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Abstract
Multistage ranking models, including the popular Plackett–Luce distribution (PL),

rely on the assumption that the ranking process is performed sequentially, by

assigning the positions from the top to the bottom one (forward order). A recent

contribution to the ranking literature relaxed this assumption with the addition of the

discrete-valued reference order parameter, yielding the novel Extended Plackett–
Luce model (EPL). Inference on the EPL and its generalization into a finite mixture

framework was originally addressed from the frequentist perspective. In this work,

we propose the Bayesian estimation of the EPL in order to address more directly and

efficiently the inference on the additional discrete-valued parameter and the

assessment of its estimation uncertainty, possibly uncovering potential idiosyncratic

drivers in the formation of preferences. We overcome initial difficulties in

employing a standard Gibbs sampling strategy to approximate the posterior distri-

bution of the EPL by combining the data augmentation procedure and the conjugacy

of the Gamma prior distribution with a tuned joint Metropolis–Hastings algorithm

within Gibbs. The effectiveness and usefulness of the proposal is illustrated with

applications to simulated and real datasets.

Keywords Ranking data � Plackett–Luce model � Bayesian inference � Data
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1 Introduction

Ranking data are common in those experiments aimed at exploring preferences,

attitudes or, more generically, choice behavior of a given population towards a set

of items or alternatives (Vitelli et al. 2018; Gormley and Murphy 2006; Yu et al.

2005; Vigneau et al. 1999). A similar evidence emerges also in the sport context,

yielding an ordering of the competitors, for instance players or teams, in terms of

their ability or strength, see Henery (1981), Stern (1990) and Caron and Doucet

(2012).

Formally, a ranking p ¼ ðpð1Þ; . . .; pðKÞÞ of K items is a sequence where the

entry pðiÞ indicates the rank attributed to the i-th alternative. Data can be

equivalently collected in the ordering format p�1 ¼ ðp�1ð1Þ; . . .; p�1ðKÞÞ, such that

the generic component p�1ðjÞ denotes the item ranked in the j-th position.

Regardless of the adopted format, ranked observations are multivariate and, more

precisely, correspond to permutations of the first K integers. Indeed, in line with the

standards of the ranking literature [some fundamental examples can be found in

Critchlow et al. (1991), Marden (1995), Alvo and Yu (2014) and Liu et al. (2019)],

the vector notation p (or p�1) has a dual interpretation. In fact, borrowing from

those standards, p is also understood as a bijective mapping p : I ! R and p�1 :
R ! I as its inverse, where I ¼ f1; . . .;Kg and R ¼ f1; . . .;Kg denote the set of

items and the set of ranks both labelled as the first K integers. This explains why the

inverse function notation p�1 is used as a symbol representing a generic ordering.

Hence, we warn the reader of this twofold meaning, whose correct specific

interpretation should be clear from the context.

The statistical literature concerning ranked data modeling and analysis is broadly

reviewed in Marden (1995) and, more recently, in Alvo and Yu (2014) and Liu et al.

(2019). Several parametric distributions on the set of permutations SK have been

developed and applied to real data. A popular parametric family is the Plackett–
Luce model (PL), belonging to the class of the so-called stagewise ranking models.

The PL was introduced by Luce (1959) and Plackett (1975) and has a long history

in the ranking literature for its numerous successful applications as well as for still

inspiring new research developments. The basic idea is the decomposition of the

ranking process into K � 1 stages, concerning the attribution of each position

according to the forward order, that is, the ordering of the alternatives proceeds

sequentially from the most-liked to the least-liked item. The implicit forward order

assumption has been released by Mollica and Tardella (2014) in the Extended
Plackett–Luce model (EPL). This relaxation allows for a more flexible dependence

structure, hence for a better and possibly more parsimonious fitting of the observed

ranking data. The PL extension in Mollica and Tardella (2014) relies on the

introduction of the reference order parameter q ¼ ðqð1Þ; . . .; qðKÞÞ, indicating the

rank assignment order. Specifically, the generic entry qðtÞ indicates the rank

attributed at the t-th stage of the ranking process. Thus, q is a discrete parameter

given by a permutation of the first K integers and its estimation was originally

considered from the frequentist perspective (Mollica and Tardella 2014). However,

in that work there was no specific attention to the inferential ability to recover this
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extra parameter, as well as quantifying the estimation uncertainty. Indeed, the new

EPL parameter space is of mixed-type (continuous and discrete) and, as far as the

discrete component is concerned, there was little guidance on how to move

efficiently towards the global optimal solution and only a multiple starting point

approach was conceived. This resulted in a substantial computational burden with

increasing K, which makes it less feasible a bootstrap approach to investigate

parameter estimation uncertainty.

In this work, we investigate the estimation of the EPL within the Bayesian

domain and detail an original MCMC method to perform approximate posterior

inference. In particular, we show how the estimation of the discrete reference order

parameter can be effectively addressed by combining the Gibbs sampling (GS) for

some components of the parameter space with a Metropolis–Hastings (MH) step

based on a joint proposal distribution.

The outline of the article is the following. After a review of the main features of

the EPL and the related data augmentation approach with latent variables, the novel

Bayesian EPL is introduced in Sect. 2. The detailed description of the MCMC

algorithm to perform approximate posterior inference is presented in Sect. 3,

whereas illustrative applications to both simulated and real ranking data follow in

Sect. 4. Final remarks and hints for future research are discussed in Sect. 5.

2 The Bayesian extended Plackett–Luce model

2.1 Model specification

As described in Mollica and Tardella (2014), the probability of a generic ordering

under the EPL can be written as

PEPLðp
�1jq; pÞ ¼ PPLðp

�1 � qjpÞ ¼
YK

t¼1

pp�1ðqðtÞÞPK
v¼t pp�1ðqðvÞÞ

p�1 2 SK ; ð1Þ

where the symbol � indicates the composition of permutations. Hereinafter, we will

shortly refer to the probability distribution in (1) as EPLðq; pÞ. The positive

quantities p ¼ ðp1; . . .; pKÞ, known as support parameters, are proportional to the

probabilities for each item to be selected at the first stage of the ranking process and,

hence, to be ranked in the position indicated by the first entry of q. Expression (1)

reveals that, under the EPL assumption, the probability of a generic ordering is

equal to the product of the conditional probability masses of the items selected at

each stage, which are obtained by normalizing the corresponding support parame-

ters with respect to the alternatives still available in the choice set. This explains the

analogy of the EPL ranking construction with the sampling without replacement of

the alternatives in order of preference. The standard PL is a special instance of the

EPL with q ¼ qF ¼ ð1; 2; . . .;KÞ, i.e., the identity permutation also named forward

order; the backward PL is the special case with

q ¼ qB ¼ ðK;K � 1; . . .; 1Þ ¼ ðK þ 1Þ � qF, i.e., the backward order. A simple

example of EPL distribution is described in the ‘‘Appendix’’.
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As in Mollica and Tardella (2017), the data augmentation with the latent

quantitative variables y ¼ ðystÞ for s ¼ 1; . . .;N and t ¼ 1; . . .;K crucially con-

tributes to make the Bayesian inference for the EPL analytically more tractable. Let

p�1 ¼ fp�1
s gN

s¼1 be the observed sample of N orderings. The complete-data model

can be specified as follows

p�1
s jq; p�iidEPLðq; pÞ s ¼ 1; . . .;N;

ystjp�1
s ; q; p�i Exp

XK

m¼t

pp�1
s ðqðmÞÞ

 !
t ¼ 1; . . .;K;

where the auxiliary variables yst’s are assumed to be conditionally independent on

each other and exponentially distributed with rate parameter equal to the normal-

ization term of the EPL. The complete-data likelihood turns out to be

Lcðq; p; yÞ ¼
YK

i¼1

pN
i e�pi

PN

s¼1

PK

t¼1
ystdsti ; ð2Þ

where

dsti ¼
1 if i 2 fp�1

s ðqðtÞÞ; . . .; p�1
s ðqðKÞÞg;

0 otherwise;

�

with ds1i ¼ 1 for all s ¼ 1; . . .;N and i ¼ 1; . . .;K.

In order to setup all the ingredients needed for a fully Bayesian analysis, we must

specify a prior distribution on the unknown parameters q and p. In the absence of a

genuinely subjective prior information, we conveniently adopt prior independence

and the following marginal distributions for q and p

q� Unif SKf g

pi �iid Ga ðc; dÞ i ¼ 1; . . .;K:

The adoption of independent Gamma densities for the support parameters is

motivated by the conjugacy with the model, as apparent by checking the form of the

likelihood (2). In our analysis, we considered the hyperparameter setting c ¼ d ¼ 1.

3 Bayesian estimation of the EPL via MCMC

3.1 Attempts towards posterior sampling

In this section, we describe an original MCMC algorithm to carry out Bayesian

inference for the EPL. We propose a tuned joint Metropolis-within-Gibbs sampling

(TJM-within-GS) as simulation-based method to approximate the posterior

distribution. Its distinguishing feature is the use of a suitably tuned MH algorithm

relying on a joint proposal on the mixed-type parameter components ðq; pÞ,
combined with two other kernels which act more specifically on the discrete
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component q and then on the continuous ðp; yÞ. In fact, although partitioning the

parameter vector of the augmented space by using the components of (q; p; y) makes

it possible to derive standard full-conditionals for a GS, this ends up being a

difficult-to-implement and unsuccessful strategy in practice. On one hand, the

discrete full-conditional for q involves a support with a rapidly-increasing

cardinality with respect to K. On the other hand, the meaning of the support

parameters is strictly related to the reference order (mainly to its first component)

and this means that, when one keeps p fixed, the full-conditional of q is very

unlikely to achieve high posterior density regions.

Indeed, if one aims at implementing an MCMC algorithm for a distribution with

a mixed-type nature, one can try to split the task by separating the update of the

continuous ðp; yÞ, for which the full-conditionals can be easily derived, from the

update of the discrete q. For the latter, in fact, a full conditional could be derived

only in examples where K is small and perhaps a Metropolis update could be used

instead.

In order to setup a proposal distribution for the reference order parameter, we

could rely on a sequential urn model not necessarily with the same urn composition.

In that case, let us denote with k ¼ ðktjÞ the conditional multinomial probabilities

governing the sequential rank attribution path such that, for each stage t ¼ 1; . . .;K,

one has

ktj ¼ P ðqðtÞ ¼ jjqð1Þ; . . .; qðt � 1ÞÞ j 2 Rt;

where Rt ¼ Rnfqð1Þ; . . .; qðt � 1Þg is the set of positions which are still available

and can be assigned at stage t. Of course, at stage t ¼ 1, one has R1 ¼ R; at stage

t ¼ K, one has kKj ¼ 1 for the last available rank j 2 RK . A possible proposal

distribution to be employed in the MH step for sampling the reference order q could

have the following form

P ðqÞ ¼
YK

t¼1

P ðqðtÞjqð1Þ; . . .; qðt � 1ÞÞ ¼
YK

t¼1

P ðctjc1; . . .; ct�1Þ ¼
YK

t¼1

Y

j2Rt

kctj

tj ;

where ct ¼ ðctjÞj2Rt
indicates the vector with binary components defined as follows

ctj ¼ I½qðtÞ¼j� ¼
1 at stage t rank j is assigned;

0 otherwise:

�

Nevertheless, preliminary implementations of a MH step of this kind on synthetic

data revealed some critical issues in achieving high posterior density regions. Some

attempts are reported in Sect. 1 of the supplementary material. This suggested, for

the reasons described above, that a joint proposal distribution of the reference order

and the support parameters allows for an adequate mixing of the resulting Markov

chain.

This argument inspired us a working MCMC algorithm which combines three

different Markov kernels in the spirit of hybrid strategies described in Section 2.4 of

Tierney (1994). Of course, each Markov kernel has our target posterior as invariant

123

Bayesian analysis of ranking data with the extended... 179



distribution. The most original of these kernels relies on the MH algorithm with a

joint proposal strategy for proposing the update of ðq; pÞ. The other two kernels are

nothing but simple GS kernels limited to specific blocks of the parameter

components.

3.2 Tuned joint Metropolis–Hastings step

Since the marginal distribution of the observed items ranked in the first stage

basically embodies a considerable portion of the information on the support

parameters, we decided to decompose the joint proposal distribution starting from

the first component of the reference order, immediately followed by all the support

parameter components conditionally in qð1Þ. In fact, in this way, the chances of

proposing acceptable candidates are indeed increased. In order to sample candidate

values for q and p simultaneously, we devised a Metropolis kernel KTJM based on a

joint proposal distribution gðq; pÞ with a specific decomposition of the dependence

structure, given by

gðq; pÞ ¼ gðqð1ÞÞ � gðpjqð1ÞÞ �
YK

t¼2

gðqðtÞjp; qð1Þ; . . .; qðt � 1ÞÞ: ð3Þ

The dependence structure in (3) shows that, after drawing the first component of q,

the proposal can exploit the sample evidence on the support parameters to guide the

simulation of the remaining candidate entries of the reference order. In fact, it is

expected that, if qð1Þ is the rank assigned at the first stage, the observed marginal

frequencies of the items ranked in position qð1Þ can be regarded as an estimate of

the support parameters p. In this way, the two simulated parameter vectors are

linked to each other and the joint proposal should better mimic the target posterior

density and, thus, get a better mixing chain. Candidate values ð~q; ~pÞ are jointly

generated according to the following scheme:

1. sample the first component of ~q (stage t ¼ 1):

~c1 � Multinomial ð1; ~k1 ¼ ð~k1jÞj2RÞ ) ~qð1Þ ¼
Y

j2R

j~c1j :

In our application, we set ~k1j ¼ P ð~qð1Þ ¼ jÞ ¼ P ð~c1j ¼ 1Þ ¼ 1=K for all

j 2 R;

2. sample the support parameters:

~pj~qð1Þ�Dirichða0 � r ~qð1ÞÞ;

where Dirich denotes the Dirichlet distribution, a0 is a scalar tuning parameter

and r ~qð1Þ is the marginal distribution of the items with rank ~qð1Þ, that is, the

vector collecting the relative frequencies of the times that each item i ¼ 1; . . .;K
has been ranked in position ~qð1Þ. Specifically, the i-th entry of r ~qð1Þ is
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r~qð1Þi ¼
1

N

XN

s¼1

I½p�1
s ð~qð1ÞÞ¼i�

and, in our analysis, we set a0 ¼ 500;

3. sample iteratively the remaining entries of ~q (from stage t ¼ 2 to stage
t ¼ K � 1): in this step, we deem it convenient to split the sampling of the

remaining entries of q sequentially. Unfortunately, it is computationally

demanding to compute the conditional distribution of the reference order

component at stage t given the reference order components selected up to stage

t � 1, the support parameters and the data. Hence, in order to surrogate it, we

exploit the marginal bivariate distributions of the items in the two consecutive

stages ðt � 1; tÞ, resulting from the observed K-variate contingency table.

Indeed, once selected the reference order component at stage t � 1, we compute

the observed contingency table ~stj having as first margin the item placed at the

selected reference order component ~qðt � 1Þ and as second margin the item

placed at the reference order component ~qðtÞ which can be possibly selected at

the next stage among the remaining positions in Rt. The generic entry of the

contingency table is

~sii0tj ¼
XN

s¼1

I½p�1
s ð~qðt�1ÞÞ¼i;p�1

s ðjÞ¼i0 �;

corresponding to the actually observed joint frequency counting how many

times each item i in the previous stage is followed by any other item i’ ranked

j-th at the next stage.

We then compare these frequencies with the corresponding expected frequencies
~Eii0t under the EPL by using a Monte Carlo approximation

~g�1
s ð1Þ; . . .; ~g�1

s ðtÞj~p�iidPLð~pÞ s ¼ 1; . . .;N;

~Eii0t ¼
XN

s¼1

I½~g�1
s ðt�1Þ¼i;~g�1

s ðtÞ¼i0 �

and compute the following distances

~dtj ¼
XK

i¼1

XK

i0¼1

ð~sii0tj � ~Eii0tÞ2:

In fact, these different distances ð ~dtjÞj2Rt
are intuitively ranked according to how

compatible, hence likely, is the attribution of the j-th position at stage t in the light

of the observed data. The above distances are then suitably scaled as ~ztj ¼
~dtjP

j02Rt

~dtj0

to ensure unit sum. Note that the position corresponding to the smallest distance

should be the one to be proposed with the highest probability. Moreover, we should

maintain the disparities among the alternative distances so that, when the distances
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are very similar, the probabilities should be also very similar. To achieve these

goals, we simply maintain the same values ~ztj reallocating them to the positions

j 2 Rt according to the reverse order, so that if j1 is the position corresponding to the

smallest rescaled distance ~ztj1 , after the rearrangement it is assigned a value

~qtj1 ¼ maxj2Rt
~ztj. Similarly, if j2 is the position corresponding to the second smallest

rescaled distance ~ztj2
, it is assigned a value ~qtj2 ¼ maxj2Rtnj1 ~ztj and so on. The

rearranged relative distances ~qtj; j 2 Rt

� �
are used as surrogate approximation of the

conditional probabilities corresponding to the target distribution. Indeed, we define

the proposal probability of assigning position j at stage t as

~ktj ¼
~qtj þ hP

j02Rt
ð~qtj0 þ hÞ ;

where h 2 ð0; 1=KÞ is a tuning parameter introduced to avoid a too sparse multi-

nomial distribution. As default value we set h ¼ 0:1. Finally, for t ¼ 2; . . .;K � 1,

we sample

~ctj~c1; . . .; ~ct�1 � Multinomial ð1; ~kt ¼ ð~ktjÞj2Rt
Þ ) ~qðtÞj~qð1Þ; . . .; ~qðt � 1Þ ¼

Y

j2Rt

j~ctj :

The resulting joint proposal probability of the candidate values is

gð~q; ~pÞ ¼ Dirichð~pja0 � r ~qð1ÞÞ
YK

t¼1

Y

j2Rt

~k
~ctj

tj :

Hence, if we denote the observed-data likelihood with Lðq; pÞ, the acceptance

probability is equal to

a0 ¼ min
gðqðlÞ; pðlÞÞ

gð~q; ~pÞ
Lð~q; ~pÞ

QK
i¼1 Ga ð~pijc; dÞ

LðqðlÞ; pðlÞÞ
QK

i¼1 Ga ðpðlÞ
i jc; dÞ

; 1

( )

and the MH step ends with the classical acceptance/rejection of the candidate pair

ðq0; p0Þ ¼
ð~q; ~pÞ if logðu0Þ\ logða0Þ;
ðqðlÞ; pðlÞÞ otherwise;

(

where u0 � Unif ð0; 1Þ and ðqðlÞ; pðlÞÞ is the current pair.

In order to promote a better mixing, we combine the just illustrated Metropolis

kernel KTJM by composing it with two additional kernels, labelled as KSM (Swap

Move) and KGS (Gibbs Sampling). Hence, the MCMC simulation is based on the

composition kernel K ¼ KTJM � KSM � KGS. Indeed, the KSM kernel focuses on

local moves of the discrete component q, whereas KGS aims at improving the

mixing of the continuous component. The kernel KSM is illustrated in the next

section, while KGS is just a full GS cycle involving the ðp; yÞ components and is

detailed in Sect. 3.4.
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3.3 Swap move

We remind that the values ðq0; p0Þ have to be regarded as temporary parameter

drawings. We decided to accelerate the exploration of the parameter space by

including an intermediate kernel KSM of the q component only, that attempts a

possible local move with respect to the current value. We label the possibly

successful update of this kernel as Swap Move (SM). In fact, the idea relies on a

random swap of two adjacent components of q0. Specifically, one first simulate

t� � Unif f1; . . .;K � 1g

and then define the new candidate as

q00 ¼ ðq0ð1Þ; . . .; q0ðt� þ 1Þ; q0ðt�Þ; . . .; ; q0ðKÞÞ:

Finally, by computing the acceptance probability as

a00 ¼ min
Lðq00; p0Þ
Lðq0; p0Þ ; 1

( )
;

the sampled value of the reference order at the ðl þ 1Þth iteration turns out to be

qðlþ1Þ ¼
q00 if logðu00Þ\ logða00Þ;
q0 otherwise;

�

where u00 � Unif ð0; 1Þ.

3.4 Tuned Joint Metropolis-within-Gibbs-sampling

At the generic iteration ðl þ 1Þ, the TJM-within-GS iteratively alternates the

following simulation steps

qðlþ1Þ; p0jp�1; qðlÞ; pðlÞ �KTJM � KSM;

y
ðlþ1Þ
st jp�1

s ; qðlþ1Þ; p0 � Exp
XK

i¼1

dðlþ1Þ
sti p0

i

 !
;

p
ðlþ1Þ
i jp�1; yðlþ1Þ; qðlþ1Þ �Ga c þ N; d þ

XN

s¼1

XK

t¼1

dðlþ1Þ
sti y

ðlþ1Þ
st

 !
:

In the last two lines, the full-conditional of the unobserved continuous variables y’s

is derived from the construction of the complete-data model specified in Sect. 2.1,

whereas the full-conditional of the support parameters is deduced by the partial

conjugate structure, requiring a straightforward update of the corresponding Gamma

priors.
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4 Illustrative applications

4.1 Simulated data

In order to verify the efficacy of our MCMC strategy, as well as the ensuing

inferential ability of the proposed Bayesian framework, we have setup the following

simulation plan: we considered a grid of simulation settings combining different

number of items K 2 f5; 10; 20g and sample sizes N 2 f50; 200; 1000; 10;000g. For

each distinct pair (K, N), we replicated 100 times the simulation of datasets from the

EPL model by varying the parameter configuration: for each replication

R ¼ 1; . . .; 100, after fixing a true reference order _qðRÞ and a true support parameter

vector _pðRÞ by drawing _qðRÞ uniformly in SK and all the components _p
ðRÞ
i i.i.d. from a

uniform distribution, we simulated N i.i.d. orderings of K items from the

EPLð _qðRÞ; _pðRÞÞ, forming the sample matrix p�1
ðRÞ.

For each replication, we ran the TJM-within-GS described in Sect. 3 for a total of

10,000 iterations and 2000 draws were discarded as burn-in phase. As a starting

point for the MCMC simulation, we randomly selected q and all the components pi.

The resulting 8000 simulations were used to approximate the posterior distribution.

Several measures were computed for assessing the inferential performance of the

proposed MCMC sampler to recover the actual parameter values ð _qðRÞ; _pðRÞÞ and the

true EPL modal ranking _rðRÞ of the K items. The ability of the approximate marginal

posterior distributions to infer the known EPL paramaters and modal sequences was

quantified with five criteria and by averaging the results over the 100 replicated

datasets p�1
ðRÞ:

1. the percentage of matches between the true reference order _qðRÞ and the most

frequently simulated reference order q̂ðRÞ

%recq̂ ¼
X100

R¼1

I½ _qðRÞ¼q̂ðRÞ�;

2. average posterior probability on the matching estimate q̂ðRÞ ¼ _qðRÞ

�Pðq ¼ q̂jp�1Þ ¼ 1

%recq̂

X100

R¼1

I½ _qðRÞ¼q̂ðRÞ�Pðq ¼ q̂ðRÞjp�1
ðRÞÞ;

3. average relative Kendall distance between _qðRÞ and q̂ðRÞ

�dKð _q; q̂Þ ¼
1

100

X100

R¼1

dKð _qðRÞ; q̂ðRÞÞ;

4. average scaled total variation distance between _pðRÞ and

p̂ðRÞ ¼ E½pjq ¼ q̂ðRÞ; p�1
ðRÞ�, given by
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�dTVð _p; p̂Þ ¼ 1

%recq̂

X100

R¼1

I½ _qðRÞ¼q̂ðRÞ�dTVð _pðRÞ; p̂ðRÞÞ

where dTVð _pðRÞ; p̂ðRÞÞ ¼ 1
2

PK
i¼1 j _pi

ðRÞ � p̂i
ðRÞj.

5. average relative Kendall distance between _rðRÞ and r̂ðRÞ

�dKð _r; r̂Þ ¼
1

100

X100

R¼1

dKð _rðRÞ; r̂ðRÞÞ;

where _rðRÞ is the true EPL modal ranking and r̂ðRÞ is the maximum a posteriori
(MAP) estimate.

The first three criteria concern the estimation of q, whereas the last two measures

are used to assess the inferential performance, respectively, for p and r. Note that,

since the range of the Kendall distance depends on K, we rescaled it by KðK � 1Þ=2

in order to have a relative index ranging over [0, 1] regardless of K.

Additionally, we have verified whether the choice of the starting point of the

MCMC simulation, especially the starting reference order, could make a difference

in terms of convergence speed and its possible impact on the inferential ability to

recover the true _q. So, for all the same simulated datasets p�1
ðRÞ, we re-ran our MCMC

sampling starting from the known true _qðRÞ instead of a random starting reference

order. Indeed, on average, we have verified no noteworthy change of inferential

ability, as testified by the values of the performance criteria reported in Table 2 of

the supplementary material. This can be interpreted as a sign of an MCMC

algorithm with a suitable mixing behaviour not strongly dependent on the starting

point.

Regarding the estimation of q, for each replication R, we focussed on the

approximate marginal posterior distribution of the reference order, denoted as

Pðqjp�1
ðRÞÞ, and used the corresponding posterior mode q̂ðRÞ as the point MAP

estimate of _qðRÞ. In the first column of Table 1, we can appreciate how frequently

the posterior mode q̂ðRÞ matches the true reference order _qðRÞ in terms of the

percentage of true recoveries (%recq̂). We note that this percentage consistently

grows with N and, on average, a larger portion of posterior mass �Pðq ¼ q̂jp�1Þ is

assigned to the matching mode (second column of Table 1). Moreover, by

considering all the replications, even those in which there is no match, the posterior

mode ensures a consistently decreasing (with N) average relative Kendall distance

between the true reference order and the estimated one (third column of Table 1).

This means that the whole posterior distribution is consistently concentrating around

_qðRÞ.
Also for the parameters p and r, the inferential results improve with increasing N,

although with a slower rate for larger values of K (forth and fifth columns of

Table 1). In fact, if we look at a fixed N, we observe that the overall inferential

properties worsen for increasing values of K, as expected. Indeed, for larger values

of K, the cardinality of the finite space SK of the discrete parameter q grows
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factorially with K and this increases the chance that a slightly more diffuse posterior

distribution might miss to select the true _q as the MAP estimate. Moreover, the

diffuseness of the posterior is also related to the more likely closeness of some

components of the true support parameters _pðRÞ, which weakens the identifiability of

the reference order. In fact, in the extreme case when all the support parameter

components are the same, we know that the reference order is not identifiable.

Finally, we carried out a sensitivity analysis to investigate the possible effect of

the hyperparameter and tuning value setting on the performance of our MCMC

algorithm. The reader can find a detailed description of this study in the

supplementary material.

4.2 Application to the sport data

We applied our Bayesian EPL to the sport dataset included in R package

Rankcluster (Jacques et al. 2014), where N ¼ 130 students at the University of

Illinois were asked to rank K ¼ 7 sports in order of preference: 1 ¼ Baseball, 2 ¼
Football, 3 ¼ Basketball, 4 ¼ Tennis, 5 ¼ Cycling, 6 ¼ Swimming and 7 ¼
Jogging. Prior to the Bayesian EPL analysis, sample heterogeneity has been

preliminary investigated by using the EPL mixture methodology presented by

Mollica and Tardella (2014), that suggested the presence of two preference groups

labelled as G1 and G2 with sizes N1 ¼ 62 and N2 ¼ 68 (best fitting 2-component

EPL mixture with BIC=2131.25). We then decided to estimate the Bayesian EPL

separately on the two clusters. Furthermore, our modeling proposal has been

compared with two special cases thereof: the forward (standard) PL and the

backward PL, respectively labelled as EPL-qF and EPL-qB. To inspect the fitting

Table 1 Inferential performance of the TJM-within-GS algorithm on simulated data with different set-

tings of K and N and random initialization

(K, N) %recq̂ �Pðq ¼ q̂jp�1Þ �dKð _q; q̂Þ �dTVð _p; p̂Þ �dKð _r; r̂Þ

(5,50) 48 0.521 0.212 0.060 0.288

(5,200) 79 0.798 0.065 0.033 0.138

(5,1000) 97 0.975 0.008 0.014 0.087

(5,10,000) 100 1.000 0.000 0.006 0.048

(10,50) 1 0.123 0.329 0.161 0.411

(10,200) 20 0.426 0.156 0.077 0.350

(10,1000) 64 0.738 0.062 0.044 0.259

(10,10,000) 100 0.998 0.000 0.032 0.201

(20,50) 0 – 0.459 – 0.496

(20,200) 0 – 0.348 – 0.472

(20,1000) 3 0.070 0.195 0.087 0.449

(20,10,000) 76 0.826 0.031 0.075 0.412
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gain obtained with the EPL parametric class, the popular Deviance Information
Criterion (DIC) developed by Spiegelhalter et al. (2002) was adopted.

To fit the Bayesian EPL, we ran the TJM-within-GS for a total of 20,000

iterations and 10,000 samples were discarded as burn-in phase. The MCMC

algorithm was launched with four randomly dispersed starting points to explore the

mixing performance of the sampler over the parameter space. Indeed, the four
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Fig. 1 Traceplots of the log-posterior values for the MCMC chains launched with four randomly
dispersed starting values for the two subsamples of the sport dataset: log-posterior values for the
subsample G1 with N1 ¼ 62 units are plotted in the left panel, whereas the log-posterior values for the
subsample G2 with N2 ¼ 68 units are plotted in the right panel
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chains were found to be consistent with respect to the initial values. In this regard,

Fig. 1 shows the traceplots of the log-posterior values for the four MCMC chains

launched with alternative starting values for the two subsamples, where it is

apparent that the MCMC algorithm exhibits a good mixing behavior and a

satisfactory convergence regardless of the initialization. The graphical inspection

was confirmed by Geweke’s convergence diagnostics (equal to 1.29, 1.29, 0.33 and

1.68 for G1 and to 0.71, 1.54, 0.16 and 1.56 for G2) and Gelman and Rubin’s

convergence diagnostics (equal to 1.002 for G1 and to 1.004 for G2). Convergence

diagnostics for the traces of the support parameters are shown in the supplementary

material.

The DIC for the inference on the first subsample G1 highlights evidence in favor

of the conventional PL, corresponding to the minimum value highlighted in bold in

the first column of Table 2. Indeed, this result is recovered through the estimation of

the more general EPL, whose DIC is very close to that of the PL. For the second

subsample G2, instead, the DIC indicates a significantly improvement of the fit

associated to the EPL family with respect to the two considered restrictions thereof

(second column of Table 2).

Figure 2 shows the approximations of the posterior distribution on the reference

order for the two subsamples of the sport dataset. The corresponding posterior

modal reference orders turned out to be q̂1 ¼ ð2; 1; 3; 5; 4; 6; 7Þ and

q̂2 ¼ ð5; 6; 4; 7; 3; 1; 2Þ, i.e., a reference order very similar to the forward one and

an alternative reference sequence suggesting a preference elicitation starting from

the middle-bottom positions. The posterior means and standard deviations of the

group-specific support parameters conditionally on the MAP estimates q̂1 and q̂2 are

detailed in Table 3. Those obtained from the EPL-qF and the EPL-qB are reported in

the supplementary material. The MAP estimates of the group-specific modal

orderings under the EPL scenario turn out to be (2 ¼ Football, 1 ¼ Baseball, 3 ¼
Basketball, 5 ¼ Cycling, 4 ¼ Tennis, 6 ¼ Swimming, 7 ¼ Jogging) and (6 ¼
Swimming, 7 ¼ Jogging, 4 ¼ Tennis, 3 ¼ Basketball, 2 ¼ Football, 1 ¼ Baseball,

5 ¼ Cycling) indicating opposite preferences in the two subsamples towards team

and individual sports. Actually, we verified that these modal sequences are very

similar to those found with the clustering approach described by Marden (1995).

4.3 Application to the sushi data

For the second real data application, we considered a subsample of the popular

sushi data concerning preferences on K ¼ 10 types of sushi, namely 1 ¼ Shrimp,

Table 2 DIC values for the

Bayesian EPL models fitted to

the two subsamples of the

sport dataset

G1 G2

EPL-qF 898.25 1125.42

EPL-qB 934.56 1083.95

EPL 898.60 1021.48

Optimal (minimum) values of the criterion are highlighted in bold

123

188 C. Mollica, L. Tardella



0 2000 6000 10000

1
3

5
7

Iteration

R
ef

er
en

ce
 o

rd
er

 n
um

er
ic

 la
be

l

2−
1−

3−
4−

5−
6−

7

1−
2−

3−
4−

5−
6−

7

2−
3−

1−
4−

5−
6−

7

1−
3−

2−
4−

5−
6−

7

1−
2−

3−
5−

4−
6−

7

3−
2−

1−
4−

5−
6−

7

P
os

te
rio

r p
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0
1 2 3 4 5 6

Reference order numeric label

0 2000 6000 10000

1
2

3
4

5
6

Iteration

R
ef

er
en

ce
 o

rd
er

 n
um

er
ic

 la
be

l

5−
6−

4−
7−

3−
1−

2

6−
5−

4−
7−

3−
1−

2

5−
6−

7−
4−

3−
1−

2

6−
5−

7−
4−

3−
1−

2

6−
5−

4−
3−

7−
1−

2

5−
6−

4−
3−

7−
1−

2

P
os

te
rio

r p
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0
1 2 3 4 5 6

Reference order numeric label

Fig. 2 Traceplots (left) and top posterior probabilities (right) for the reference order parameter estimated
from the two subsamples of the sport dataset. In the traceplots, sampled reference orders are renamed
with numeric labels according to the decreasing order of the posterior probability masses, so label 1 is
associated to the MAP reference order. The correspondence between sampled reference orders and
numeric labels is shown on the horizontal axes of the barplots

Table 3 Posterior means and

standard deviations (s.d.) of the

EPL support parameters for the

two subsamples of the sport
dataset

Sport G1 G2

p̂i s.d. p̂i s.d.

Baseball 0.3743 (0.040) 0.2642 (0.031)

Football 0.2102 (0.029) 0.3194 (0.035)

Basketball 0.1888 (0.027) 0.1584 (0.022)

Tennis 0.0697 (0.012) 0.0795 (0.012)

Cycling 0.0856 (0.014) 0.0910 (0.014)

Swimming 0.0457 (0.008) 0.0501 (0.009)

Jogging 0.0256 (0.006) 0.0374 (0.007)
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2=Sea eel, 3=Tuna, 4 ¼ Squid, 5 ¼ Sea urchin, 6 ¼ Salmon roe, 7 ¼ Egg, 8 ¼ Fatty

tuna, 9 ¼ Tuna roll, 10 ¼ Cucumber roll. See Kamishima (2003) for further details

on the sushi dataset. Specifically, we focused on the N ¼ 134 sequences regarding

rankers who declared to have most longly lived in the 39th prefecture until 15 years

old.

Besides the forward and backward PL, also the Bayesian distance-based model

with the Kendall distance (DB-Kend) was considered as a possible competitor of the

EPL to learn preferences on the sushi types. The latter was fitted to the data by

employing the functions of the R package BayesMallows, recently released on

CRAN (Vitelli et al. 2018) and including the entire sushi dataset of 5000 complete

rankings. As in the previous application, four chains of the TJM-within-GS

procedure were launched with randomly dispersed starting points and the DIC was

used to select the optimal model.

We checked the effective achievement of convergence of the MCMC output with

the analysis of the traceplots and the computation of relevant diagnostics. For the

log-posterior values, we obtained Geweke’s z-scores equal to 1.73, 1.61, 0.87 and

0.64 and Gelman and Rubin’s potential scale reduction factor equal to 1.001.

Convergence diagnostics for the traces of the support parameters are shown in the

supplementary material. We then focussed on model comparison and parameter

interpretation. For the sushi data analysis, we noticed a greater variability associated

to the posterior distribution of the reference order, where probability masses turn out

to be diffuse on a neighbourhood close to the backward path (Fig. 3). This

variability represents the uncertainty on the reference order estimation which is

overlooked by the restricted EPL-qB. The DIC indicates a remarkable superiority of

EPL-qB over EPL-qF (DIC=3819.65 vs DIC=3885.94), but the more flexible EPL
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Fig. 3 Traceplots (left) and top posterior probabilities (right) for the reference order parameter estimated
from the subsample of the sushi dataset. In the traceplots, sampled reference orders are renamed with
numeric labels according to the decreasing order of the posterior probability masses, so label 1 is
associated to the MAP reference order. The correspondence between sampled reference orders and
numeric labels is shown on the horizontal axes of the barplots
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class, which properly accounts for the uncertainty on q, produces a further

improvement of the final fit (DIC ¼ 3815:07). The new Bayesian EPL outperforms

also the DB-Kend (DIC ¼ 3838:95). The posterior means and standard deviations of

the EPL support parameters are reported in Table 4. Those obtained from the EPL-

qF and the EPL-qB are reported in the supplementary material. The MAP estimate

of the modal ordering under the EPL scenario is equal to (5 ¼ Sea urchin, 8 ¼ Fatty

tuna, 1 ¼ Shrimp, 6 ¼ Salmon roe, 3 ¼ Tuna, 4 ¼ Squid, 2 ¼ Sea eel, 10 ¼
Cucumber roll, 9 ¼ Tuna roll, 7=Egg).

5 Conclusions

We have addressed some relevant issues in modelling and inferring choice behavior

and preferences. The standard PL for complete rankings relies on the hypothesis that

the probability of a particular ordering does not depend on the subset of items from

which one can choose (Luce’s Axiom). Although this can be considered a very

strong assumption, the widespread use of the PL suggested to exploit it as a building

block to gain more flexibility. In particular, Mollica and Tardella (2014) explored

the possibility of adding flexibility with the help of two main ideas: (1) the use of an

additional discrete parameter, the reference order, specifying the order of the ranks

sequentially assigned by the individual and which should be inferred from the data;

(2) the finite mixture of PL distributions enriched with the reference order parameter

(EPL mixture).

In this paper, we have focussed on (1) and developed a methodology for a fully

Bayesian estimation of the EPL distribution. We have devised a hybrid strategy by

combining appropriately tuned MH kernels and the GS. This allows for a successful

exploration of the whole mixed-type parameter space. The resulting Bayesian

inference turned out to be effective in inferring the true reference order and

provided a suitable MCMC simulation which can be used to quantify the uncertainty

on the EPL parameters. We stress that the previous attempts to infer on the

underlying reference order were limited to the maximum likelihood point estimation

via EM algorithm, which required a brute-force multiple starting point strategy in

Table 4 Posterior means and

standard deviations (s.d.) of the

EPL support parameters for the

subsample of the sushi dataset

Sushi type p̂i s.d.

Shrimp 0.0538 (0.006)

Sea eel 0.0799 (0.008)

Tuna 0.0760 (0.007)

Squid 0.0974 (0.009)

Sea urchin 0.0453 (0.005)

Salmon roe 0.0729 (0.007)

Egg 0.1591 (0.014)

Fatty tuna 0.0380 (0.004)

Tuna roll 0.1271 (0.012)

Cucumber roll 0.2504 (0.020)
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order to attempt to reach the global maximum. We note that, in order to assess the

uncertainty on the reference order parameter, one should employ a bootstrap

approach which, of course, implies a greater computational effort. Moreover, as

K increases, a fixed number of multiple starting points becomes a factorially

decreasing (hence negligible) fraction of all the possible initializations and,

obviously, this hampers the possibility of achieving eventually the global optimum

in applications with larger K. On the other hand, the hybrid MCMC strategy

provided valid results which are less sensitive to the starting reference order. Hence,

our Bayesian methodology provides both an appropriate way to assess parameter

uncertainty and a computational improvement for inferring the EPL.

Simulation studies explored the sensitivity of TJM-within-GS to the prior

hyperparameters as well as tuning constants. They also evaluated its efficacy in

recovering the true EPL parameters generating the data. Finally, the novel

parametric approach was successfully applied to two real datasets concerning the

analysis of preference patterns.

Moreover, our model setup gains more insights on the sequential mechanism of

formation of preferences and whether it privileges a more or less naturally ordered

assignment of the most extreme ranks. In other words, we show how it is possible to

assess with a suitable statistical approach the formation of ranking preferences and

answer through a statistical model the following questions: ‘‘What do I start ranking

first? And what do I do then?’’.

For possible future developments, several directions can be contemplated to

further extend the Bayesian EPL. First, the methodology can be generalized for the

accommodation of partial orderings and the introduction of item-specific and

individual covariates that can improve the characterization of the preference

behavior. Moreover, a Bayesian EPL mixture could fruitfully support more

efficiently the identification of a parsimonious cluster structure in the sample.
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Appendix

An example of EPL model

Here is a simple example to clarify the EPL formulation introduced in (1). Without

loss of generality, let us suppose that an EPLð _q; _pÞ with parameter values _q ¼
ð4; 1; 3; 2Þ and _p ¼ ð0:4; 0:3; 0:2; 0:1Þ represents the true data generating mecha-

nism. Under this EPL scenario, the positions are assigned according to an

alternating preference scheme: the item selected at the first stage corresponds to the

least-liked alternative ( _qð1Þ ¼ 4); at the second stage, the most-liked item is

specified ( _qð2Þ ¼ 1); the item ranked at the third stage is the one receiving the third

position ( _qð3Þ ¼ 3) and, finally, the remaining alternative of the forth stage is placed

second in order of preference ( _qð4Þ ¼ 2). Regarding the support parameters, they
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reflect a decreasing first-stage choice probability such that _pi / ðK þ 1Þ � i. Hence,

the chance of being ranked last reduces when proceeding from alternative 1 up to

alternative 4: item 1 is more likely to be chosen at the first step and, thus, to be

ranked last, followed in the order by item 2, 3 and 4.

Since the rank assignment order q is not restricted to the identity permutation qF

as in the PL, a generic ordering p�1 does not coincide with the sequence g�1 ¼
p�1 � q listing the items selected at each stage of the ranking process. For example,

the considered EPLð _q; _pÞ implies that observing the ordering p�1 ¼ ð3; 1; 4; 2Þ
corresponds to the sequential item selections indicated by the composition below

g�1 ¼ p�1 � _q ¼ ðp�1ð _qð1ÞÞ; p�1ð _qð2ÞÞ;p�1ð _qð3ÞÞ; p�1ð _qð4ÞÞÞ
¼ ðp�1ð4Þ; p�1ð1Þ; p�1ð3Þ; p�1ð2ÞÞ ¼ ð2; 3; 4; 1Þ;

that is, one chooses item 2 at the first stage, item 3 at the second stage, item 4 at the

third stage and item 1 at the last stage.

Equation (1) states that the probability mass associated to p�1 ¼ ð3; 1; 4; 2Þ
under the specified EPLð _q; _pÞ can be computed from the PL distribution after

rearranging the components of p�1 according the reference order _q:

P EPLðp�1 ¼ ð3; 1; 4; 2Þj _q; _pÞ ¼ P PLðg�1 ¼ ð2; 3; 4; 1Þj _pÞ

¼ 0:3

1
� 0:2

0:4 þ 0:2 þ 0:1
� 0:1

0:4 þ 0:1
� 1 	 0:017:
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