.

Example 5 This example has been taken from Garcı́a-Escudero et al. (2010). In that

paper, tha authors proposed TCLUST-REG allowing for a second trimming step to

handle those data points acting as bad leverage points for the linear regressions. On

the contrary, weighted likelihood regression is able to deal with outliers in the x-
space and, according to our experience, there is not the need to introduce a second

trimming. The data includes two linear regression clusters made up of 225

observations each from the model
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y1 ¼ 1þ xþ 0:5�

y2 ¼ 10� 0:5xþ 0:5�

�

with �
Nð0; 1Þ. Then, 30 points are generated as a background noise and, finally,

20 more data points are concentrated around the point (10, 8.5), acting as bad

leverage points in the estimation of one linear structure. This data configuration will

be also considered in the numerical studies in Sect. 9 as a part of larger numerical

study following the lines of Garcı́a-Escudero et al. (2010). Figure 7 displays the true

assignments with the true lines and the fitted models by WEM and WCEM, with

ða; c; crÞ ¼ ð0:25; 10; 2Þ. In the middle and right panel, we superimposed both the

true lines and the regression lines fitted by the trimmed likelihood, to better

appreciate the nice behavior of WEM and WCEM in this scenario, since the

trimmed likelihood approach of Neykov et al. (2007) is not able to take into account

bad leverages. Actually, trimmed likelihood estimation suffers from the presence of

the group of bad leverages, since one regression line is rotated towards their

direction. On the contrary, the weighted likelihood technique still gives robust

estimates, in a fashion similar to TCLUST-REG, but without any second trimming.

It is worth noting that both WEM and WCEM wrongly classify some data points,

even if characterized by large uncertainties. Actually, the misclassified points by

WEM and WCEM are about those trimmed in the second step of TCLUST-REG.
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8 Selecting the number of latent classes

The choice of the number of latent classes K is more than an open issue in latent

class modeling. In the classical likelihood-based framework, a very general

approach is to minimize over K some complexity-penalized version of the

(negative) loglikelihood function, such as the well known BIC, AIC and ICL.

Agostinelli (2002) and Greco and Agostinelli (2020) tackled the problem of model

selection by introducing a weighted version of the AIC and BIC respectively, in

which the genuine loglikelihood is replaced by its weighted counterpart evaluated at

the WLE. Then, the proposed strategy is based on minimizing

QwðKÞ ¼ �2qwðy; ŝÞ þ mðKÞ ð12Þ

where qwðy; ŝÞ ¼
Pn

i¼1 ŵiki‘ðyi; ŝÞ and the weights are those stemming from the

largest fitted model (Agostinelli 2002). An alternative criterion can be built on the

idea of minimum disparity by minimizing a penalized approximate disparity

DwðKÞ ¼ 2n~qkðf �;m�Þ þ mðKÞ; ð13Þ

where the subscript now is meant to stress the dependency on the number of latent

classes. The penalty term m(K) reflects model complexity depending on the number

of free parameters. Since the larger the scatter similarity constraint the higher model

complexity, Cerioli et al. (2018a) suggested a modified version of the penalty term

mðK; crÞ that is also aimed at taking into account model complexity entailed by

scatter similarity constraints.

For illustration purposes, let us consider the synthetic data used in Example 1.

We tackle the problem of choosing between K ¼ 2, K ¼ 3 and K ¼ 4 components.

The results are shown in Table 1: both criteria (12) and (13) lead to choose the right

number of latent classes (in bold).

It is worth to point out that criteria such those defined in (12) and (13) should be

better used in conjunction with appropriate monitoring strategies, for instance by

investigating their behavior as the smoothing parameter h varies (Agostinelli and

Greco 2018; Farcomeni and Dotto 2018). In particular, at least in this example, the

choice K ¼ 2 always leads to a remarkable larger empirical downweighting level

for every value of h.

9 Numerical studies

In this section the finite sample behavior of the proposed WEM and WCEM

methodologies has been investigated by some numerical studies. We consider a

mixture of two regression lines, i.e. with p ¼ 2, according to the model described in

Table 1 Example 1: selection of

the number of latent classes
K QwðKÞ DwðKÞ

2 19908.88 866.27

3 33.35 534.99

4 39.66 543.19
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Example 5. Here, by following the lines of Garcı́a-Escudero et al. (2010), the

covariates in the second groups are drawn from a uniform distribution UðD;Dþ 7Þ,
where the tuning parameter D controls the degree of overlapping by setting 3, 6, 12.

Two different degrees of complexity have been taken into account: in the first we set

equal clusters’ proportions p1 ¼ p2 and scales r1 ¼ r2 ¼ 0:5, whereas in the second
we assumed unequal proportions and variances, with p1 ¼ 0:4, p2 ¼ 0:6, and

r1 ¼ 0:4; r2 ¼ 0:6. The behavior of WEM and WCEM has been investigated both

when any contamination does not occur (� ¼ 0) and when outliers are present. For

what concerns the contamination rates, we set � ¼ 10%; 25%. Two types of outliers

configurations have been considered. In the first scenario, outliers are generated as

background noise (Cont.1), whereas in the second scenario we have both

background noisy points and bad leverage points concentrated around a point mass

(Cont.2). The considered sample size is n ¼ 500. Table 2 summarizes the structure

of the data for each combination of complexity, scenario and outliers’ rate.

Furthermore, we also considered the case with p ¼ 4 by adding uninformative

explanatory variables, that is the corresponding coefficients are set to zero. In

summary, the numerical studies are composed by 2	 5	 3	 2 ¼ 60 separate

simulations. The numerical studies are based on 500 Monte Carlo trials.

The weighted likelihood algorithms are based on a symmetric Chi-square RAF.

The smoothing parameter h has been selected in such a way that the empirical

downweighting level lies in the range (0.15, 0.20) for � ¼ 0:10 and (0.35, 0.45) for

� ¼ 0:25, whereas it is about 0.10 when no outliers occur. We set

ða; c; crÞ ¼ ð0:25; 10; 2Þ. The algorithm is assumed to reach convergence when

max jb̂ðsþ1Þ � b̂ðsÞj\tol, with a tolerance tol set to 10�4, where b̂ðsÞ is the matrix of

centroids estimates at the sth iteration and the differences are elementwise. The

algorithms run on non-optimized R code.

Fitting accuracy has been evaluated according to the Mean Squared Error (MSE)

for the mixture parameters, whereas classification accuracy has been measured by

the Adjusted Rand Index (ARI) evaluated over true negatives, i.e. genuine

observations that are not wrongly declared outliers. In order to detect outliers, we

considered a testing rule with a ¼ 0:01, according to (11). In addition, we also

Table 2 Data configurations used in the numerical studies with n ¼ 500, p ¼ 2; 4

Complexity Scenario � Background outliers Bad leverages

No contamination 0 0 0

p1 ¼ p2 Cont.1 0.10 50 0

r1 ¼ r2 0.25 125 0

Cont.2 0.10 30 20

0.25 75 50

No contamination 0 0 0

p1 6¼ p2 Cont.1 0.10 50 0

r1 6¼ r2 0.25 125 0

Cont.2 0.10 30 20

0.25 75 50
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adopted a strategy based on the FDR for the same overall level, in order to take into

account multiplicity effects. Then, we reported the empirical level and power of the

test, measured as the swamping rate and the rate of true positives respectively, as

explained in Sect. 6. Of course, when � ¼ 0, swamping only is taken into account.

The performance of the proposed WEM and WCEM has been compared with the

classical EM and CEM (fitted by using the functions available from the R package

flexmix), their M-type counterparts, MEM and MCEM, based on M-estimation at

the M-step and TCLUST-REG. Here, we considered M-estimation based on the

Tukey biweight function for an 85% efficiency level, whereas TCLUST-REG runs

with the first trimming level set equal to 0.10 for � ¼ 0 and the actual contamination

rate under contamination and the second trimming level set to 0.15, as in Garcı́a-

Escudero et al. (2010). It is worth to point out that TCLUST-REG is built on a

CEM-type algorithm. We implemented our own non optimized R code according to

the details given in Garcı́a-Escudero et al. (2010). In particular, we use the same

starting values used for WEM and WCEM. In order to make a fair comparison

across the different methodologies, we stress that, according to existing literature

about it, we do not consider any testing strategy after TCLUST-REG but trimmed

observations coincide with detected outliers.

As an overall result, we do appreciate the satisfactory behaviour of WEM and

WCEM in terms of both classification and fitting accuracy. In particular, the

superiority of WEM and WCEM with respect to the oracle TCLUST-REG make

them quite valuable and promising. WEM and WCEM exhibit a satisfactory

efficiency loss at the true model when contamination does not occur, whereas they

provide stable results under contamination by dealing with outliers successfully. All

Tables showing the detailed results of the numerical studies are given in the

Appendix. The entries in Table 4 give the ARI evaluated over true negatives after

that outliers have been discarded according to a testing rule based on a fixed 1%
level or by controlling the overall level of the multiple testing procedure by using

the FDR, when p ¼ 2. The results are quite satisfactory both for the genuine and

contaminated data. The classification accuracy clearly improves for increasing

values of the tuning parameter D and there are no relevant differences when using a

fixed level or multiplicity issues are taken into account. Table 8 give the results for

the case p ¼ 4. Table 5 gives the MSE corresponding to the fitted mixture

parameters ðb; r; pÞ stemming from all the considered techniques, for p ¼ 2, the

entries in Table 9 give the results for the case p ¼ 4. The overall behavior of WEM

and WCEM is quite accurate.

Here, in order to present the results, the simulation setting has been divided in 9

macro scenarios by collapsing them with respect to � ¼ 0; 0:10; 0:25 and

D ¼ 3; 6; 12. The empirical distribution of the ARI is displayed in Fig. 8. The

results corresponding to the overlapping level D ¼ 12 have not been reported since

classification accuracy is almost always perfect for all macro-scenarios and

procedures. Furthermore, the ARI for maximum likelihood under contamination is

not given since it is well below those stemming from the robust techniques. The

reader is pointed to the Tables given in the Appendix section. Classification

accuracy provided by WEM and WCEM is quite satisfactory. We notice that WEM

and WCEM improves over TCLUST-REG, in particular in the challenging case

123

Weighted likelihood latent class linear regression 729



D ¼ 3. Figure 9 gives the empirical distribution of the Sum of Squares for the

regression coefficients. The overall behavior of WEM and WCEM is quite accurate

in all macro scenarios. The loss of efficiency with respect to maximum likelihood is
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negligible when no outliers occurs. The performance with respect to M-based

techniques is often quite similar. On the other hand, WEM and WCEM improve

over the oracle TCLUST-REG, in particular for D ¼ 6; 12.
Swamping and power of the outliers tests are given in Tables 6 and 7,

respectively, for p ¼ 2, whereas Table 10 and Table 10 give the results for p ¼ 4. It

is worth to stress that the behavior of the tests depends on the actual robustness-

efficiency trade-off of the procedure, that is on the value of the selected bandwidth

parameter h for weighted likelihood estimation. In summary, the chosen values of

h lead to an appreciable compromise between swamping and power. WEM and

WCEM well compares with the results stemming from the other methods, in

particular with TCLUST-REG. It is worth to notice that FDR leads to improved

swamping but lower power than those resulting from the use of a fixed threshold

(Cerioli et al. 2018a).
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Fig. 9 MSE for WEM, WCEM, MEM, MCEM, TCLUST-REG, EM for � ¼ 0 (top), � ¼ 0:10 (middle)
� ¼ 0:25 (right) and D ¼ 3 (left), D ¼ 6 (middle), D ¼ 12 (right)
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10 Pinus nigra data set

The data gives the height (in meters) and diameter (in millimeters) of n ¼ 362 Pinus

nigra trees located in the north of Palencia (Spain). The Diameter is considered as an

explicative variables wheres Height is the response. The data are displayed in the

left panel of Fig. 11. They exhibit the presence of three linear groups apart from a

small group of trees forming its own cluster on the top right corner and one isolated

point on the bottom right corner. The example has been taken from Garcı́a-Escudero

et al. (2010). We ran WEM and WCEM by setting h ¼ 0:01, with cr ¼ 2 and

employing a symmetric chi square RAF. The starting solution stems from an

unconstrained TCLUST (actually c ¼ 500) wth a ¼ 0:1. The same solution has been

obtained by using the denoising approach suggested by Coretto and Hennig (2017).

The smoothing parameter has been selected according to a monitoring strategy. The

left panel of Fig. 10 shows the empirical downweighting level as h varies on a fixed

grid. We selected the value where the empirical downweighting level stabilizes. By

monitoring the change in individual residuals (in absolute value) as h varies, we

observe that the clustered outliers and the isolated outlier are clearly spotted during

all the monitoring process and that the other data points have residuals below the

threshold line for most of the monitoring. Here, the cut-off has been set equal to the

square root of the qth quantile of the v21 distribution with q ¼ 1� 0:991=n, by using a
Bonferroni adjustment to take into account multiplicity. The fitted models and

detected outliers are shown in Fig. 11. The outlier detection rule is based on the

FDR at 1% level. The results are in strong agreement with those stemming from

TCLUST-REG. Evidence for the choice K ¼ 3 has been confirmed by using the

criteria (12) and (13), as given in Table 3.

The fitted model suggests that a more parsimonious mixture model characterized

by homogeneous slopes may be fitted to the data at hand. To this end, we ran the
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Fig. 10 Pinus nigra. Monitoring of the empirical downweighting level (left) and clusterwise residuals
(right) from WEM
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WEM algorithm by assuming homogeneous slopes, that is using the estimating

equations given in (8) for what concerns the estimation of the three class-dependent

intercepts and the common slope. The fitted slope is b̂�0 ¼ 0:015, whereas the fitted

intercepts are ðb̂1; b̂2; b̂3Þ ¼ ð3:75; 7:41; 10:44Þ. The outlier detection rule (6) leads

to identify the same data points. In order to test if there is evidence supporting the

reduced model with homogeneous slopes, one could resort to the weighted

likelihood ratio test (WLRT) developed in Agostinelli and Markatou (2001). The

WLRT is obtained as

Koss ¼ 2
Xn

i¼1

ŵi ‘ðyi; ŝÞ � ‘ðyi; ŝRÞ½ �

where ŝR denotes the WLE under the reduced model. In this example we have

Koss ¼ 2:45 with a p-value Prob v22 [ 2:45
� �

¼ 0:29, confirming evidence for the

reduced model against the full model with class dependent slopes.

100 150 200 250 300

5
10

15
20

25
WEM

+
+

+

+
+

+

+
++++

+

100 150 200 250 300

5
10

15
20

25

WCEM
+

+

+

+
+

+

+
++++

+

Fig. 11 Pinus nigra. Fitted mixtures by WEM (left) and WCEM (right). Clusters are denoted by different
colors and symbols. Outliers are denoted by ?

Table 3 Pinus nigra
K QwðKÞ DwðKÞ

2 1514.70 621.29

3 1468.09 585.66

4 1489.23 617.21

Selection of the number of latent classes
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11 Concluding remarks

In this paper we developed weighted likelihood estimation for mixtures of linear

structures in the presence of contamination in the data at hand. The proposed

techniques behave satisfactory in all the considered scenario providing both fitting

and classification accuracy. Furthermore, the suggested outliers detection rule

exhibits reasonable level and power. The method inherits the main properties

characterizing weighted likelihood estimation both in terms of efficiency at the

assumed model and robustness in the presence of outliers. Both the WEM and

WCEM compare satisfactory with existing methods. One of the main aspects

concerns the selection of the smoothing parameter tuning the efficiency/robustness

trade-off in finite samples. However, the same problem arises for the other robust

techniques that all need some constant to be tuned. The researcher is advised to

resort to a monitoring strategy for an effective tuning. Then, one clear advantage of

the method is the availability of weighted counterparts of the likelihood ratio test

and the information criteria with the standard asymptotic behavior.

Some possible further directions of research could concern initialization issues in

order to reduce the number of initial partitions but also more challenging model

selection problems that were out of the scope of the present paper, indeed.

Moreover, the extension of the proposed methodology to mixtures of linear

regressions with concomitant variables or to mixtures of generalized linear models

seems feasible.

Acknowledgements The authors would like to thank two anonymous referees for their valuable

comments and suggestions leading to an improved version of the paper.

Appendix

See Tables 4, 5, 6, 7, 8, 9, 10 and 11.

Table 4 Adjusted Rand Index evaluated over true negatives for WEM, WCEM, MEM, MCEM,

TCLUST-REG, EM, for p ¼ 2, different type of contamination, rate of contamination and degree of

overlapping D among linear clusters

WEM WCEM MEM MCEM TCLUST-

REG

EM

D Fixed FDR Fixed FDR Fixed FDR Fixed FDR

p1 ¼ p2 and r1 ¼ r2

No Cont 3 0.811 0.813 0.807 0.810 0.812 0.817 0.813 0.818 0.788 0.793

6 0.883 0.885 0.893 0.895 0.881 0.886 0.889 0.897 0.872 0.858

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4 continued

WEM WCEM MEM MCEM TCLUST-

REG

EM

D Fixed FDR Fixed FDR Fixed FDR Fixed FDR

Cont.1

10%

3 0.809 0.811 0.808 0.811 0.812 0.817 0.816 0.821 0.792 0.478

6 0.874 0.876 0.892 0.893 0.878 0.879 0.894 0.895 0.876 0.236

12 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.012

Cont.1

25%

3 0.792 0.794 0.782 0.783 0.792 0.795 0.799 0.802 0.781 0.392

6 0.863 0.865 0.873 0.875 0.855 0.857 0.875 0.877 0.870 0.018

12 0.997 0.998 0.996 0.997 0.996 0.997 0.997 0.998 0.998 0.003

Cont.2

10%

3 0.810 0.812 0.801 0.803 0.809 0.813 0.810 0.814 0.799 0.529

6 0.871 0.873 0.882 0.884 0.881 0.884 0.894 0.896 0.887 0.328

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.099

Cont.2

25%

3 0.796 0.799 0.777 0.799 0.810 0.813 0.811 0.815 0.785 0.447

6 0.849 0.862 0.871 0.873 0.869 0.872 0.896 0.897 0.873 0.283

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.006

p1 6¼ p2 and r1 6¼ r2

No cont 3 0.806 0.809 0.808 0.811 0.813 0.818 0.823 0.823 0.796 0.799

6 0.885 0.886 0.898 0.900 0.888 0.890 0.895 0.897 0.887 0.881

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.1

10%

3 0.807 0.810 0.821 0.824 0.814 0.818 0.821 0.825 0.804 0.571

6 0.883 0.884 0.905 0.907 0.890 0.892 0.898 0.900 0.893 0.314

12 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.029

Cont.1

25%

3 0.802 0.812 0.842 0.845 0.804 0.806 0.814 0.817 0.798 0.307

6 0.883 0.890 0.918 0.920 0.883 0.884 0.899 0.900 0.885 0.000

12 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.998 0.014

Cont.2

10%

3 0.814 0.816 0.824 0.826 0.817 0.820 0.824 0.827 0.805 0.565

6 0.887 0.888 0.903 0.904 0.894 0.895 0.901 0.902 0.897 0.384

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.125

Cont.2

25%

3 0.819 0.823 0.851 0.854 0.817 0.820 0.825 0.828 0.806 0.453

6 0.887 0.889 0.915 0.917 0.885 0.886 0.900 0.902 0.887 0.239

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.018

The outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery Rate
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Table 6 Swamping rate for WEM, WCEM, MEM, MCEM and TCLUST-REG, p ¼ 2, for different type

of contamination, rate of contamination and degree of overlapping D among linear clusters

WEM WCEM MEM MCEM TCLUST-

D Fixed FDR Fixed FDR Fixed FDR Fixed FDR REG

p1 ¼ p2 and r1 ¼ r2

No Cont 3 0.035 0.003 0.034 0.003 0.070 0.012 0.078 0.014 0.147

6 0.036 0.003 0.033 0.003 0.070 0.013 0.075 0.014 0.131

12 0.037 0.003 0.033 0.003 0.073 0.013 0.073 0.013 0.100

Cont.1 10% 3 0.030 0.008 0.043 0.014 0.068 0.027 0.076 0.031 0.061

6 0.032 0.007 0.041 0.011 0.068 0.026 0.073 0.029 0.045

12 0.033 0.008 0.040 0.011 0.072 0.027 0.072 0.027 0.011

Cont.1 25% 3 0.052 0.050 0.075 0.063 0.067 0.038 0.076 0.044 0.075

6 0.071 0.049 0.072 0.057 0.066 0.037 0.071 0.041 0.066

12 0.078 0.047 0.069 0.052 0.066 0.037 0.066 0.037 0.027

Cont.2 10% 3 0.034 0.009 0.047 0.015 0.073 0.030 0.081 0.035 0.102

6 0.036 0.009 0.041 0.011 0.082 0.039 0.079 0.035 0.086

12 0.034 0.008 0.038 0.010 0.076 0.033 0.076 0.033 0.056

Cont.2 25% 3 0.058 0.031 0.087 0.056 0.101 0.071 0.095 0.063 0.072

6 0.079 0.045 0.077 0.045 0.109 0.075 0.087 0.057 0.054

12 0.081 0.047 0.085 0.051 0.075 0.044 0.087 0.057 0.016

p1 6¼ p2 and r1 6¼ r2

No cont 3 0.034 0.003 0.032 0.004 0.070 0.011 0.076 0.013 0.138

6 0.037 0.003 0.033 0.003 0.074 0.012 0.077 0.014 0.127

12 0.035 0.003 0.032 0.003 0.072 0.011 0.072 0.011 0.100

Cont.1 10% 3 0.031 0.007 0.038 0.011 0.069 0.027 0.076 0.032 0.093

6 0.032 0.007 0.038 0.010 0.068 0.027 0.072 0.029 0.084

12 0.030 0.007 0.034 0.009 0.067 0.024 0.068 0.024 0.011

Cont.1 25% 3 0.083 0.049 0.104 0.070 0.068 0.038 0.076 0.044 0.058

6 0.085 0.051 0.103 0.070 0.070 0.040 0.074 0.042 0.060

12 0.083 0.049 0.078 0.047 0.069 0.038 0.069 0.039 0.027

Cont.2 10% 3 0.033 0.009 0.041 0.013 0.070 0.027 0.077 0.032 0.093

6 0.034 0.009 0.040 0.012 0.072 0.030 0.075 0.030 0.082

12 0.034 0.009 0.039 0.011 0.071 0.028 0.072 0.028 0.056

Cont.2 25% 3 0.090 0.056 0.104 0.070 0.074 0.044 0.077 0.045 0.053

6 0.084 0.050 0.102 0.067 0.068 0.038 0.072 0.041 0.050

12 0.084 0.049 0.104 0.070 0.070 0.040 0.071 0.040 0.017

The outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery Rate
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Table 7 Power of the outlier test for WEM, WCEM, MEM, MCEM and TCLUST, p ¼ 2, for different

type of contamination, rate of contamination and degree of overlapping D among linear clusters

WEM WCEM MEM MCEM TCLUST

D Fixed FDR Fixed FDR Fixed FDR Fixed FDR

p1 ¼ p2 and r1 ¼ r2

Cont.1 10% 3 0.981 0.912 0.988 0.938 0.993 0.975 0.995 0.980 0.921

6 0.976 0.919 0.988 0.941 0.990 0.970 0.994 0.976 0.926

12 0.988 0.928 0.991 0.944 0.998 0.981 0.998 0.981 0.932

Cont.1 25% 3 0.968 0.956 0.966 0.953 0.971 0.958 0.982 0.971 0.945

6 0.978 0.969 0.982 0.973 0.972 0.959 0.978 0.968 0.942

12 0.986 0.982 0.985 0.979 0.983 0.974 0.985 0.975 0.951

Cont.2 10% 3 0.962 0.962 0.989 0.989 0.984 0.984 0.984 0.984 0.997

6 0.918 0.958 0.962 0.962 0.957 0.957 0.978 0.978 0.995

12 0.989 0.989 0.995 0.995 0.979 0.979 0.979 0.979 0.998

Cont.2 25% 3 0.927 0.913 0.950 0.943 0.944 0.939 0.963 0.959 0.923

6 0.926 0.923 0.947 0.940 0.924 0.915 0.969 0.963 0.938

12 0.997 0.993 0.996 0.993 0.980 0.980 0.986 0.980 0.968

p1 6¼ p2 and r1 6¼ r2

Cont.1 10% 3 0.978 0.915 0.985 0.930 0.992 0.972 0.995 0.978 0.993

6 0.972 0.913 0.980 0.925 0.990 0.966 0.993 0.972 0.991

12 0.988 0.923 0.987 0.923 0.998 0.979 0.998 0.979 0.932

Cont.1 25% 3 0.987 0.980 0.991 0.985 0.980 0.972 0.987 0.980 0.950

6 0.987 0.979 0.987 0.979 0.977 0.967 0.983 0.976 0.944

12 0.990 0.984 0.977 0.963 0.983 0.975 0.984 0.976 0.951

Cont.2 10% 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997

6 0.984 0.984 0.995 0.995 0.995 0.995 1.000 1.000 0.994

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998

Cont.2 25% 3 0.986 0.982 0.993 0.988 0.982 0.977 0.992 0.987 0.956

6 0.992 0.987 0.994 0.989 0.992 0.985 0.994 0.989 0.959

12 0.997 0.993 0.995 0.990 0.991 0.987 0.991 0.987 0.966

The outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery Rate
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Table 8 Adjusted Rand Index evaluated over true negatives for WEM, WCEM, MEM, MCEM,

TCLUST, EM, for p ¼ 4, different type of contamination, rate of contamination and degree of over-

lapping among linear clusters

WEM WCEM MEM MCEM TCLUST- EM

D Fixed FDR Fixed FDR Fixed FDR Fixed FDR REG

n1 ¼ n2 and r1 ¼ r2

No Cont 3 0.808 0.810 0.803 0.806 0.810 0.815 0.812 0.818 0.793 0.7928

6 0.876 0.877 0.887 0.889 0.875 0.879 0.884 0.888 0.867 0.858

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0009

Cont.1

10%

3 0.807 0.809 0.809 0.812 0.812 0.815 0.816 0.819 0.795 0.500

6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.880 0.069

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.012

Cont.1

25%

3 0.789 0.791 0.778 0.779 0.793 0.794 0.801 0.804 0.785 0.385

6 0.857 0.859 0.871 0.872 0.855 0.857 0.877 0.880 0.868 0.019

12 0.997 0.997 0.997 0.996 0.994 0.994 0.998 0.998 0.998 0.003

Cont.2

10%

3 0.807 0.809 0.802 0.805 0.815 0.819 0.817 0.821 0.800 0.521

6 0.860 0.862 0.878 0.880 0.883 0.886 0.895 0.897 0.881 0.273

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.036

Cont.2

25%

3 0.804 0.807 0.770 0.771 0.803 0.806 0.809 0.814 0.786 0.443

6 0.870 0.873 0.863 0.865 0.883 0.885 0.899 0.900 0.878 0.285

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.006

n1 6¼ n2 and r1 6¼ r2

No cont 3 0.807 0.809 0.813 0.816 0.811 0.816 0.814 0.819 0.787 0.801

6 0.885 0.887 0.899 0.901 0.889 0.891 0.894 0.896 0.881 0.880

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cont.1

10%

3 0.803 0.806 0.824 0.826 0.812 0.817 0.818 0.823 0.805 0.517

6 0.887 0.887 0.906 0.907 0.892 0.895 0.904 0.906 0.890 0.074

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.038

Cont.1

25%

3 0.803 0.806 0.838 0.841 0.804 0.808 0.814 0.818 0.801 0.282

6 0.877 0.879 0.914 0.915 0.880 0.882 0.897 0.899 0.887 0.000

12 0.993 0.993 0.988 0.988 0.993 0.993 0.993 0.993 0.998 0.015

Cont.2

10%

3 0.815 0.817 0.828 0.829 0.820 0.822 0.827 0.830 0.808 0.559

6 0.886 0.887 0.907 0.908 0.896 0.898 0.903 0.905 0.898 0.292

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.019

Cont.2

25%

3 0.816 0.819 0.833 0.837 0.819 0.822 0.823 0.827 0.807 0.445

6 0.890 0.892 0.907 0.909 0.892 0.894 0.898 0.900 0.889 0.253

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.018

The outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery Rate
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Table 10 Swamping rate for WEM, WCEM, MEM, MCEM and TCLUST, p ¼ 4, for different type of

contamination, rate of contamination and degree of overlapping D among linear clusters

WEM WCEM MEM MCEM TCLUST

D Fixed FDR Fixed FDR Fixed FDR Fixed FDR

p1 ¼ p2 and r1 ¼ r2

No Cont 3 0.037 0.004 0.037 0.004 0.077 0.015 0.086 0.019 0.133

6 0.038 0.003 0.035 0.003 0.078 0.017 0.082 0.018 0.282

12 0.037 0.003 0.033 0.003 0.077 0.014 0.077 0.014 0.258

Cont.1 10% 3 0.027 0.007 0.037 0.011 0.076 0.033 0.084 0.038 0.047

6 0.029 0.007 0.034 0.009 0.076 0.032 0.076 0.032 0.050

12 0.037 0.010 0.031 0.007 0.075 0.031 0.076 0.030 0.021

Cont.1 25% 3 0.066 0.038 0.084 0.054 0.075 0.045 0.087 0.054 0.060

6 0.069 0.039 0.079 0.048 0.078 0.046 0.083 0.052 0.069

12 0.066 0.036 0.073 0.042 0.076 0.044 0.076 0.044 0.036

Cont.2 10% 3 0.031 0.008 0.043 0.013 0.081 0.036 0.091 0.042 0.043

6 0.035 0.008 0.042 0.012 0.096 0.050 0.097 0.051 0.047

12 0.032 0.007 0.038 0.011 0.090 0.045 0.090 0.045 0.019

Cont.2 25% 3 0.107 0.077 0.098 0.062 0.116 0.083 0.102 0.067 0.061

6 0.122 0.091 0.098 0.065 0.147 0.118 0.110 0.079 0.061

12 0.070 0.039 0.077 0.045 0.094 0.063 0.094 0.063 0.026

p1 6¼ p2 and r1 6¼ r2

No cont 3 0.037 0.004 0.035 0.004 0.077 0.015 0.084 0.018 0.273

6 0.038 0.004 0.034 0.004 0.079 0.017 0.083 0.018 0.278

12 0.037 0.004 0.032 0.003 0.076 0.014 0.076 0.014 0.258

Cont.1 10% 3 0.027 0.006 0.037 0.010 0.076 0.033 0.085 0.039 0.036

6 0.027 0.006 0.036 0.010 0.073 0.032 0.076 0.034 0.048

12 0.028 0.007 0.036 0.010 0.077 0.032 0.077 0.032 0.021

Cont.1 25% 3 0.069 0.039 0.092 0.062 0.078 0.048 0.088 0.056 0.048

6 0.070 0.039 0.090 0.059 0.079 0.047 0.084 0.050 0.063

12 0.069 0.039 0.096 0.065 0.079 0.047 0.079 0.047 0.036

Cont.2 10% 3 0.030 0.008 0.044 0.015 0.084 0.039 0.091 0.045 0.034

6 0.029 0.006 0.026 0.005 0.071 0.028 0.078 0.032 0.043

12 0.027 0.006 0.025 0.005 0.072 0.027 0.073 0.027 0.018

Cont.2 25% 3 0.070 0.028 0.086 0.041 0.077 0.033 0.083 0.038 0.042

6 0.075 0.033 0.085 0.040 0.085 0.035 0.078 0.035 0.054

12 0.071 0.028 0.082 0.037 0.083 0.037 0.080 0.034 0.028

The outlier detection rule is based on a 0.01 level by using a fixed level and the False Discovery Rate
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