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Abstract
We consider the central Beta matrix variates of both kinds, and establish the expres-
sions of the densities of integral powers of these variates, for all their three types of
distributions encountered in the statistical literature: entries, determinant, and latent
roots distributions. Applications and computation of credible intervals are presented.

Keywords Beta matrix variates · Credible interval · G-Function · Latent roots ·
Powers
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1 Introduction

For a positive random variable X , its power Xc, with c positive or negative, is often
encountered in applications. “Weibullized” distribution is a particular application of
this approach (see Bekker et al. 2009; Nadarajah and Kotz 2004; Pauw et al. 2010).
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Distributionswithmatrices as arguments have acquired increasing importance since
Wishart (1928) established the distribution bearing his name in 1928, on the covari-
ance matrix of a normal sample. The matrix Gamma, matrix Beta are derived from
the Wishart, similarly to the univariate case, where we obtain the Beta from the uni-
variate Normal through the Chi-square. But while there is only one distribution in the
univariate case, there are at least three in R

p, p ≥ 2, as explained in Sect. 3. To test
hypotheses in multivariate analysis we have to use tools based on determinants, or
latent roots, of certain matrices, among them the Betas, which are the subjects of this
article.

We consider first the univariate random variableU having central Beta distribution
of the first kind, U ∼ BetaI

1 (a, b), where a, b > 0, with the probability density
function (PDF):

f (u) = ua−1(1 − u)b−1

B (a, b)
, for 0 < u < 1, (1)

where B (a, b) = �(a)�(b)
�(a+b) , and the random variable V having central Beta distribution

of the second kind, V ∼ BetaI I
1 (a, b), where a, b > 0, with PDF:

g (v) = va−1(1 + v)−a−b

B (a, b)
, for v > 0. (2)

More generally, for some types of integral equations of Wilks type, Mathai (1984) has
pointed out that the solutions involve some powers of Beta variables, as considered
here.

In the case of matrix variates, two types of Betas are also defined and play very
important roles in Multivariate Statistics, where they provide numerous tests through
the distributions of their determinants (Wilks 1932) and their latent roots (Lawley
1938; Roy 1953; Pillai 1954). A fairly detailed study of both matrix Betas is given in
Chapter 5 of Gupta and Nagar (2000). It is then natural to consider the powersUc and
V c as being the matrix generalizations of the above univariate cases. Besides, the case
of powers of the determinant, |U|c or |V|c, is well-known in applications as powers of
Wilks’s statistics, related to the likelihood ratio statistic used in multivariate analysis
of variance (MANOVA).Wewill see that, while the univariate case is fairly simple, the
matrix case is much more complex, and is worth investigating under all its three types
of distributions. Furthermore, using our approach we can carry out some computation
and graphing, making matrix variates quite operational in Applied Statistics.

The rest of the article is organized as follows. In Sect. 2 we start with the uni-
variate case and give explicit solutions to these distributions. In Sect. 3 we first find
the characteristic function and the moment generating function of both matrix Beta
variates. Results show how the process can be transferred from the univariate to the
matrix variate case. Then we find the expressions for the densities of the powers of the
central Beta matrix variate, for both the first and second kinds, and in three types of
distributions. Hence, there are two kinds of matrix variate Betas (first kind, denoted
U, second kind, denoted V), each having three types of distributions (entries, deter-
minant and latent roots), resulting in six separate sets of results. In Sect. 4 we give
some applications of those results, including an interval estimation of the product of
the latent roots and of its geometric mean.
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Note 1 Since this article emphasizes applications we will not present here a general
theory of Um , U ∼ BetaI

p (a, b) and of Vm , V ∼ BetaI I
p (a, b). These topics will be

addressed later, in a separate lengthy paper of a rather theoretical nature.

2 The univariate case

The univariate case is usually simpler to understand and serves as guide to the matrix
case which is much more complicated.

a) Let us start with the univariate Beta of the first kind, U ∼ BetaI
1 (a, b). Let

X = Um and Y = U−m , where m > 0. Using the classical technique to transform a
random variable, we have the PDF of X as

f (x) =
x

a−m
m

(
1 − x

1
m

)b−1

mB (a, b)
, for 0 < x < 1. (3)

And we have the PDF of Y = U−m as

f (y) =
y

−(a+b+m−1)
m

(
y

1
m − 1

)b−1

mB (a, b)
, for y > 1. (4)

b) For the univariate Beta of the second kind, V ∼ BetaI I
1 (a, b). The PDF of

Z = Vm , where m > 0, is given by

f (z) =
z
a−m
m

(
1 + z

1
m

)−(a+b)

mB (a, b)
, for z > 0. (5)

Again, using the classical approach based on change of variable, we can establish the
PDF of T = V−1 as BetaI I

1 (b, a), and the PDFs of Tm = V−m , with m > 0, as (5)
with a, b interchanged.

Remark 1 Concerning some new random variables frequently encountered in the lit-
erature, e.g. the generalized beta distribution used in Economics by McDonald and
Xu (1995), it can be seen that it has properties similar to those of the powers Uc and
V c of our variables.

3 Case of thematrix variate distribution

To completely study the powers of the two central Beta matrix variates we distinguish
first between three types of distributions that comewith each, as done in Pham-Gia and
Turkkan (2011a): (a) Entries distribution distribution of its entries (or variables), or a
mathematical relation relating all the entries, but for convenience, their determinant is
generally used, (b) determinant distribution distribution of its determinant, considered
as variable, and (c) latent roots distribution the distribution of its latent roots. Naturally,
these distributions are intimately related to each other, and fuse into a single one, given
by (1) and (2), when p = 1. But each of them has its own use in statistical studies, the
first one provides the mathematical relationship between the matrix entries, while the
second one gives the distribution of an univariate measure of the matrix, and the third
one gives a multivariate joint density of these latent roots.
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3.1 Entries distributions

Definition 1 The random symmetric positive definite matrix U is said to be a cen-
tral Beta matrix variate of the first kind with parameters a, b >

p−1
2 , noted U ∼

BetaI
p (a, b), if its PDF is given by

f (U) = |U|a− p+1
2

∣∣Ip − U
∣∣b− p+1

2

Bp (a, b)
, f or 0 < U < Ip, (6)

where Bp (a, b) is the multivariate Beta function in R
p, i.e. Bp (a, b) = �p(a)�p(b)

�p(a+b) ,

with �p (a) = π
p(p−1)

4

p∏
j=1

�
(
a − j−1

2

)
. The random symmetric positive definite

matrixV is said to be a central Beta matrix variate of the second kind with parameters
a, b >

p−1
2 , noted V ∼ BetaI I

p (a, b), if its PDF is given by

g (V) = |V|a− p+1
2

∣∣Ip + V
∣∣−(a+b)

Bp (a, b)
, f or 0 < V. (7)

We refer to Chapter 5 of Gupta and Nagar (2000) for the basic properties of these
two matrix variates.

3.1.1 The Moment generating functions of the two central matrix betas

Characteristic and Moment generating functions of a random variable have always
played important roles in the study of its distribution. For the two univariate Betas
they are expressed as confluent hypergeometric functions of first and second kinds.
To have similar expressions for the matrix Betas we have to generalize first these
hypergeometric functions, from scalar argument tomatrix argument, and thenfind their
integral representations. Pham-Gia and Thanh (2016) can provide some information
on this topic. The final results bear some similarities with the univariate case, as can
be seen below.

I. Scalar case
a) Kummer confluent hypergeometric function of the first kind, in the scalar case,

1F1 (α, β; z) =
∞∑
j=0

(α, j)

(β, j)

z j

j ! ,

with (a, j) = � (a + j) /� (a), and (a, 0) = 1. Its integral representation is

1F1 (α, β; z) = � (β)

� (α) � (β − α)

1∫

0

ezt tα−1(1 − t)β−α−1dt .
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b) Kummer confluent hypergeometric function of the second kind, in the scalar
case,

ψ (α, β; z)= � (1 − β)

� (1+α−β)
1F1 (α, β; z)+ � (β−1)

� (α)
z1−β

1F1 (1+α − β, 2 − β; z) .

Its integral representation is

ψ (α, β; z) = 1

� (α)

∞∫

0

e−zt tα−1(1 + t)β−α−1dt .

Using the above two relations, we have for U , the univariate Beta of the first kind, its
characteristic function

ϕU (t) = E
[
exp (i tU )

] = 1F1 (α, α + β; i t) ,

where i = √−1, and its moment generating function

MU (t) = E
[
exp (tU )

] = 1F1 (α, α + β; t) .

Similarly, we have, for V , the univariate Beta of the second kind

MV (t) = E
[
exp (tV )

] = ψ (α, α + β; t) .

II. Matrix case
When the variable is a matrix, there are several ways to define the hypergeometric

function. One way is using zonal polynomials (see Muirhead 1982), which, unfortu-
nately, are very difficult to compute, except in simple cases.

We have Kummer hypergeometric function of the first kind, for the symmetric
matrix R,

1F1 (α, β;R) = �p (β)

�p (α) �p (β − α)
∫

0<S<Ip

etr (RS) |S|α−(p+1)/2
∣∣Ip − S

∣∣β−α−(p+1)/2
dS,

where etr (X) = exp (traceX), and for the Kummer hypergeometric matrix function
of the second kind

ψ (α, β;R) = 1

�p (α)

∫

0<S

etr (−RS) |S|α−(p+1)/2
∣∣Ip + S

∣∣β−α−(p+1)/2
dS.
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The characteristic function of the matrix Beta variate of the first kind U is then

ϕU (Z) = 1F1 (α, α + β; iZ) ,

where Z is a symmetric (p × p) matrix of scalars, with form Z = ( 1
2

(
1 + δi j

)
zi j

)
,

where δi j is the Kronecker symbol. Its moment generating function is

MU (Z) =1F1 (α, α + β;Z) .

The characteristic function for the matrix Beta variate of the second kind V is then

ϕV (Z) = �p (α + β)

�p (β)
ψ (α;−β + (p + 1) /2;−iZ) .

Its moment generating function is

MV (Z) = �p (α + β)

�p (β)
ψ (α;−β + (p + 1) /2;−Z) .

See Gupta and Nagar (2000) for some of the arguments used here.

3.1.2 Distributions of powers of U and V

For the integral positive and negative powers of the two types of central Beta matrix
variates we have:

Theorem 1 Let U ∼ BetaI
p (a, b), V ∼ BetaI I

p (a, b) with distinct latent roots and
positive integer m. We have

(a) The PDF of X = Um is given by, for 0 < X < Ip,

fX (X) =
|X| a−m− p−1

2
m

∣∣∣∣Ip − X
1
m

∣∣∣∣
b− p+1

2

mpBp (a, b)

∏
i< j

∣∣∣∣∣∣∣
η

1
m
i − η

1
m
j

ηi − η j

∣∣∣∣∣∣∣
, (8)

whereη1, η2, . . . , ηp are the latent roots ofX andX
1
m denotes them-th symmetric

positive definite root of X, i.e.
(
X

1
m

)m = X.

(b) The PDF of Y = U−m is given by, for Y > Ip,

fY (Y) =
|Y| −(a+b+m−1)

m

∣∣∣∣Y
1
m − Ip

∣∣∣∣
b− p+1

2

mpBp (a, b)

∏
i< j

∣∣∣∣∣
ξi

1
m − ξ j

1
m

ξi − ξ j

∣∣∣∣∣, (9)

where ξ1, ξ2, . . . , ξp are the latent roots of Y.
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(c) The PDF of Z = Vm is given by, for Z > 0,

fZ (Z) =
|Z| a−m− p−1

2
m

∣∣∣∣Ip + Z
1
m

∣∣∣∣
−(a+b)

mpBp (a, b)

∏
i< j

∣∣∣∣∣∣∣
θ

1
m
i − θ

1
m
j

θi − θ j

∣∣∣∣∣∣∣
, (10)

where θ1, θ2, . . . , θp are the latent roots of Z.
(d) The PDF of V−m has the same expression as the PDF of Vm, with a and b

interchanged.

Proof (a) The Jacobian of transformation U → X = Um is (Mathai 1997)

mp|U|m−1
∏
i< j

∣∣∣∣∣
λmi − λmj

λi − λ j

∣∣∣∣∣

for a positive definite symmetric matrix U with real distinct and positive latent roots
λ1, . . . , λp. We have ηi = λmi , where ηi is the latent root of X because X = Um .
Using (6), we have the above (8) for the PDF of X = Um .

(b) For U ∼ BetaI
p (a, b), we have the PDF of W = U−1 as follows (Gupta and

Nagar 2000)
|W|−(a+b)

∣∣W − Ip
∣∣b− p+1

2

Bp (a, b)
, for W > Ip.

Setting Y = U−m = Wm , applying the same approach as part (a) we have the PDF of
U−m .

(c) The proof here is similar to part (a).
(d) Moreover, for V ∼ BetaI I

p (a, b), we have V−1 ∼ BetaI I
p (b, a) (Gupta and

Nagar 2000). Hence V−m , has its PDF exactly as the density of Vm , but with a and b
permuted. ��

3.2 Determinant distributions

The determinant of a Beta matrix variate can have its univariate distribution expressed
as a product of independent univariate Betas, hence by a Meijer G-function distribu-
tion, as shown in Pham-Gia (2008), Pham-Gia and Turkkan (2011a), where it also
shown how numerical computation of these distributions can be carried out by using
Meijer G-functions. Let U ∼ BetaI

p (a, b), V ∼ BetaI I
p (a, b). We have

(a) The PDF of |U| is given by Pham-Gia (2008) as follows, for 0 < u < 1,

f|U| (u) =
p∏

j=1

�
(
a + b − j−1

2

)

�
(
a − j−1

2

) G
p 0
p p

[
u

∣∣∣∣∣
a + b − 1, a + b − 3

2 , . . . , a + b − p+1
2

a − 1, a − 3
2 , . . . , a − p+1

2

]

(11)

where G
m n
r q

(.) is the Meijer G-function (see Mathai et al. 2010).
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(b) The PDF of |V| is given by Pham-Gia (2008) as follows, for v > 0,

f|V| (v) = 1
p∏

j=1
�

(
a − j−1

2

)
�

(
b − j−1

2

)G
p p
p p

[
v

∣∣∣∣∣
−b, − (

b − 1
2

)
, . . . , −

(
b − p−1

2

)

a − 1, a − 3
2 , . . . , a − p+1

2

]
.

(12)

For the positive and negative powers of the determinants of the two types of central
Beta matrix variates we have:

Theorem 2 Let U ∼ BetaI
p (a, b), V ∼ BetaI I

p (a, b), and m > 0. We have

(a) The PDF of |U|m is given by, for 0 < x < 1,

f (x) = 1

m

p∏
j=1

�
(
a + b − j−1

2

)

�
(
a − j−1

2

)

× G
p 0
p p

[
x

1
m

∣∣∣∣∣
a + b − m, a + b − m − 1

2 , . . . , a + b − m − p−1
2

a − m, a − m − 1
2 , . . . , a − m − p−1

2

]
.

(13)

(b) The PDF of |U|−m is given by, for y > 1,

f (y) = 1

m

p∏
j=1

�
(
a + b − j−1

2

)

�
(
a − j−1

2

)

× G
0 p
p p

[
y

1
m

∣∣∣∣∣
−a − m + 1,−a − m + 3

2 , . . . ,−a − m + p+1
2

−a − b − m + 1,−a − b − m + 3
2 , . . . ,−a − b − m + p+1

2

]
.

(14)

(c) The PDF of |V|m is given by, for z > 0,

f (z) = 1

m
p∏

j=1
�

(
a − j−1

2

)
�

(
b − j−1

2

)

× G
p p
p p

[
z

1
m

∣∣∣∣∣
−b − m + 1,−b − m + 3

2 , . . . ,−b − m + p+1
2

a − m, a − m − 1
2 , . . . , a − m − p−1

2

]
.

(15)

(d) And the PDF of |V|−m is the same as (15), but with a and b interchanged.

Proof (a) Using the classical transform technique X = |U|m and using (11) we have
the PDF of X = |U|m as

x
1−m
m

m

p∏
j=1

�
(
a + b − j−1

2

)

�
(
a − j−1

2

) G
p 0
p p

[
x

1
m

∣∣∣∣∣
a + b − 1, a + b − 3

2 , . . . , a + b − p+1
2

a − 1, a − 3
2 , . . . , a − p+1

2

]
.
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Using the equation (1.60) in Mathai et al. (2010) we have

x
1−m
m G

p 0
p p

[
x

1
m

∣∣∣∣∣
a + b − 1, . . . , a + b − p+1

2
a − 1, . . . , a − p+1

2

]

= G
p 0
p p

[
x

1
m

∣∣∣∣∣
a + b − m, a + b − m − 1

2 , . . . , a + b − m − p−1
2

a − m, a − m − 1
2 , . . . , a − m − p−1

2

]
.

(b) Using (11) we have the PDF of T = |U|−1 as

p∏
j=1

�
(
a + b − j−1

2

)

�
(
a − j−1

2

) t−2G
p 0
p p

[
t−1

∣∣∣∣∣
a + b − 1, a + b − 3

2 , . . . , a + b − p+1
2

a − 1, a − 3
2 , . . . , a − p+1

2

]
.

Using the equation (1.58) in Mathai et al. (2010) we have

G
p 0
p p

[
t−1

∣∣∣∣∣
a + b − 1, a + b − 3

2 , . . . , a + b − p+1
2

a − 1, a − 3
2 , . . . , a − p+1

2

]

= G
0 p
p p

[
t

∣∣∣∣∣
−a + 2,−a + 5

2 , . . . ,−a + p+3
2

− (a + b) + 2,− (a + b) + 5
2 , . . . ,− (a + b) + p+3

2

]
.

Using the equation (1.60) in Mathai et al. (2010) we have

t−2G
0 p
p p

[
t

∣∣∣∣∣
−a + 2,−a + 5

2 , . . . ,−a + p+3
2

− (a + b) + 2,− (a + b) + 5
2 , . . . ,− (a + b) + p+3

2

]

= G
0 p
p p

[
t

∣∣∣∣∣
−a,−a + 1

2 , . . . ,−a + p−1
2

−a − b,−a − b + 1
2 , . . . ,−a − b + p−1

2

]
.

Setting X = Tm = |U|−m , it is the same as (a) we have the PDF of |U|−m as (14). (c)
and (d) applying the same approach as (a) and (b). ��
Remark 2 If m is positive integer, we have |U|m = |Um |, |V|m = |Vm |, |U|−m =∣∣U−m

∣∣, |V|−m = ∣∣V−m
∣∣.

3.3 Latent roots distributions

The latent roots of matrix variates U and V are very much present in statistical tests
in multivariate analysis. Their joint distributions have been found almost simultane-
ously by five well-known statisticians in the late thirties and early fifties. They have
been used in hypothesis testing, in relation to the equality of two covariance matrices
(Pham-Gia and Turkkan 2011b), in multivariate analysis of variance, in canonical cor-
relation, among other topics. Lately, they play an active role in random matrix theory
in theoretical Physics.
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Let us recall that the PDF of the latent roots
{
λ1, . . . , λp

}
of U ∼ BetaI

p (a, b) is
given by

π p2/2

�p (p/2) Bp (a, b)

⎡
⎣

p∏
j=1

λ
a− p+1

2
j

(
1 − λ j

)b− p+1
2

⎤
⎦ ∏

i< j

(
λi − λ j

)
, (16)

where 1 > λ1 > λ2 > · · · > λp > 0. The PDF of the latent roots
{
l1, . . . , l p

}
of

V ∼ BetaI I
p (a, b) is given by

π p2/2

�p (p/2) Bp (a, b)

⎡
⎣

p∏
j=1

l
a− p+1

2
j

(
1 + l j

)−(a+b)

⎤
⎦ ∏

i< j

(
li − l j

)
, (17)

where l1 > l2 > · · · > l p > 0.
Wealso have l j = λ j/

(
1 − λ j

)
. For the latent roots distributions of integral positive

and negative powers of Beta matrix variates, we have:

Theorem 3 Let U ∼ BetaI
p (a, b), V ∼ BetaI I

p (a, b), and m be a positive integer.
We have

(a) The PDF of the latent roots
{
η1, η2, . . . , ηp

}
of Um is given by

h
(
η1, . . . , ηp

) = C

mp

p∏
j=1

η j

a−m− p−1
2

m

(
1 − η j

1
m

)b− p+1
2 ∏

i< j

(
η

1
m
i − η

1
m
j

)
, (18)

where 1 > η1 > η2 > · · · > ηp > 0 and C = π p2/2

�p(p/2)Bp(a,b) .

(b) The PDF of the latent roots
{
ξ1, ξ2, . . . , ξp

}
of U−m is given by

h
(
ξ1, . . . , ξp

) = C

mp

p∏
j=1

ξ j
−(a+b+m−p)

m

(
ξ j

1
m − 1

)b− p+1
2 ∏

i< j

(
ξi

1
m − ξ j

1
m

)

(
ξiξ j

) 1
m

,

(19)
where ξ1 > ξ2 > · · · > ξp > 1.

(c) The PDF of the latent roots
{
θ1, θ2, . . . , θp

}
of Vm is given by

h
(
θ1, θ2, . . . , θp

) = C

mp

⎡
⎣

p∏
j=1

θ

a−m− p−1
2

m
j

(
1 + θ j

1
m

)−(a+b)
⎤
⎦ ∏

i< j

(
θ

1
m
i − θ

1
m
j

)
,

(20)
where θ1 > θ2 > · · · > θp > 0.

(d) The PDF of the latent roots ofV−m is the same as (20) with a and b interchanged.

Proof (a) We noted that the latent roots of Um , 1 > η1 > η2 > · · · > ηp > 0, are
determined by the transformation {λ1, λ2, . . ., λp} to {η1 = λ1

m , η2 = λ2
m , . . .,
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ηp = λp
m}. The Jacobian of those transformation is mp ∏p

j=1 λ j
m−1. Using (16) we

have the PDF of the latent roots
(
η1, η2, . . . , ηp

)
of Um as given by (18).

We have the proofs of (b), (c) and (d) by applying the same approach as (a). ��

Graphical representations We give here the graphical representations of some latent
roots distributions. We are limited to p = 2 although by Theorem 3 the idea
can be extended to any value of p. For example, let U ∼ BetaI

2 (10, 8) and
V ∼ BetaI I

2 (10, 8). The explicit expressions PDFs of latent roots of U2, U−2,
V2, and V−2 are given by the Eqs. (18)–(20) where p = m = 2, a = 10, and b = 8.
For example, the density of latent roots of U2 is:

hU2 (η1, η2) = C

4
η1

15
4 η2

15
4
(
1 − √

η1
) 13

2
(
1 − √

η2
) 13

2
(√

η1 − √
η2

)
,

for 0 < η2 < η1 < 1, where C = π2�2(18)
�2(1)�2(10)�2(8)

= 132237685800. The graphs of
PDFs are given by Figs. 1a, b, 2a, and b, where the vertical scales are different.

4 Applications

4.1 Applications in MANOVA

Both matrix beta variates have found applications in MANOVA, for testing various
hypotheses there. Pham-Gia (2008) showed the use ofWilks’s statistic, which is the
determinant of U, in testing H0 : μ1 = · · · = μk in Rp, with numerical computations
using Meijer functions. Other tests include: Independence between k sets of variables
and test based on partitioning the total variations and error matrices. Rencher and
Christensen (2012) gives an example of using , to test the equal mean growths of
six apple tree varieties, based on rootstock data, which consists of 48 observations of
dimension 4, collected between 1918 and 1934. Several other tests are based on latent
roots of the Beta matrix variates (Lawley 1938; Roy 1953; Pillai 1954 etc.).

4.2 The posterior distribution in Bayesian analysis

In the univariate case we know that the Beta of the first kind is conjugate to binomial
sampling, i.e. for the proportion π with a beta prior distribution, π ∼ BetaI

1 (a, b),
with x successes out of n trials, we have the posterior distribution of π as BetaI

1 (a +
x, b + n − x). The explicit expressions of the densities of πm and π−m obtained
earlier, will also allow us to determine the highest posterior density (HPD) interval
(see Sect. 4.3) for W = πm or π−m , if we start with a power of π , instead of π itself.
By using algorithm in Turkkan and Pham-Gia (1993) we can compute this interval,
which cannot be determined from the HPD interval of π .

Let W = π2, for example, be the parameter of interest in the Bernoulli model.
Suppose π has the Beta of the first kind BetaI

1 (α, β), here BetaI
1 (5, 7), as prior.

Then by (3), W has as prior the density
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Fig. 1 The PDF of the latent
roots of U2 and U−2, where
U ∼ BetaI2 (10, 8)

f (w|data) =
(√

w
)3(1 − √

w
)6

2B (5, 7)
, 0 < w < 1,

a result which is difficult to obtain directly. Suppose binomial sampling gives x suc-
cesses out of n trials, then the posterior distribution of π is BetaI

1 (5 + x, 7 + n − x),
and, again by (3), the posterior distribution of W is

f (w) =
(√

w
)3+x(1 − √

w
)6+n−x

2B (5 + x, 7 + n − x)
, 0 < w < 1.
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Fig. 2 The PDF of the latent
roots of V2 and V−2, where
V ∼ BetaI I2 (10, 8)

Let the sampling results be n = 10, x = 4. We then have posterior distribution of π

is BetaI
1 (9, 13) and posterior density of W is f (w) = (

√
w)

7
(1−√

w)
12

2B(9,13) , 0 < w < 1.

Graphs of the PDFs of the priors of π and π2 and given by Fig. 3a, and those of the
posteriors by Fig. 3b.
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(a)

(b)

Fig. 3 The PDFs of the priors and the posteriors of π and W = π2, where π ∼ BetaI1 (5, 7)
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4.3 Interval estimation of the product of latent roots and distributions of
geometric means

4.3.1 Highest probability density interval

Latent roots of square random matrices have been in use in multivariate statistics for
a long time and, lately, have seen an important role in theoretical physics where they
represent different levels of energy. Here, we consider the product of latent roots and
compute its credible interval. This interval is different from the classical confidence
interval which comes from a sample of observations. Here, we consider the probability
density of the parameter, or product of parameters, and search for an interval with
(1 − α) 100% probability in which this parameter would lie. Furthermore, the interval
should have the property that any point inside it has a higher probability than any point
outside it. It is called highest probability density interval (HPD) and one algorithm
given to derive it is Turkkan and Pham-Gia (1993) for the univariate case. Turkkan
and Pham-Gia (1997) treats the bivariate case. Computation of the HPD interval is
particularly interesting in the case of multimodal densities, where the algorithmwould
return a set of disjoint intervals.

Let U ∼ BetaI
p (a, b) having p latent roots 1 > λ1 > · · · > λp > 0 and let V ∼

BetaI I
p (a, b) having p latent roots l1 > l2 > · · · > l p > 0. Firstly, we have |U| =∏p

i=1 λi , and hence the (1 − α) 100% HPD interval (c, d) for the product
∏p

i=1 λi is
the (1 − α) 100% HPD interval for |U|. For example, for p = 2, U ∼ BetaI

2 (10, 8),
the 90% HPD interval of the product λ1λ2 is (0.1529914846, 0.4463566639), given
by Fig. 4a, while the bivariate PDF of {λ1, λ2} is the Eq. (16) where p = 2. Similarly,
for any value of p, the (1 − α) 100% HPD interval for the product

(∏p
i=1 λi

)m
of

latent roots is the HPD interval for |U|m . We note that the HPD interval
(
c′, d ′) of(∏p

i=1 λi
)m

cannot be determined from the HPD interval (c, d) of
∏p

i=1 λi because(
c′, d ′) is different from (cm, dm). For example, forU ∼ BetaI

2 (10, 8), the 90%HPD
interval of (λ1λ2)

2, Fig. 4b, is (0.007566535046, 0.2471269211) different from

(
0.15299148462, 0.44635666392

)
= (0.02337, 0.19918) .

Similar results can be obtained for

( p∏
i=1

λi

)−m

,

( p∏
i=1

li

)m

, and

( p∏
i=1

li

)−m

.

4.3.2 Distributions of geometric means

Pillai (1955) suggested three test criteria to be used in MANOVA, which are based

on the harmonic means: H (p) = p

{ p∑
i=1

(1 − λi )
−1

}−1

, R(p) = p

{ p∑
i=1

λ−1
i

}−1

,

and T (p) = p

{ p∑
i=1

l−1
i

}−1

. Here, we consider the distributions of geometric means,
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(a)

(b)

Fig. 4 The 90% credible interval of λ1λ2 and (λ1λ2)
2
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Fig. 5 The PDFs of |U| = λ1λ2λ3 and GMI = (λ1λ2λ3)
1/3, U ∼ BetaI3 (10, 8)

GMI =
( p∏
i=1

λi

)1/p

andGMI I =
( p∏
i=1

li

)1/p

as two new test criteria forMANOVA.

Their interval estimation can bemade, as before, by relations |U| =
p∏

i=1
λi , |V| =

p∏
i=1

li

since we have the PDFs of GMI and GMI I given by Eqs. (13) and (15) wherem = 1
p

(sincewe are dealingwith the determinant, a real value,m can take a non-integral value
here). For example, let p = 3 and U ∼ BetaI

3 (10, 8). The PDFs of |U| = λ1λ2λ3

and GMI = (λ1λ2λ3)
1/3 are given by Fig. 5, and similar computations of their HPD

intervals can be carried out like previously. Similar computations can be carried out

for |V| =
p∏

i=1
li and GMI I =

( p∏
i=1

li

)1/p

.

5 Conclusion

This article has presented the expressions of the densities associated with integral
powers of the central Beta matrix variates, under three frequently considered types:
entries, determinant and latent roots. Various applications to different topics in statis-
tics: multivariate analysis, matrix variate analysis, and in random matrix theory, can
be readily made from the results given here.
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