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Abstract
Signal-to-noise ratio (SNR) statistics play a central role in many applications. A com-
mon situation where SNR is studied is when a continuous time signal is sampled
at a fixed frequency with some noise in the background. While estimation methods
exist, little is known about its distribution when the noise is not weakly stationary.
In this paper we develop a nonparametric method to estimate the distribution of an
SNR statistic when the noise belongs to a fairly general class of stochastic processes
that encompasses both short and long-range dependence, as well as nonlinearities.
The method is based on a combination of smoothing and subsampling techniques.
Computations are only operated at the subsample level, and this allows to manage the
typical enormous sample size produced by modern data acquisition technologies. We
derive asymptotic guarantees for the proposed method, and we show the finite sample
performance based on numerical experiments. Finally, we propose an application to
electroencephalography data.

Keywords Random subsampling · Nonparametric smoothing · Kernel regression ·
Time series data · Stochastic processes

1 Introduction

Signal-to-noise ratio (SNR) statistics are widely used to describe the strength of the
variations of the signal relative to those expressed by the noise. SNR statistics are
used to quantify diverse aspects of models where an observable quantity Y is decom-
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posed into a predictable or structural component s, often called signal or model, and a
stochastic component ε, called noise or error. Although the definition of SNR is rather
general in this paper we focus on a typical situation where one assumes a sequence
{Yi }i∈Z is determined by

Yi := s(ti ) + εi , (1)

where i is a time index, s(·) is a smooth function of time evaluated at the time point
ti with i ∈ Z, and {εi }i∈Z is some random sequence. Assume ti ∈ (0, 1), however
if a time series is observed at time points ti ∈ (a, b), these can be rescaled onto the
interval (0, 1) without changing the results of this paper.

Equation (1) is a popular model in many applications that range from physical
sciences to engineering, biosciences, social sciences, etc. (see Parzen 1966, 1999 and
references therein). Although we use the conventional term “noise” for εi , this term
may have a rich structure well beyond what we would usually consider noise. Some of
the terminology here originates from physical sciences where the following concepts
have been first explored. Consider a non stochastic signal s(t) defined on the time
interval (0, 1), and assume that s(t) has a zero average level (that is

∫ 1
0 s(t)dt = 0).

The average “variation” (or magnitude) of the signal is quantified as

Psignal :=
∫ 1

0
s2(t)dt . (2)

In physical science terminology (2) is the average power of the signal, that is the
“energy” contained in s(·) per time unit (if the reference time interval is (a, b) the
integral in (2) is divided by (b − a)). If the average signal level is not zero, s(t) is
centered on its mean value, and then (2) is computed. The magnitude, or the “power”,
of the noise component is given by Pnoise := Var[εi ]. The SNR of the process is the
ratio

SNR := 10 log10
Psignal
Pnoise

, (3)

expressed in decibels unit. The SNR can also be defined as the ratio (Psignal/Pnoise),
however the decibel scale is more common. Low SNR implies that the strength of
the random component of (1) makes the signal s(·) barely distinguishable from the
observation of Yi . On the other hand, high SNR means that the sampling about Yi will
convey enough information about the predictable/structural component s(·).

Inmanyanalysis, SNR is a crucial parameter to beknown. In radar detection applica-
tions (Richards 2014), speech recognition (Loizou 2013), audio and video applications
of signal processing (Haykin andKosko 2001), it is crucial to build filtering algorithms
that are able to reconstruct s(·) with the largest possible SNR. In neuroscience there
is strong interest in quantifying the SNR of signals produced by neurons activity. In
fact, the puzzle is that single neurons seem to have low SNR meaning that they emit
“weak signals” that are still processed so efficiently by the brain system (Czanner
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et al. 2015). In medical diagnostics, a physiological activity is measured and digi-
tally sampled (e.g. fMRI, EEG, etc) with methods and devices that need to guarantee
the largest SNR possible (Ullsperger and Debener 2010). The historic discovery of
the first detection of a gravitational wave announced on 11 February 2016 has been
made possible because of decades of research efforts in designing instruments and
measurement methods able to work in an extremely low SNR environment (Kalogera
2017). These are just a few examples of the relevance of the SNR concept. The main
goal of this paper is to define a SNR statistic, and provide an estimator for its distri-
bution with proven statistical guarantees under general assumptions on the elements
of (1).

Let Yn := {y1, y2, . . . , yn} be sample values of Y observed at equally spaced
time points ti = i/n for i = 1, 2, . . . , n, with ti ∈ (0, 1). That is, in this work we
focus on situations where Y is sampled at constant sampling rate (also known as fixed
frequency sampling, or uniform design), although the theory developed here can be
extended to non-constant sampling rates. Let ŝ(·) and ε̂ be estimated quantities based
on Yn . Consider the observed SNR statistic

ŜN R := 10 log10

⎛

⎜
⎝

1
n

∑n
i=1 ŝ

2
( i
n

)

1
m

∑m
i=1

(
ε̂i − ¯̂ε

)2

⎞

⎟
⎠ , with ¯̂ε = 1

m

m∑

i=1

ε̂i , (4)

for some choice of an appropriate sequence {m} such that m → ∞ and m/n → 0 as
n → ∞. In this paper we propose a subsampling strategy that consistently estimates
the quantiles of the distribution of τm(ŜN R−SNR) for an appropriate sequence {τm}
(see Theorem 3). These quantiles are used to construct simple confidence intervals for
the SNR parameter.

In most applications the observed {Yi }i∈Z is treated as “stable” enough so that
smoothing methods (typically linear filtering) are applied to get ŝ(·) and the error
terms, ε̂i , i = 1, 2, . . . , n. Therefore, the general practice is to divide the observed
data stream into sequential blocks of overlapping observations of some length (time
windowing), and for each block ŜN R is computed (see Haykin and Kosko 2001;
Weinberg 2017). These SNR measurements are then used to construct its distribution
to make inference statements about the underlying SNR. These windowing methods
implicitly assume some sort of local stationarity and uncorrelated noise, but there
is a lack of theoretical justification. However, data structures often exhibit strong
time-variations and other complexities not consistent with these simplifying assump-
tions. To our knowledge, a framework and a method for estimating the distribution
of SNR statistics like (4) with provable statistical guarantees does not exist in the
literature.

Themajor contribution of this paper is a subsamplingmethod for the approximation
of the quantiles of the distribution of the centered statistic τm(ŜN R − SNR). The
method is based on the observation that τm(ŜN R − SNR) can be decomposed into
the sum of the following components:
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− 10τm

⎡
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log10
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− log10
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⎥
⎦

,

(5)

where V̂m = m−1∑m
i=1

(
ε̂i − ¯̂ε

)2
. In (5) the two components reflect the power con-

tribution of the signal estimated based on ŝ2(·), and the power contribution of and the
error term estimated in terms of V̂m . In practice, the proposed method, formalized in
Algorithm 1, works as follows: (i) the observed time series is randomly divided into
subsamples, that is random blocks of consecutive observations; (ii) in each subsample
the estimates ŝ2(·) and V̂m in (5) are computed; (iii) finally these subsample estimates
are used to approximate the distribution of τm(ŜN R − SNR) and its quantiles.

Based on Altman (1990), a consistent kernel smoother with an optimal bandwidth
estimator is derived. The smoother does not require any further tuning parameters,
even though the stochastic structure here is richer than that considered in the orig-
inal paper by Altman (1990). The subsampling procedure extends the contributions
of Politis and Romano (1994) and Politis et al. (2001). The main difference with
the classical subsampling is that the method proposed in this paper does not require
computations on the entire observed time series. Therefore the kernel smoothing is
performed subsample-wise, and this is particularly beneficial in applications when the
sample size is significantly large. In sleep studies often an electrophysiological record
(EEG) of the brain activity is performed in several positions of the scalp, where each
sensor samples an electrical signal for 24h at 100Hz, implying n = 8, 640, 000 data
points for each sensor (see Kemp et al. 2000). Music is usually recorded at 44.1Khz
(ISO 9660), which implies that a stereo song of 5min produces n = 26, 460, 000
data points. This approach has been explored by Coretto and Giordano (2017) for the
estimation of the dynamic range of music signals. However, the work of Coretto and
Giordano (2017) deals with noise structures less general than those studied here. A
further original element of this work is that, although the setup for {εi }i∈Z does not
exclude long memory regimes, the methods proposed do not require the identification
of any long memory parameter.

The rest of the paper is organized as follows. In Sect. 2 we define and discuss
the reference framework for {Yi }i∈Z. In Sect. 3 the main estimation Algorithm 1 is
introduced. The smoothing step of Algorithm 1 is studied in Seciton 4, while the
subsampling step is investigated in Sect. 5. In Sect. 6 we show finite sample results of
the proposed method based on simulated data, moreover an application to real data is
illustrated. Final remarks and conclusions are given in Sect. 8. All proofs are given in
the final “Appendix”.
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2 Setup and assumptions

The framework (1) underpins a popular strategy to study experiments where a contin-
uous time (analog) signal s(·) is sampled at fixed time points ti . The stochastic term
{εi }i∈Z represents various sources of randomness. In some cases, the source and the
structure of the random component are known, but this does not apply universally. A
ubiquitous assumption about {εi }i∈Z is that it is white noise; sometimes the simplifi-
cation pushes further towards Gaussianity (see Parzen 1966, and references therein).
However, in various applications the evidence of departure from this simplicity it is
quite rich.

The most elementary source of randomness is the quantization noise, i.e. the added
noise introduced by the quantization of the signal. In Music, speech, EEG and many
other applications, a voltage amplitude is recorded at fixed time intervals using a
limited range of integer numbers. This is the so called Pulse CodeModulation (PCM),
which is at the base of digital encoding techniques. The quantization noise is produced
by the rounding error of the PCM sampling. Theoretically the quantization noise is
a uniform white noise process, however, Gray (1990) showed that the structure of
the quantization noise varies a lot across applications and measurement techniques,
and often the white noise assumption is too restrictive. Apart from quantization noise,
the recorded signal may be affected by a number of disturbances unrelated to the
signal. Take for example an EEG acquisition where electrical noise from the power
lines is injected into the measuring device. In speech recording microphones capture
stray radio frequency energy. Another example is that of wireless signal transmission
affected by multi-path interference, that is: waves bounce off of and around surfaces
creating unpredictable phase distortions. Complex effects like these happen in radar
transmission too, where it is well known that the Gaussian white noise assumption is
generally violated (see Conte and Maio 2002, and references therein).

Sometimes the stochastic component does not only include unpredictable external
artifacts. There are cases where the structure of {εi }i∈Z is the result of several complex
phenomena occurring within the system under study. In their pioneering works Voss
and Clarke (1978, 1975) found evidence of 1/ f –noise or similar fractal processes in
recorded music. Similar evidence is documented in Levitin et al. (2012). 1/ f –noise is
a stochastic process where the spectral density follows the power law c| f |−β , where
f is the frequency, β is the exponent, and c is a scaling constant. β = 1 gives pink
noise, that is just an example of such processes. Depending on β these forms of noise
are characterized by slowly vanishing serial correlations and/or what is known as long
memory. Many electronic devices found in data acquisition instruments introduce
1/ f -type noise (Kogan 1996; Weissman 1988; Kenig and Cross 2014). Evidence
of departure from linearity and Gaussianity in the transient components of music
recordings was also found in Brillinger and Irizarry (1998) and Coretto and Giordano
(2017).

The main goal of this paper is to build an estimation method for the distribution of
the SNR that works under the most general setting. Of course achieving universality
is impossible, but here we set a model environment that is as rich as possible. Our
model is restricted by the following assumptions:
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Assumption A1 The function s(·) has a continuous second derivative.

Assumption A2 The sequence {εi }i∈Z fulfills one of the following:

(SRD) {εi }i∈Z is a strictly stationary and α-mixing process with mixing coefficients

α(k), E[εi ] = 0, E
∣
∣ε2i
∣
∣2+δ

< +∞, and
∑+∞

k=1 αδ/(2+δ)(k) < ∞ for some
δ > 0.

(LRD) εi = ∑∞
j=0 ψ j ai− j with E[ai ] = 0, E[a4i ] < ∞ ∀i , {ai } ∼ i .i .d., ψ j ∼

C1 j−η with η = 1
2 (1 + γ1), C1 > 0 and 0 < γ1 ≤ 1.

Assumption A1 reflects a common smoothness requirement for s(·)which does not
need further discussion. In most applications, s(·) will represent the sum of possibly
many harmonic components, or long term smooth trends. A2 sets a wide range of
possible structures for the stochastic component. Two regimes are considered here:
short range dependence (SRD) and long range dependence (LRD). SRD is a rather
generalα-mixing assumption that allows to overcome the usual linear process assump-
tion. The latter is essential to model fast decaying energy variations that is typical in
some form of noise. Assumptions A1 and A2-SRD are also considered in Coretto and
Giordano (2017) for the estimation of the dynamic range of music signals. However,
in this paper, we are interested in SNR statistics, and we extend the analysis to the
cases where LRD occurs. A2-LRD has the role to capture situations where the noise
spectra shows long-range dependence; in practice this assumption accommodates the
1/ f -type noise. The LRD is controlled by γ1 which is between zero and 1.

Note thatA2-LRDassumes a linear structurewhileA2-SRDdoes not. SRDassump-
tion allows for dependence, and the rate at which it vanishes it is controlled by δ. Under
SRD, in the infinite future, the terms of {εi }i∈Z act as an independent sequence. Hence
SRD can capture many different forms of dependence but not long memory features.
Is the linearity structure of LRD a strong assumption for the long-memory cases? The
class of long-memory linear processes is well known in the literature, and in most
cases, LRD effects are more common to appear with a linear autoregressive structure.
Moreover, A2-LRD is compatible with the classical parametric models for LRD, e.g.
the well known ARFIMA class, already used to capture the 1/ f -noise phenomenon.
One could overcome the linearity assumption in LRD but at the expense of serious
technical complications. It is important to stress that we are not interested in identify-
ing SRD-vs-LRD, and we want to avoid the additional estimation of the LRD order.
The latter is crucial in most parametric models for LRD. Assumption A2 only defines
plausible stochastic structures that can occur in the most diverse applications. Note
that A2-LRD does not imply that {εi }i∈Z is a Gaussian process or a function of it, as
it is assumed in Jach et al. (2012) and Hall et al. (1998).

3 The smoothing-subsampling procedure

TheSNRdistribution is estimated performingAlgorithm1.This is a simple smoothing-
subsampling procedure where for each subsample Psignal is consistently estimated by
Ûn,b,t , and Pnoise is estimated by V̂n,b1,t on a secondary subsample taken from the
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Algorithm 1: blockwise smoothing

input : data {y1, y2, . . . , yn}, constants K ∈ N, b ∈ N, and b1 = o
(
b2/5

)

output : quantiles of the SNR statistic

Draw without replacement and with uniform probability a random sample TK = {t1, t2, . . . , tK }
from the set {1, 2, . . . , n − b + 1}.
for t ∈ TK do

Take the subsample Yt = {
yt , yt+1, . . . , yt+b−1

}

Based on kernel methods estimate s(·) and the signal power

Ûn,b,t = 1

b

t+b−1∑

i=t

[

ŝ

(
i − t + 1

b

)]2
. (6)

Compute ε̂i = yi − ŝ((i − t + 1)/b) for i = t, t + 1, . . . , t + b1 − 1.

Estimate the noise variance on b1 values

¯̂εb1,t = 1

b1

t+b1−1∑

i=t

ε̂i , V̂n,b1,t = 1

b1

t+b1−1∑

i=t

(ε̂i − ¯̂εb1,t )2. (7)

Compute the subsample SNR statistic

ŜN Rn,b,t = 10 log10

(
Ûn,b,t

V̂n,b1,t

)

. (8)

end

Based on {ŜN Rn,b,t , }t∈TK
compute quantiles as in (16)

previous one. Details and theoretical motivation of the procedure will be treated in
Sects. 4 and 5. The distribution is constructed for the SNR expressed in decibel scale.

The procedure is called “Monte Carlo” because the subsample selection is random-
ized. The latter reduces the huge number of subsamples to be explored. Note that here
none of the calculations involve computations over the entire observed sample Yn .
The latter differs from the classical subsampling for time series data introduced in
Politis and Romano (1994) and Politis et al. (2001). In the classical subsampling, one
would estimate the variance of {εi }i∈Z based on the entire sample. This would require
that the estimation of s(·) is performed globally on Yn . In Algorithm 1 both s(·),
and the variance of {εi }i∈Z in (7) are estimated blockwise. This blockwise smoothing
strategy, where computations are performed only at the subsample level, has been
proposed in Coretto and Giordano (2017). The advantages over the classical subsam-
pling are twofold. First, thanks to the increased data acquisition technology, in most
of the applications mentioned in Sect. 1, n scales in terms of millions or billions of
data points. It is well known that kernel and other nonparametric smoothing methods
become computationally intractable for such big sample sizes. In Algorithm 1 the
computational complexity for the calculation of ŝ(·) is governed by the subsample
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size b, which is chosen much smaller than n (see Theorem 2). Second, the kind of
signals we want to reconstruct may exhibit strong structural variations along the time
axis, therefore, estimation of s(·) on the entire sample would require the use of optimal
kernel methods with local bandwidth increasing the computational burden even more.
Working on smaller data chunks allows treating the signal locally. Therefore, simpler
kernel methods based on global bandwidth within the subsampled block are better
suited to capture the local structure of the signal. Optimal estimation of s(·), and the
random subsampling part of Algorithm 1 are developed in the next two sections.

4 Optimal signal reconstruction

Unless one has enough information about the shape of s(·), nonparametric estimators
of functions with proven statistical properties are natural candidates to reconstruct the
underlying signal.Our choice is the classical Priestley-Chao kernel estimator (Priestley
and Chao 1972), because it can be easily optimized in regression models where the
error is not necessarily uncorrelated. The estimator for s(·) is defined as

ŝ(t) = 1

nh

n∑

i=1

K

(
t − i/n

h

)

yi . (9)

The following assumption involving the kernel function K (·) and the bandwidth h
is assumed to hold.

Assumption A3 K (·) is a density function with compact support and symmetric
about 0. Moreover, K (·) is Lipschitz continuous of some order. The bandwidth h ∈
H = [c1�−1/5

n , c2�
−1/5
n ], where c1 < c2 are two positive constants such that: c1 is

arbitrarily small, c2 is arbitrarily large.

Define

�n :=

⎧
⎪⎨

⎪⎩

n if A2-SRD holds,
n

log n if A2-LRD holds with γ1 = 1,

nγ1 if A2-LRD holds with 0 < γ1 < 1.

(10)

Whenever n → ∞ it happens that h → 0 and �nh → ∞.

There are a number of possible choices for K (·) satisfying A3, and we will use
the Epanechnikov kernel for its well known efficiency properties. Setting an optimal
bandwidth in (9) when the error term may be correlated requires special care. Here
an optimal choice of h is even more involved due to the fact that {εi }i∈Z may follow
either the SRD or the LRD regime. The sequence (10) has a role in managing this
added complexity. Altman (1990) developed the Priestley-Chao kernel estimator (9)
with dependent additive errors, and showed that under serial correlation standard
bandwidth optimality theory does not apply. Altman (1990) proposed to estimate
an optimal h based on a cross-validation function accounting for the dependence
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structure of {εi }i∈Z. Altman’s contribution deals with errors belonging to the class of
linear processes with finite memory. Therefore, Altman’s assumptions do not allow
the LRD case. Moreover, we consider the SRD assumption because it is typical for
stochastic processes with a nonlinear model representation in time series framework.
Finally, Altman (1990) assumes that the true autocorrelation function of {εi }i∈Z is
known which is not the case in real world applications.

Let ε̂i = yi − ŝ(i/n), and define the cross-validation objective function

CV(h) =
⎡

⎣1 − 1

nh

M∑

j=−M

K

(
j

nh

)

ρ̂( j)

⎤

⎦

−2
1

n

n∑

i=1

ε̂2i . (11)

The optimal bandwidth is estimated by minimizing (11), that is

ĥ = argminh∈H CV(h).

The first term in (11) is the correction factor proposed by Altman (1990), but replacing
the true unknown autocorrelations with their sample counterparts ρ̂(·) up to the M th
order. M is an additional smoothing parameter, but Altman’s contribution does not
deal with its choice. Consistency of the optimal bandwidth estimator is obtained if M
increases at a rate smaller than the product nh. As in Coretto and Giordano (2017) M
is chosen so that the following holds.

Assumption A4 Whenever n → ∞; then M → ∞ and M = O(
√
nh).

Let MISE(ŝ; h) be the mean integrated square error of ŝ(·), that is

MISE(ŝ; h) =
∫ 1

0
MSE(ŝ(t); h) dt where MSE(ŝ(t); h) = E[(ŝ(t) − s(t))2].

Let h
 be the global minimizer of MISE(ŝ; h). The next result states the optimality of
the kernel estimator.

Theorem 1 Assume A1, A2, A3 and A4. ĥ/h
 p−→ 1 as n → ∞.

The previous result relates ĥ to the optimal global bandwidth for which convergence
rate is known, that is O(�

−1/5
n ). Theorem 1 is equivalent to that given in Coretto

and Giordano (2017), however, the difference here is that {εi }i∈Z may well follow
LRD. Therefore, proof of Theorem 1 (given in the “Appendix”) needs some further
developments.

Remark 1 Theorem 1 improves the existing literature in several aspects. First of all,
the proposed signal reconstruction is optimal (in the MISE sense) under both SRD
and LRD. Its key feature is that one does not need to identify the type of dependence,
that is SRD vs LRD. There are only two smoothing tunings: h that is estimated opti-
mally, and M fixed according to A4. The SRD regime is already treated in Coretto
and Giordano (2017). Regarding LRD, the result should be compared to Hall et al.
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(1995). The advantages of our approach compared to the latter are: (i) the method is
simplified by eliminating a tuning needed to deal with LRD, that is the block length
for the leave-k-out cross-validation in Hall et al. (1995). This is because the Alt-
man’s cross-validation correction in (11) already incorporates the dependence structure
via ρ̂(·), and M is able to correct (11) without any further step identifying whether
LRD or SRD occurs; (ii) here we do not assume existence of higher order moments
of {εi }i∈Z.

5 Monte Carlo approximation of the subsampling distribution

In this section we exploit the subsampling procedure underlying Algorithm 1. We call
this procedure “MonteCarlo”, because it is based on a random selection of subsamples,
and here we provide a Monte Carlo approximation of the subsampling distribution of
the statistic of interest. Let us introduce the following quantities:

Vn = 1

n

n∑

i=1

(εi − ε̄)2 , with ε̄ = 1

n

n∑

i=1

εi . (12)

Although the random sequence {εi }i∈Z is not observable, one can work with its esti-
mate. Replace εi with ε̂i in the previous formula and obtain

V̂n = 1

n

n∑

i=1

(
ε̂i − ¯̂ε

)2
, with ¯̂ε = 1

n

n∑

i=1

ε̂i .

The distribution of a proper scaled and centered V̂n can now be used to approximate
the distribution of τn(Vn − σ 2

ε ) where τn is defined in (13) and σ 2
ε := E[ε2t ]. One way

to do this is to perform the subsampling as proposed in Politis et al. (1999) and Politis
et al. (2001).

That is, for all blocks of observations of length b (subsample size) compute V̂n .
However the number of possible subsample is huge even for moderate n. Moreover, in
typical cases where n is of the order of millions or billions of samples, the computation
of the optimal ŝ(·)would require an enormous computer power. The problem is solved
by performing the blockwise smoothing of Algorithm 1 proposed in Coretto and
Giordano (2017). Therefore, the signal and the average error are estimated block-wise,
so that the computing effort is only driven by b. This allows making the algorithm
scalable with respect to n, a very important feature to process data from modern data
acquisition systems. Here we investigate the theoretical properties of the estimation
Algorithm 1. The formalization is similar to that given in Coretto andGiordano (2017),
however, herewe dealwith a different target statistic, andwe face the added complexity
of the existence of LRD regimes in {εi }i∈Z.
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First define

τn :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n1/2 if A2-SRD holds,

n1/2 if A2-LRD holds with 1/2 < γ1 ≤ 1,
(

n
log n

)1/2
if A2-LRD holds with γ1 = 1/2,

nγ1 if A2-LRD holds with 0 < γ1 < 1/2.

(13)

At a given time point t consider a block of observations of length b, and the statistics
computed in Algorithm 1:

Vn,b,t = 1

b

t+b−1∑

i=t

(εi − ε̄b,t )
2, and V̂n,b,t = 1

b

t+b−1∑

i=t

(ε̂i − ¯̂εb,t )2,

with ε̄b,t = b−1∑t+b−1
i=t εi and ¯̂εb,t = b−1∑t+b−1

i=t ε̂i . The empirical distribution
functions of τn(Vn − σ 2

ε ), based on the true and estimated noise, respectively, are
given by

Gn,b(x) = 1

n − b + 1

n−b+1∑

t=1

I
{
τb
(
Vn,b,t − Vn

) ≤ x
}
,

Ĝn,b(x) = 1

n − b + 1

n−b+1∑

t=1

I

{
τb(V̂n,b,t − Vn) ≤ x

}
.

I {A} denotes the usual indicator function of the set A. τb is defined in (13). Lemma 2
and 3 in the “Appendix” state that the subsampling based on statistic (12) is consistent
under both A2-SRD and A2-LRD. Notice that results in Politis et al. (2001) can
only be used to deal with SRD. The LRD treatment is inspired to Hall et al. (1998)
and Jach et al. (2012). However, we improve upon their results in the sense that
the Gaussianity assumption for εt is avoided under A2-LRD with 1/2 < γ1 ≤ 1.
The quantiles of the subsampling distribution also converges to the quantiles of the
asymptotic distribution of τn(Vn −σ 2

ε ). This is a consequence of the fact that τn(Vn −
σ 2

ε ) converges weakly (see Remark 2). For γ2 ∈ (0, 1) the quantities q(γ2), qn,b(γ2)

and q̂n,b(γ2) denote respectively the γ2-quantiles with respect the distributionsG, (see
Remark 2), Gn,b and Ĝn,b respectively. We adopt the usual definition that q(γ2) =
inf {x : G(x) ≥ γ2}. Lemma 4 in the “Appendix” states the same consistency for the
quantiles. The following remark covers the different cases (A2-SRD and A2-LRD)
for the asymptotic distribution of τn(Vn − σ 2

ε ).

Remark 2 By A2 it can be shown that τn(Vn − σ 2
ε ) converges weakly to a random

variable with distribution, say G(·), where σ 2
ε = E[ε2t ]. Under A2-SRD, G(·) is a

Normal distribution. G(·) is still a Normal distribution under A2-LRD with 1/2 <

γ1 ≤ 1, which follows fromTheorem 4 of Hosking (1996). The same Theorem implies
that G(·) is Normal under A2-LRD with γ1 = 1/2 when at is normally distributed.
Moreover, G(·) is not Normal under A2-LRD with 0 < γ1 < 1/2.
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A variant is to reduce the number of subsamples by introducing a random block
selection with s(·) estimated blockwise on subsamples of length b. Let Ii , i = 1, . . . K
be random variables indicating the initial point of every block of length b. We draw,
without replacement with uniform probabilities, the sequence {Ii }Ki=1 from the set
I = {1, 2, . . . , n − b + 1}. The empirical distribution function of the subsampling
variances of ε̂t over the random blocks is

G̃n,b(x) = 1

K

K∑

i=1

I

{
τb

(
V̂n,b,Ii − Vn

)
≤ x

}
.

In order to get the consistency of the subsample procedure both in the SRD and LRD
cases, we consider two subsamples. The first one has a length of b and we use it to
estimate the signal, that is s(·). Instead, the second subsample, which is a subset of
the first, has a length b1 = o(b4/5) and we use this second subsample to estimate
the variance and its distribution. The following result states the consistency of G̃ in
approximating G.

Theorem 2 AssumeA1, A2, A3 and A4. Suppose that {at }, in A2, is Normally dis-
tributed when 0 < γ1 ≤ 1/2. Let ŝ(t) be the estimate of s(t) on a subsample of
length b. Let n → ∞, b → ∞, b/n → 0, b1 = o(b4/5) and K → ∞, then

supx

∣
∣
∣G̃n,b1(x) − G(x)

∣
∣
∣

p−→ 0.

Proof of Theorem 2 is given in the “Appendix”. In analogy with what we have seen
before we also establish consistency for the quantiles of G̃(·). Let q̃n,b1(γ2) be the
γ2-quantile with respect to G̃(·).
Corollary 1 Assume A1, A2, A3 and A4. Suppose that {at }, in A2, is Normally dis-
tributed when 0 < γ1 ≤ 1/2. Let ŝ(t) be the estimate of s(t) on a subsample of
length b. Let n → ∞, b → ∞, b/n → 0, b1 = o(b4/5) and K → ∞, then

q̃n,b1(γ2)
p−→ q(γ2).

Proof of Corollary 1 is given in the “Appendix”.

Remark 3 Note that the second subsample of length b1 is a consequence of the optimal
rate for the estimation of s(t) subsample-wise.

The next result states the consistency of subsample procedure when V̂n replaces Vn
in G̃n,b(x). Define

G̃0
n,b(x) = 1

K

K∑

i=1

I

{
τb

(
V̂n,b,Ii − V̂n

)
≤ x

}
.

Corollary 2 Assume the same assumptions as in Theorem 2. Let ŝ(t) be the estimate
of s(t) on a subsample of length b. Let n → ∞, b → ∞, b/n → 0, b1 = o(b4/5) and

K → ∞, then supx

∣
∣
∣G̃0

n,b1
(x) − G(x)

∣
∣
∣

p−→ 0.
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Proof of Corollary 2 is given in the “Appendix”.

Remark 4 Following the same arguments as in the proof of Corollary 2, we have that
Vn −σ 2

ε = Op(τ
−1
n ) and also V̂n −σ 2

ε = Op(τ
−1
n ) in the cases of SRD and LRDwith

5/8 ≤ γ1 ≤ 1. Moreover, in the proof of Theorem 2 the key point for the consistency
is τb1�

−4/5
b → 0 when n → ∞. Therefore, if we set b1 = b the results of Theorem 2

and Corollary 2 hold again in the cases of SRD and LRD with 5/8 ≤ γ1 ≤ 1. In fact,
τb�

−4/5
b → 0 and τbτ

−1
n → 0 when n → ∞.

Now, by using the previous results, we can state that the subsample strategy is
consistent to estimate the asymptotic distribution of τm(ŜN R − SN R) where ŜN R
is defined in (4). The statistic ŜN R has the numerator and denominator depending on
n and m, respectively. The latter is mimicked in the subsample procedure. In fact, a
subsample of length b is used for the estimation of the signal power, while a subsample
of length b1 is used to estimate the variance of the error term.

Theorem 3 Let Yn := {y1, y2, . . . , yn} be a sampling realization of {Yi }i∈Z. Assume
A1, A2, A3 and A4. Suppose that {at }, in A2, is Normally distributed when 0 < γ1 ≤
1/2. Assume n → ∞, b → ∞, b/n → 0, b1 = o(b2/5), m = o(n2/5), b1/m → 0
and K → ∞, then

sup
x

|Qn(x) − Q(x)| p−→ 0

where

Qn(x) := 1

K

K∑

i=1

I

{
τb1(ŜN Rn,b,Ii − ŜN R) ≤ x

}
,

with ŜN Rn,b,Ii := 10 log10

(
Ûn,b,Ii

V̂n,b1,Ii

)

and Q(x) is the asymptotic distribution of τm(ŜN R − SN R).

Proof of Theorem 3 is given in the appendix. Note that in Theorem 3 we need b1 =
o(b2/5) instead of b1 = o(n4/5) found in previous results. The reason for this is that
the statistical functional ŜN R is more complex than V̂n and a different relative speed
for the secondary block size b1 is required.

Theorem3provides the theoretical justification for the consistency of the subsample
procedure with respect to the statistic ŜN R. Let qQ(γ2) and q̃

Q
n,b1

(γ2) ≡ q̃ Q
n,b1

(γ2|τb1)
be the quantiles with respect to Q(x) and Qn(x), respectively. Note that we write
q̃ Q
n,b1

(γ2|τb1) to highlight the dependence on the scaling factor τb1 as in Sect. 8 of
Politis et al. (1999). The main goal is to do inference for SN R without estimating
the long memory parameter, and without using the sample statistic ŜN R. In this way,
we do not need to fix or estimate m. To do this, we use Lemma 8.2.1 in Politis et al.
(1999). First, Q(x) always has a strictly positive density function, at least, in a subset
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of real line (see Hosking (1996) and references therein). So, by Lemma 8.2.1 in Politis
et al. (1999), and using the same arguments as in the proof of Corollary 1, we have
that

q̃ Q
n,b1

(γ2|τb1) = qQ(γ2) + op(1). (14)

Following the same lines as in Sect. 8 of Politis et al. (1999), we have that

q̃ Q
n,b1

(γ2|1) = q̃ Q
n,b1

(γ2|τb1)
τb1

+ ŜN R. (15)

Note that q̃ Q
n,b1

(γ2|1) is the quantile with respect to the empirical distribution function

1/K
∑K

i=1 I

(
ŜN Rn,b,Ii ≤ x

τb1
+ ŜN R

)
. Therefore, by (14) and (15) it follows that

q̃ Q
n,b1

(γ2|1)τb1 = τb1 ŜN R + qQ(γ2) + op(1).

Since ŜN R = SN R + Op(τ
−1
m ) and τb1/τm → 0 when n → ∞, we have that

q̃ Q
n,b1

(γ2|1) = SN R + qQ(γ2)

τb1
+ op(τ

−1
b1

).

Therefore, a confidence interval for SN R with a nominal level of γ2 is given by

[
q̃ Q
n,b1

(γ2/2|1), q̃ Q
n,b1

(1 − γ2/2|1)
]
. (16)

It is possible to consider the methods of self-normalization as in Jach et al. (2012), and
the estimation of the scaling factor τ as in Politis et al. (1999). These methods would
lead to more efficient confidence bands, in the sense that these would be first order
correct with a rate of τ−1

m instead of τ−1
b1

. However, this would require the estimation
of the unknown constants as in Jach et al. (2012).

Remark 5 In Theorems 2, Corollary 2 and Theorem 3 the definition of G̃(·), G̃0(·)
and Qn(·) depend on quantities (Vn , V̂n and ŜNR) computed on the whole sample. On
the other hand, these results give the theoretical framework for computing confidence
interval as in (16), and these calculations will not require any calculation on the
entire sample. In other words, Vn , V̂n , and ŜN R are needed to center the involved
distributions, but not needed to approximate the quantiles as in (16). Therefore, in this
work these quantities only have a theoretical role to show that the subsample procedure
does not produce degenerate asymptotic distributions.

6 Numerical experiments

In this section we present numerical experiments on simulated data. The assumptions
given in this paper are rather general, and it is not possible to design a computer
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experiment that can be considered representative of all the kind of structures consistent
with A1–A4. Here we assess the performance of Algorithm 1 under different scenarios
for the structure of the noise term. In order to do this we keep the structure of true signal
fixed, and we investigate three variations of the noise data generating process. Data are
sampled at fixed sampling frequency set at Fs = 44100Hz, a common value in audio
applications. Let [0, T ] be the data acquisition time interval, where T is the duration
of the simulated signal in seconds. The signal is sampled at time t = t1, t2, . . . , T ,
with ti = (i − 1)/Fs for i = 1, 2, . . . , T×Fs, as follows

yi = As sin(2π 50 ti ) + εi , with i = 1, 2, . . . T×Fs,

and ti = i/(T×Fs). Therefore, the signal consists of a sinusoidal wave that produces
energy at 50Hz. The signal power is equal to A2

s /2,where As is a scaling constant prop-
erly tuned to achieve a given true SNR.We set T = 30sec (implying n = 1, 323, 000),
and we consider the following three cases for the noise.

AR The noise is generated from an AR(1) process with independent normal inno-
vations. This produces serial correlation in the error term and represents a case
for SRD. In particular εi = −0.7εi−1 + ui , where {ui } is an i.i.d. sequence with
distribution Normal(0, Aε), where Aε is set to achieve a certain SNR.

P1 The random sequence {εi } has power spectrum equal to P( f ) = Aε/ f β , where
P( f ) is the power spectral density at frequency fHz. Here β = 0.2 which
induces some moderate LRD in {εi }. The scaling constant Aε is set to achieve
the desired SNR.

P2 same as P1 but with β = 0.6. This design introduces a much stronger LRD.

In P1 and P2 the noise has a so-called 1/ f β -“power law” where β controls the amount
of long range dependence. Larger values β implies slower rate of decays for the serial
correlations. For β = 1 pink noise is obtained. Values of β ∈ [0, 1] give a behavior
between the white noise and the pink noise. In the case P1, γ1 = 1 − β = 0.8 in A2-
LRD. So, the asymptotic distribution of τn(Vn − σ 2

ε ) is Normal. Whereas, in the case
P2, γ1 = 1 − β = 0.4. This implies that the asymptotic distribution of τn(Vn − σ 2

ε )

is not Normal (see Remark 2).
P1 and P2 are simulated based on the algorithm of Timmer and König (1995)

implemented in the tuneR software of Ligges et al. (2016). For each of the three
sampling designs we consider two values for the true SNR: 10dB and 6dB. In most
applications an SNR = 6dB is considered a rather noisy situations. We recall that at
6dB the signal power is circa only four times the variance of the noise, and 10dB
means that the signal power is ten times the noise variance. There is a challenging
aspect of these designs. The case with P2 noise and SNR= 6dB, is particularly difficult
for our method. In fact, P2 puts relatively large amount of variance (power) at low
frequencies around 50Hz, so that the signal is not well distinguished from some
spectral components of the noise. The two parameters of Algorithm 1 are b and K .
We consider three settings for the subsample window: b = 10ms = 441 samples,
b = 15ms = 662 samples, and b estimated based on the method proposed in Götze
and Račkauskas (2001). In the latter case the optimal b is computed over a grid ranging
from b = 2ms to b = 20ms. In many applications is not easy to fix a value for b.
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Table 1 Monte Carlo averages
for the Mean Square Error
(MSE) of the estimated signal
power

Error model True SNR b (ms) MSE

AR 6 10 0.0016 (0.000010)

AR 6 15 0.0008 (0.000005)

AR 6 Opt 0.0016 (0.000030)

AR 10 10 0.0046 (0.000024)

AR 10 15 0.0022 (0.000012)

AR 10 Opt 0.0049 (0.000074)

P1 6 10 0.0018 (0.000011)

P1 6 15 0.0012 (0.000008)

P1 6 Opt 0.0020 (0.000024)

P1 10 10 0.0051 (0.000030)

P1 10 15 0.0037 (0.000024)

P1 10 Opt 0.0049 (0.000058)

P2 6 10 0.0024 (0.000018)

P2 6 15 0.0020 (0.000015)

P2 6 Opt 0.0025 (0.000027)

P2 10 10 0.0060 (0.000038)

P2 10 15 0.0051 (0.000036)

P2 10 Opt 0.0060 (0.000056)

Standard errors for the Monte Carlo averages are given in parenthesis.
The block length b is expressed in milliseconds [ms]. The case when
b = opt corresponds to the estimated optimal block length reported in
Table 2

However, in certain situations researchers have an idea about the structure of the
signal, and the time series is windowed with blocks of a certain length. In applications
where the underlying signal is expected to be composed by harmonic components,
the usual practice is to take blocks of size approximately equal to the period of the
harmonic component with the lowest expected frequency. The rationale is to take the
smallest window size so that each block is still expected to carry some information
about the low frequency components. For example for speech data usually blocks
of 10ms are normally considered (Haykin and Kosko 2001), whereas for music data
50ms is a common choice (Weihs et al. 2016). Note that the artificial data here have
an harmonic component at 50Hz with a period of 20ms, and we consider the fixed
alternatives b = 10ms and b = 15ms as a robustness check.

We set K = 200, of course larger values of K would ensure less subsample induced
variability. The b1, i.e. the window length of the secondary subsample needed to esti-
mate the distribution of the sampling variance, is set according to Theorem 2. This is
achieved by setting b1 = [b2/5]. For each combination of noise type, SNR, and b we
considered 500 Monte Carlo replica and we computed statistics to assess the perfor-
mance of the procedure. Two aspects of the method are investigated corresponding to
the two main contributions of the paper.

The first contribution of the paper is Theorem 1, where optimality and consistency
of the Priestley-Chao kernel estimator is established under rather general assumptions
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Table 2 Monte Carlo averages
for the optimal b estimated using
the method proposed in Götze
and Račkauskas (2001)

Error model True SNR Optimal b [ms]

AR 6 9.44 (0.193)

AR 10 8.93 (0.164)

P1 6 8.18 (0.168)

P1 10 11.05 (0.162)

P2 6 9.36 (0.198)

P2 10 10.80 (0.172)

Standard errors for the Monte Carlo averages are given in parentesis.
The block length b is expressed in milliseconds [ms]

on the error term. The kernel smoothing is used in Algorithm 1 to estimate the signal
power in the numerator of (8). In Table 1 we report the Monte Carlo averages for the
Mean Square Error (MSE) of the estimated signal power. Going from the simplest
AR to the complex P2 noise model there is an increase in MSE as expected. The
longer b = 15ms subsample window always produced better results. The apparently
counterintuitive evidence is that for larger amount of noise (lower SNR), the signal
power is slightly better estimated. In order to understand this, note that the noise (in all
three cases) produces most of its power in a low frequency region containing the signal
frequency (i.e. 50Hz). In the lower noise case there is still a considerable amount of
noise acting at low frequency that the adaptive nature of the kernel smoother is not
able to recognize properly. In Table 2 we report the estimated average bwith its Monte
Carlo standard error. The estimated b is always near 10ms, and the latter produced
results that are only slightly worse than those obtained for fixed b = 15ms.

The second contribution of the paper is the consistency result (see Theorem 3 and
related results) for the distribution of the SNR statistic. In order to measure the quality
of method one needs to define the ground truth in terms of the sampling distribution
of the target SNR statistic. The derivation of an expression for such a distribution
would be an analytically intractable. Therefore, we computed the quantiles of the true
SNR statistic based on Monte Carlo integration, and in Table 3 we report the average
absolute differences between estimated quantiles and the true counterpart. Based on
Corollary 1 the convergence of the distribution of the SNR ismapped into its quantiles,
therefore this makes sense. Comparison involves five different quantile levels to assess
the behavior of the procedure both in the tails and in the center of the distribution. The
average deviations of Table 3 are computed in decibels. Overall themethod can capture
the center of the distribution pretty well in all cases. The estimation error increases
in the tails of the distribution as one would expect. The right tail is estimated better
than the left tail. In all cases the performance in the tails of the SNR distribution is
better captured with a b = 15ms window, although in the center of the distribution the
differences implied by different values of b are much smaller. Going from SNR=6 to
SNR=10 results are clearly better on the left tail of the distribution especially in the
case P2. Again the estimated version of b pushes the corresponding results towards
the b = 10ms case.

Everymethod has its own tunings, and the evidence here is that b has some effects on
the proposed method. The major impact of b is about the tails of the SNR distribution.
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Table 3 Monte Carlo averages for the absolute deviation of the estimated quantiles of the SNR distribution
from the true counterpart

Error
model

True
SNR

b Quantile level

[ms] 0.1 0.25 0.5 0.75 0.90

AR 6 10 4.99 (0.013) 2.99 (0.022) 0.28 (0.010) 1.50 (0.008) 2.09 (0.007)

AR 6 15 1.99 (0.008) 1.30 (0.011) 0.22 (0.007) 0.80 (0.006) 1.13 (0.006)

AR 6 Opt 4.29 (0.125) 2.19 (0.059) 0.28 (0.010) 0.94 (0.017) 1.38 (0.025)

AR 10 10 5.00 (0.012) 3.04 (0.021) 0.28 (0.010) 1.49 (0.008) 2.08 (0.007)

AR 10 15 2.01 (0.007) 1.30 (0.011) 0.19 (0.007) 0.81 (0.006) 1.13 (0.006)

AR 10 Opt 4.70 (0.113) 2.43 (0.053) 0.30 (0.011) 1.01 (0.014) 1.45 (0.021)

P1 6 10 5.37 (0.019) 3.09 (0.024) 0.34 (0.011) 1.87 (0.007) 2.52 (0.006)

P1 6 15 2.41 (0.015) 1.26 (0.013) 0.37 (0.010) 1.18 (0.007) 1.68 (0.007)

P1 6 Opt 4.58 (0.094) 2.13 (0.047) 0.39 (0.013) 1.27 (0.015) 1.76 (0.019)

P1 10 10 5.60 (0.022) 3.07 (0.026) 0.39 (0.012) 1.93 (0.009) 2.56 (0.007)

P1 10 15 2.77 (0.025) 1.32 (0.015) 0.49 (0.013) 1.35 (0.007) 1.86 (0.008)

P1 10 Opt 4.46 (0.087) 2.20 (0.048) 0.45 (0.012) 1.54 (0.012) 2.05 (0.013)

P2 6 10 5.19 (0.031) 2.36 (0.026) 0.69 (0.016) 2.52 (0.011) 3.58 (0.012)

P2 6 15 2.83 (0.028) 0.83 (0.019) 0.99 (0.015) 2.17 (0.012) 3.05 (0.013)

P2 6 Opt 4.00 (0.082) 1.41 (0.043) 0.81 (0.017) 2.02 (0.018) 2.89 (0.020)

P2 10 10 5.16 (0.035) 2.02 (0.031) 1.03 (0.017) 2.65 (0.011) 3.56 (0.012)

P2 10 15 2.82 (0.038) 0.64 (0.018) 1.39 (0.016) 2.37 (0.011) 3.07 (0.011)

P2 10 Opt 4.29 (0.082) 1.46 (0.049) 1.12 (0.020) 2.32 (0.014) 3.05 (0.015)

SNR is expressed in decibels. The true quantiles of the SNR distribution are computed based on Monte
Carlo integration. Standard errors for the Monte Carlo averages are given in parenthesis. The block length
b is expressed in milliseconds [ms]. The case when b = opt corresponds to the estimated optimal block
length reported Table 2

The selection of b based on the method proposed by Götze and Račkauskas (2001)
deliver a fully satisfying solution that does not require any prior knowledge on the
data structure. The only drawback of estimating b is that the overall algorithm needs
to be executed for several candidate values of b. As final remark we want to stress
that the method proposed here is designed to cope with much larger values of n. In
this experiment the sampling is repeated a number of times to produce Monte Carlo
estimates, thereforewehad to choose ann compatiblewith reasonable computing times
according to the available hardware. A limited number of trials with T up to several
minutes (which implies that n goes up to severalmillions) have been successfully tested
without changing the final results. Therefore, we can conclude that the algorithm scales
well with the sample size.

7 Application to EEG data

In this section we illustrate an application of the proposed methodology to electroen-
cephalography (EEG) data obtained from the PhysioNet repository (Goldberger et al.
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Fig. 1 Time series plots of the amplitude of the EEG signals recorded in positions P8-02 and T8-P8 for
two distinct subjects in the experiment. The duration of the fragment is 5sec, and it starts at 12min from
the beginning of the recording

2000). In particular we considered the “CHB-MIT Scalp EEG Database” available at
https://physionet.org/pn6/chbmit/. The database contains EEG traces recorded at the
Children’s Hospital Boston on pediatric subjects with intractable seizures. Subjects
were monitored for several days after the withdrawal of anti-seizure medication before
the final decision about the surgical intervention. 22 subjects were traced during the
experiment for several days using the international 10–20 EEG system. The latter is
a standard that specifies electrode positions and nomenclature. Therefore, for each
subject 21 electrodes have been placed in certain positions of the scalp, each of these
electrodes produced an electric signal sampled at 256Hz and measured with 16bit
precision. This means that each day (24h), the EEG machine produced 21 time series
each containing n = 22, 118, 400 data points for a total of 464,486,400 amplitude
measurements for each subject in the experiment. A description of the “CHB-MIT
Scalp EEG Database”, as well as details about the data acquisition is given in Shoeb
(2009).

EEG signals have complex structures. Various sources of noise can be injected in
the measurement chain, therefore it is always of interest to understand the behavior
of the SNR. For this application we considered data for the first 3 subjects of the
database, and we considered two electrode positions labeled P8-02 and T8-P8 in the
10–20 EEG system. The P8-02 electrode is placed on the parietal lobe responsible for
integrating sensory information of various types. The T8-P8 electrode is placed on
the temporal lobe which transforms sensory inputs into meanings retained as visual
memory, language comprehension, and emotion association. An example of these
traces is given in Fig. 1.

The method proposed here has been applied to obtain confidence intervals for the
SNR. An SNR≥ 10dB can be considered a requirement for a favorable noise floor in
these applications. In order to assess the robustness of the procedure with respect to the
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choice of the subsampling window b, for each case we considered windows of fixed
size b = {3sec, 5sec, 7sec} which means b = {768, 1280, 1792}, plus the estimated
b with the method proposed by Götze and Račkauskas (2001). The estimation of b is
performed on a grid of equispaced points between 2sec and 10sec. The literature about
EEG signals doesn’t tell us whether the processes involved have a clear time scale,
but 5sec is considered approximately the time length needed to identify interesting
cerebral activities. For each b the corresponding b1 is set according to b1 = [b2/5] as
for the numerical experiments. In Table 4 lower and upper limits for 90% and 95%
confidence intervals of the SNR are reported.

Overall the results with estimated b are comparable to those with fixed b. The upper
limits of these confidence intervals is never smaller than 10dB. The lower limits is
negative in all cases, which means that for all cases there is a chance that the power
of the stochastic component dominates that of the deterministic component in model
(1). While the upper limit of these confidence intervals is rather stable across units for
the same b value, larger differences are observed in terms of the lower limit. All this
is a clear indication of the asymmetry of the SNR statistic. But this is expected since
the two tails of the SNR statistic reflects two distinct mechanisms. In fact, a negative
value for the SNR statistic (left tail) corresponds to situations where the dynamic of
the observed time series is driven by the error term of equation (1). On the other hand
a positive value of the SNR statistic (right tail) corresponds to situations where the
dynamic is driven by the smooth changes induces by s(·). Ceteris paribus, going from
90% level to 95% does not change the results dramatically. Note that in this kind
of applications a 3dB difference is not considered a large difference. Regarding data
recorded in the P8-02 position the length of the confidence interval, going from 90%
to 95% changes between 1.28dB to 3.6dB, where the maximum variation is measured
for Subject 3 when b = 7sec. For the T8-P8 case the length of the confidence interval,
going from 90% to 95%, changes between 1.52dB to 3.83dB, and here the maximum
variation is measured for Subject 2 when b = 7sec.

Some pattern is observed across experimental units. For given confidence level
and b, overall Subject 1 reports the shortest confidence intervals. Subject 2 reports the
longest intervals for records in position P8-02. Subject 3 reports the longest intervals in
position T8-P8. The variations across values of b, with all else equal, are not dramatic.
The settings with b = 3, and b = 5, produced longer intervals if compared with
b = 7sec and the optimal b. The data-driven method of Götze and Račkauskas (2001)
produced an estimated b in the range [3sec, 7sec] for P8-02 data, and [6sec, 8sec]
for T8-P8 data. These values are comparable with the rule of thumb that 5sec is a
reasonable time scale for the kind of signals involved here. The general conclusion is
that in absence of relevant information, the method of Götze and Račkauskas (2001)
gives a useful data-driven choice of b.

8 Conclusions and final remarks

In this paper we developed an estimation method that consistently estimates the dis-
tribution of a SNR statistic in the context of time series data with errors belonging to a
rich class of stochastic processes. We restricted the model to the case where the signal
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Table 4 Lower and upper limit of the confidence interval for the SNR (expressed in dB) of the EEG records
in positions P8-02 and T8-P8

Confidence level (%) Subject b [s] P8-02 T8-P8

Lower Upper Lower Upper

90 1 3 −0.93 11.18 −2.85 11.92

5 1.14 11.26 −3.41 11.92

7 0.86 12.25 −3.04 12.76

Opt −2.24 12.52 −2.56 14.70

2 3 −9.04 14.93 −8.38 14.00

5 −9.67 15.14 −7.88 12.97

7 −8.29 15.45 −7.41 12.53

Opt −8.91 15.68 −7.57 12.42

3 3 −8.30 13.06 −7.14 16.50

5 −8.30 13.41 −5.37 16.97

7 −5.81 13.01 −5.01 15.38

Opt −7.24 13.49 −6.70 15.66

95 1 3 −1.36 12.19 −3.81 13.19

5 0.50 13.00 −4.30 12.93

7 0.49 15.45 −3.63 14.81

Opt −3.11 14.36 −3.48 15.30

2 3 −9.65 15.60 −9.54 15.02

5 −10.47 16.46 −8.98 14.02

7 −8.96 16.17 −8.96 14.81

Opt −10.62 16.81 −8.16 13.49

3 3 −9.60 15.04 −8.09 18.22

5 −10.66 14.44 −6.80 18.68

7 −7.46 14.96 −6.58 16.07

Opt −9.75 14.23 −7.94 17.05

The block length b is expressed in seconds. The notation b =opt denotes the case when b is estimated

is a smooth function of time. The theory developed here can be easily adapted to more
general time series additive regression models. The reference model for the observed
data, and the theory developed here adapts to many possible applications that will be
the object of a distinct paper. In thisworkwe concentrated on the theoretical guarantees
of the proposed method. The estimation is based on a random subsampling algorithm
that can cope with massive sample sizes. Both the smoothing, and the subsampling
techniques at the earth of Algorithm 1 embodies original innovations compared to the
existing literature on the subject. Numerical experiments described in Sect. 6 showed
that the proposed algorithm performs well in finite samples.

Acknowledgements We thank the editor and two anonymous reviewers for their constructive comments,
which helped to improve the manuscript.
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Appendix

In this section we report the proofs of statements and some useful technical lemmas.
First, we state a lemma to evaluate the MISE(ŝ; h).

Lemma 1 Assume A1, A2 and A3. For t ∈ Ih = (h, 1 − h)

MISE(ŝ; h) = h4R(s′′)
4

dK + σ 2
ε

NK

nh
+ 2σ 2

ε NK
S∗
ρ

�nh
+ o

(
1

�nh
+ h4

)

,

MISE(ŝ; h) = AMISE(ŝ; h) + o

(
1

�nh
+ h4

)

where ŝ is the kernel estimator in (9), R(s′′) = ∫
Ih

[s′′(t)]2dt, dK = ∫
u2K (u)du,

NK = ∫
K 2(u)du, σ 2

ε = E[ε2t ], �n is defined in (10) and

S∗
ρ :=

⎧
⎪⎨

⎪⎩

limn→∞
∑n

j=1 ρ( j) if A2-SRD holds

limn→∞ 1
log n

∑n
j=1 ρ( j) if A2-LRD holds with γ1 = 1

limn→∞ 1
n1−γ1

∑n
j=1 ρ( j) if A2-LRD holds with 0 < γ1 < 1.

(17)

Proof By A3 it follows that conditions A–C of Altman (1990) are satisfied. Now, let

ρn( j) :=

⎧
⎪⎨

⎪⎩

ρ( j) if A2-SRD holds
1

log nρ( j) if A2-LRD holds with γ1 = 1
1

n1−γ1
ρ( j) if A2-LRD holds with 0 < γ1 < 1.

For the cases SRD and LRD with γ1 = 1 the conditions D and E of Altman (1990)
are still satisfied with ρn( j). Following the same arguments as in the proof of Theorem
1 of Altman (1990) the result follows. Finally, in the last case, ρn( j) satisfies condition
D but not condition E of Altman (1990). So, we have

n∑

j=1

jρn( j) = O(n).

Therefore, using Lemma A.4 in Altman (1990), it follows that

Var[ŝ] = σ 2
ε

NK

nh
+ 2σ 2

ε NK
S∗
ρ

�nh
+ o

(
1

�nh

)

.

The latter completes the proof. 
�

123



A Monte Carlo subsampling method for estimating… 505

The AMISE(ŝ; h) is the asymptotic MISE, the main part of the MISE. Note that
Lemma1 gives a similar formula to (2.8) in Theorem2.1 ofHall et al. (1995). However,
differently fromHall et al. (1995) our approach does not need to introduce an additional
parameter to capture SRD and LRD. Also notice that taking h ∈ H as in A3, implies

that MISE(ŝ; h) = O
(
�

−4/5
n

)
, which means that the kernel estimator achieves the

global optimal rate.

Proof of Theorem 1 Lemma 1 holds under A1, A2 and A3. Let γ̂ ( j) = 1
n

∑n− j
t=1 ε̂t ε̂t+ j

be the estimator of the autocovariance γ ( j)with j = 0, 1, . . .. ByA3 rn = 1
�nh

+h4 =
�

−4/5
n , and by Markov inequality

P

(
1

n

n∑

i=1

(
s(i/n) − ŝ(i/n)

)2
> η

)

≤ 1

η

1

n

n∑

i=1

E
(
(ŝ(i/n) − s(i/n))2

)

= O
(
MISE(ŝ; h)

)
, (18)

for some η > 0 and when n → ∞.
It means that 1

n

∑n
i=1

(
s(i/n) − ŝ(i/n)

)2 = AMISE(ŝ; h) + op(rn). Rewrite γ̂ ( j)
as

γ̂ ( j) =1

n

n− j∑

i=1

(
s(i/n) − ŝ(i/n)

) (
s((i + j)/n) − ŝ((i + j)/n)

)

+1

n

n− j∑

i=1

(
s((i + j)/n) − ŝ((i + j)/n)

)
εi

+1

n

n− j∑

i=1

(
s(i/n) − ŝ(i/n)

)
εi+ j + 1

n

n− j∑

i=1

εiεi+ j = I+II+III+IV. (19)

By (18) and Cauchy–Schwartz inequality it results that term I= Op(rn) in γ̂ ( j).
Consider term III in (19). Without loss of generality assume t s(t) �= 0. By Chebyshev
inequality

P
(∣
∣ŝ(t) − s(t)

∣
∣ > η

) ≤ MSE(ŝ; h)

η2
,

for some η > 0. By using the same arguments as in the proof of Lemma 1, it follows
that MSE(ŝ; h) = O (rn) so that ŝ(t) = s(t)(1+Op(r

1/2
n )). Therefore, it is sufficient

to investigate the behaviour of

1

n

n− j∑

i=1

s(i/n)εi+ j .
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∑n
j ρ( j) = O(log n) under LRD with γ1 = 1, and

∑n
j ρ( j) = O(n1−γ1) under

LRD with 0 < γ1 < 1. By A1, and applying Chebyshev inequality, it happens that
III= Op(�

−1/2
n ). Based on similar arguments one has that term II= Op(�

−1/2
n ). Now

consider last term of (19), and notice that it is the series of products of autocovariances.
Theorem 3 in Hosking (1996) is used to conclude that the series is convergent under
SRDandLRDwith 1/2 < γ1 ≤ 1,while it is divergent under LRDwith 0 < γ1 ≤ 1/2.
Based on this, direct application of Chebishev inequality to term IV implies that
IV= op(�

−1/2
n ). Then γ̂ ( j) = γ ( j) + Op(rn) + Op(�

−1/2
n ) + Op( j/n), where

the Op( j/n) is due to the bias of γ̂ ( j). This means that ρ̂( j) = ρ( j) + Op(rn) +
Op(�

−1/2
n ) + Op( j/n). Since K (·) is bounded then one can write

1

nh

M∑

j=−M

K

(
j

nh

)

ρ̂( j) = 1

nh

M∑

j=−M

K

(
j

nh

)

ρ( j)

+ M

nh
Op(rn) + M

nh
Op(�

−1/2
n ) + M2

n
Op

(
1

nh

)

.

Using A4 and h = O(�
−1/5
n ), A3 implies that

1

nh

M∑

j=−M

K

(
j

nh

)

ρ̂( j) = 1

nh

M∑

j=−M

K

(
j

nh

)

ρ( j) + op(rn). (20)

Consider

Q1 =
∣
∣
∣
∣
∣
∣

1

nh

[nh/2]∑

j=−[nh/2]
K

(
j

nh

)

ρ( j) − 1

nh

M∑

j=−M

K

(
j

nh

)

ρ̂( j)

∣
∣
∣
∣
∣
∣
,

and by (20) it follows that

Q1 =
∣
∣
∣
∣
∣
∣

2

nh

[nh/2]∑

j=M+1

K

(
j

nh

)

ρ( j)

∣
∣
∣
∣
∣
∣
+ op(rn).

By A2, A3 and A4,

1

nh

[nh/2]∑

j=M+1

K

(
j

nh

)

ρ( j) ∼ ρ(nh − M) = o(rn),

which implies that Q1 = op(rn). It means that the CV function, as defined in (22)
of Altman (1990) with the estimated correlation function, has an error rate of op(rn)
with respect to
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⎡

⎣1 − 1

nh

M∑

j=−M

K

(
j

nh

)

ρ( j)

⎤

⎦

−2
1

n

n∑

i=1

ε̂2i .

Now, we can apply the classical bias correction and based on (14) in Altman (1990),
we have that

CV(h) = 1

n

n∑

i=1

ε2i + MISE(ŝ; h) + op(rn) = σ 2
ε + AMISE(ŝ; h) + op(rn)

Since AMISE(ŝ; h) = O(rn), it follows that ĥ, the minimizer of CV(h), is equal to h
,
the minimizer of MISE(ŝ; h), asymptotically in probability. By Lemma 1, it follows
that h
 is the same minimizer with respect to AMISE(ŝ; h) asymptotically. 
�

The subsequent Lemmas are needed to show Theorem 2 and Corollary 1.

Lemma 2 AssumeA2. Suppose that {at }, in A2, is Normally distributedwhen 0 < γ1 ≤
1/2. Then n → ∞, b → ∞ and b/n → 0 implies supx

∣
∣Gn,b(x) − G(x)

∣
∣ p−→ 0,

and qn,b(γ2)
p−→ q(γ2) for all γ2 ∈ (0, 1).

Proof Under A2-SRD, Theorems 4.1 and 5.1 of Politis et al. (2001) hold and the
results follow. The rest of the proof deals with the LRD case. SinceG(x) is continuous
(Hosking 1996), we follow proof of Theorem 4 of Jach et al. (2012). Fix G0

n,b(x) =
1
N

∑N
i=1 I

{
τb
(
Vn,b,i − σ 2

ε

) ≤ x
}
with N = n − b + 1. It is sufficient to show that

Var[G0
n,b(x)] → 0 as n → ∞. Apply Theorem 2 in Hosking (1996) to conclude that

τn
(
Vn − σ 2

ε

)
has the same distribution as τn

(
V 1
n

)
, where V 1

n = 1
n

∑n
i=1(ε

2
i − σ 2

ε ).
Therefore, we have to show that Var[G1

n,b(x)] → 0 as n → ∞, where

G1
n,b(x) = 1

N

N∑

i=1

I

{
τbV

1
n,b,i ≤ x)

}
with V 1

n,b,i = 1

b

b∑

j=1

(ε2j+i−1 − σ 2
ε ).

Using the stationarity of {εi }i∈Z, it follows that Var[G1
n,b(x)] = E[(G1

n,b(x) −
G1

b(x))
2], where G1

b(x) = P
(
τbV 1

b ≤ x
)
. By Hall et al. (1998) the Hermite rank

of the square function is 2. Then, based on the same arguments as in the proof of
Theorem 2.2 of Hall et al. (1998) with q = 2, we can write

Var[G1
n,b(x)] ≤ 2b + 1

N
G1

b(x) + 2

N

N−1∑

i=b+1

∣
∣
∣P
(
τbV

1
n,b,1 ≤ x, τbV

1
n,b,i+1 ≤ x

)

−
[
G1

b(x)
]2
∣
∣
∣
∣ . (21)
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Consider

Cov[τbV 1
n,b,1, τbV

1
n,b,N ] = τ 2b

b2
E

[
b∑

i=1

(ε2i − σ 2
ε ) ·

b∑

i=1

(ε2i+N−1 − σ 2
ε )

]

.

After some algebra, we obtain

Cov[τbV 1
n,b,1, τbV

1
n,b,N ] = τ 2b

b

b−1∑

k=−(b−1)

(

1 − |k|
b

)

φ2(k + N ), (22)

where for k = 1, 2, . . ., φ2(k) are the autocovariances of {ε2t }t∈Z. For k → ∞, A2-
LRD with 0 < γ1 ≤ 1 implies that φ2(k) = O(k−2γ1) by Theorem 3 of Hosking
(1996). Take (22) and note that

∣
∣
∣Cov[τbV 1

n,b,1, τbV
1
n,b,N ]

∣
∣
∣ ≤ τ 2b

b

b−1∑

k=−(b−1)

|φ2(k + N )| ≤ τ 2b

b

(
1

N − b + 1

)2γ1
Cb,

where

Cb :=

⎧
⎪⎨

⎪⎩

O(1) 1/2 < γ1 ≤ 1,

O(log b) γ1 = 1/2,

O(b1−2γ1) 0 < γ1 < 1/2.

The latter implies that for n → ∞, (22) converges to zero. Therefore, τbV 1
n,b,1 and

τbV 1
n,b,N are asymptotically independent. The latter can be argued based on asymp-

totic normality when 1/2 ≤ γ1 ≤ 1. For the case 0 < γ1 < 1/2 the asymptotic
independence can be obtained by using Theorem 2.3 of Hall et al. (1998). Thus, right
hand side of (21) converges to zero as n → ∞ by Cesaro Theorem. The latter shows

that supx
∣
∣Gn,b(x) − G(x)

∣
∣ p−→ 0.

Following the samearguments as inTheorem5.1ofPolitis et al. (2001), andbyusing

the first part of this proof one shows that qn,b(γ2)
p−→ q(γ2). The latter completes the

proof. 
�
Lemma 3 AssumeA1,A2, A3 andA4. Suppose that {at }, in A2, is Normally distributed
when 0 < γ1 ≤ 1/2. Let ŝ(t) be the estimate of s(t) computed on the entire sample

(of length n). Then n → ∞ and b = o(n4/5) implies supx

∣
∣
∣Ĝn,b(x) − G(x)

∣
∣
∣

p−→ 0.

Proof Denote rn = 1
�nh

+ h4. By Lemma 1 and A3, rn = �
− 4

5
n . ŝ(t) is computed

on the whole time series. By Lemma 2, we can use the same approach as in Lemma
1, part (i) of Coretto and Giordano (2017). We have only to verify that τbrn → 0 as
n → ∞ which is always true if b = o(n4/5). 
�
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Lemma 4 Assume A1, A2, A3 and A4. Suppose that {at }, in A2, is Normally distributed
when 0 < γ1 ≤ 1/2. Let ŝ(t) be the estimate of s(t) computed on the entire sample

(of length n). Then n → ∞ and b = o(n4/5) implies q̂n,b(γ2)
p−→ q(γ2) for any

γ2 ∈ (0, 1).

Proof Using the same arguments as in Lemma 3 we have that Ĝn,b(x) − Gn,b(x) =
op(1) for each point x . By the continuity of G(x) at all x we have that qn,b(γ2)

p−→
q(γ2) by Lemma 2. Therefore q̂n,b(γ2)

p−→ q(γ2). Note that assumption b = o(n4/5)
is needed to deal with A2-LRD, however for A2-SRD only we would only need
b = o(n). 
�
Proof of Theorem 2 Let P∗(X) and E∗(X) be the conditional probability and the con-
ditional expectation of a random variable X with respect to a set χ = {Y1, . . . ,Yn}.
Let Ĝb

n,b1
(x) be the same as Ĝn,b(x), but now ŝ(t) is estimated on each subsample

of length b, and the variance of the error term is computed on the same subsample of
length b1 < b. Without loss of generality, we consider the first observaiton with t = 1
as in Algorithm 1. Then,

1

b

b∑

i=1

(
ε̂i − εi

)2 p−→ MISE(ŝ; h) = Op

(
�

−4/5
b

)
,

using Lemma 1 as in the proof of Lemma 3. Let b1 = o(b4/5).

Let Zi (x) = I

{
τb1

(
V̂n,b1,i − Vn

)
≤ x

}
and Z∗

i (x) = I

{
τb1

(
V̂n,b1,Ii − Vn

)
≤ x

}
.

Ii is a Uniform random variable on I = {1, 2, . . . , n − b + 1}. P(Z∗
i (x) =

Zi (x)|χ) = 1
n−b+1 ∀i at each x . Write G̃n,b1(x) = 1

K

∑K
i=1 Z

∗
i (x), it follows that

E∗ (G̃n,b1(x)
)

= 1

n − b + 1

n−b+1∑

i=1

Zi (x) = Ĝb
n,b1(x)

p−→ G(x),

as n → ∞, the latter is implied by by Lemma 3, and the fact that τb1�
−4/5
b → 0 when

0 < γ1 ≤ 1 in assumption A2.
Since {Ii } is the set of uniform random variables sampled without replacement, we

can apply Corollary 4.1 of Romano (1989).

Therefore it follows that G̃n,b1(x) − Ĝb
n,b1

(x)
p−→ 0 as K → ∞ and n → ∞.

Applying the delta method approach

G̃n,b1(x) − G(x) =
(
G̃n,b1(x) − Ĝb

n.b1(x)
)

+
(
Ĝb

n.b1(x) − G(x)
) p−→ 0,

as K → ∞, n → ∞ and ∀x . Since G(x) is continuous, the convergence is uniform
because of the argument of the last part of the proof of Theorem 2.2.1 in Politis et al.
(1999). This concludes the proof. 
�
Proof of Corollary 1 The results follow from the proof ofLemma4by replacingLemma
3 with Theorem 2. 
�
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Proof of Corollary 2 We can write G̃0
n,b1

(x) as

G̃0
n,b1(x) = 1

K

K∑

i=1

I

{
τb1

(
V̂n,b1,Ii − Vn +

(
Vn − V̂n

))
≤ x

}
.

So, it is sufficient to use Theorem 2 to show that supx |G̃n,b1(x) − G(x)| p−→ 0 and

we only need to show that τb1
(
Vn − V̂n

) p−→ 0.

Following the same arguments as in the proof of Theorem 1, we have that Vn − σ 2
ε =

Op
(
τ−1
n

)
and

V̂n − σ 2
ε =

{
Op(τ

−1
n ) SRD and LRD with 5/8 ≤ γ1 ≤ 1

Op

(
�

−4/5
n

)
LRD with 0 < γ1 < 5/8.

So, τb1
(
Vn − V̂n

)
= τb1

(
Vn − σ 2

ε

)− τb1

(
V̂n − σ 2

ε

)
.

Since b1 = o(b4/5), we have that τb1
(
Vn − σ 2

ε

) = Op
(
τb1τ

−1
n

) = op(1) and

τb1

(
V̂n − σ 2

ε

)
=
{
Op(τb1τ

−1
n ) SRD and LRD with 5/8 ≤ γ1 ≤ 1

Op

(
τb1�

−4/5
n

)
LRD with 0 < γ1 < 5/8.

In both cases, it follows that Op
(
τb1τ

−1
n

) = op(1) and Op

(
τb1�

−4/5
n

)
= op(1),

respectively. Finally, we can conclude that the result follows. 
�

Proof of Theorem 3 By (4) we have that

ŜN R = 10 log10

⎛

⎜
⎝

1
n

∑n
i=1 ŝ

2(ti )

1
m

∑m
i=1

(
ε̂i − ¯̂ε

)2

⎞

⎟
⎠

and SN R = 10 log10
(
σ−2

ε

∫
s2(t)dt

)
. First, we analyze the quantity τm(ŜN R −

SN R). So we can write

τm(ŜN R − SN R) = 10τm

[

log10

(
1
n

∑n
i=1 ŝ

2(ti )∫
s2(t)dt

)

− log10

(
V̂m
σ 2

ε

)]

= −10τm

[

log10

(

1 + V̂m − σ 2
ε

σ 2
ε

)

− log10

(

1 +
1
n

∑n
i=1 ŝ

2(ti ) − ∫
s2(t)dt

∫
s2(t)dt

)]

= −10τm(I − I I ).
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Using the same arguments as in the proof of Theorem 1, it follows that V̂m − σ 2
ε =

Op(τ
−1
m ). Expanding log10(1 + x) in Taylor’s series, we have that

τm I = τm

σ 2
ε

(
V̂m − σ 2

ε

)
+ op(1)

and

τm I I = τm∫
s2(t)dt

(
1

n

n∑

i=1

ŝ2(ti ) −
∫

s2(t)dt + op(�
−2/5
n )

)

= op(1). (23)

Now, we show the last result. From the proof of Theorem 1 and by assumption A3,

we have that ŝ(t) = s(t)
(
1 + Op(�

−2/5
n )

)
. Therefore,

ŝ2(t) − s2(t) = [
ŝ(t) − s(t)

] [
ŝ(t) + s(t)

] = Op(�
−2/5
n ). (24)

Now, we can write

1

n

n∑

i=1

ŝ2(ti ) −
∫

s2(t)dt =
(
1

n

n∑

i=1

ŝ2(ti ) − 1

n

n∑

i=1

s2(ti )

)

+
(
1

n

n∑

i=1

s2(ti ) −
∫

s2(t)dt

)

= Is + I Is .

By using the convergence of the quadrature of a bounded and continuous function to
its integral, it follows that I Is = O(n−1). By (24), we have that

Is = 1

n

n∑

i=1

(
ŝ2(ti ) − s2(ti )

)
= Op(�

−2/5
n ).

Since m = o(n2/5), it follows that τm�
−2/5
n → 0 as n → ∞. So, (23) is shown.

Hence,we can conclude that τm(ŜN R−SN R) has the same asymptotic distribution

as τm
σ 2

ε

(
V̂m − σ 2

ε

)
by the Slutsky’s Theorem. Therefore, assumption 3.2.1 of Politis

et al. (1999) is verified by Theorem 2.

Consider the SNR evaluated at a given point, namely SN Ri = 10 log10
(
s2(ti )
σ 2

ε

)
.,

and write τb1

(
ŜN Rn,b,Ii − ŜN R

)
in Qn(x) as

τb1

(
ŜN Rn,b,Ii − ŜN R

)
= τb1

(
ŜN Rn,b,Ii − SN RIi

)
− τb1

(
ŜN R − SN R

)

+τb1
(
SN RIi − SN R

) = S1 − S2 + S3,

for a given subsample starting at Ii . By using the first part of this proof, it follows that
S2 = Op(τb1/τm) = op(1) since b1/m → 0 when n → ∞. Now, in order to deal
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with the quantity S1, we need to show that

1

b

i+b−1∑

j=i

[

s

(
j − i + 1

b

)]2
→ s2(ti ) as n → ∞, (25)

where ti is the initial point in the block of b values. By using again the convergence
of the quadrature of a bounded and continuous function to its integral, we have that
1
b

∑i+b−1
j=i

[
s
(

j−i+1
b

)]2 → ∫ 1
0

(
sbi (t)

)2
dt as n → ∞, b → ∞ and b/n → 0.

The quantity sbi (·) denotes the portion of the signal in the block of b values in (0, 1)
with i the index for the initial point. Note that b/n → 0, and by the mean value

theorem
∫ 1
0

(
sbi (t)

)2
dt → s2(ti ). By using, again, the first part of this proof and by

(25), we have that τb1
(
ŜN Rn,b,Ii − SN RIi

)
has the same asymptotic distribution as

τb1
σ 2

ε

(
V̂n,b1,Ii − σ 2

ε

)
. Now we study the quantity S3. First, we show that

1

n − b + 1

n−b+1∑

i=1

I
{
τb1 (SN Ri − SN R) > x

} → 0 (26)

when n → ∞ with some x > 0. Since SN Ri − SN R = 10 log10
(

s2(ti )∫
s2(t)dt

)
, the

equation in (26) becomes

1

n − b + 1

n−b+1∑

i=1

I

{
s2(ti )∫
s2(t)dt

> 10
x

10τb1

}

.

We have that

1

n − b + 1

n−b+1∑

i=1

s2(ti ) =
∫

s2(t)dt + O(n−1). (27)

Moreover, s2(ti )∫
s2(t)dt

> 10
x

10τb1 can be written as

τb1

(
s2(ti )∫
s2(t)dt

− 1

)

> τb1

(

10
x

10τb1 − 1

)

.

Summing over the index i and dividing by n − b + 1, we can write

τb1

(
1

n−b+1

∑n−b+1
i=1 s2(ti )

∫
s2(t)dt

− 1

)

> τb1

(

10
x

10τb1 − 1

)

.
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Since τb1

(

10
x

10τb1 − 1

)

→ c > 0 when b1 → ∞, by using equation (27) we obtain

τb1

(
1

n−b+1

∑n−b+1
i=1 s2(ti )

∫
s2(t)dt

− 1

)

= O(τb1n
−1) → 0 as n → ∞.

Therefore Nb
n

n−b+1 → 0 as n → ∞, where Nb
n = ∑n−b+1

i=1 I

{
s2(ti )∫
s2(t)dt

> 10
x

10τb1

}

.

Then, (26) is shown.
As in the proof of Slutsky’s Theorem, we split Qn(x) as the sum of three empirical

distribution function computed over S1, S2 and S3 respectively. Here the random
variables Ii are treated as in the proof of Theorem 2. Based on the argument above
only the component ofQn(x) computed over S1 has a non degenerate limit distribution,
and this will the same as the asymptotic distribution of the estimator for the variance
of the error term. The proof is now completed. 
�
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