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Abstract This paper deals with physiological functional variables selection for
driver’s stress level classification using random forests. Our analysis is performed
on experimental data extracted from the drivedb open database available on Phys-
ioNet website. The physiological measurements of interest are: electrodermal activity
captured on the driver’s left hand and foot, electromyogram, respiration, and heart
rate, collected from ten driving experiments carried out in three types of routes (rest
area, city, and highway). The contributions of this work touch on the method as well
as the application aspects. From a methodological viewpoint, the physiological sig-
nals are considered as functional variables, decomposed on a wavelet basis and then
analyzed in search of most relevant variables. On the application side, the proposed
approach provides a “blind” procedure for driver’s stress level classification, giving
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close performances to those resulting from the expert-based approach, when applied to
the drivedb database. It also suggests new physiological features based on the wavelet
levels corresponding to the functional variables wavelet decomposition. Finally, the
proposed approach provides a ranking of physiological variables according to their
importance in stress level classification. For the case under study, results suggest that
the electromyogram and the heart rate signals are less relevant compared to the electro-
dermal and the respiration signals. Furthermore, the electrodermal activity measured
on the driver’s foot was foundmore relevant than the one captured on the hand. Finally,
the proposed approach also provided an order of relevance of the wavelet features.

Keywords Physiological signals · Functional data · Random forests · Recursive
feature elimination · Wavelets · Grouped variable importance

Mathematics Subject Classification 62H30 · 62P30

1 Introduction

The goal of this study is to classify stress levels of drivers in real-world driving
situations. To this end, a random forest-based method is used for the selection of
physiological functional variables captured during driving sessions. First, we present
the “affective computing” context of our work. Then, we give an overview of previous
studies that used the drivedb database of physiological measurements. Subsequently,
we describe our method for functional data analysis and variable selection. Finally,
we discuss the importance of grouped variables.

Stress recognition during driving

In recent years, the field of affective computing emerged as an interdisciplinary field
combining computer science and engineering with cognitive science, physiology, and
psychology. This field is expected to be beneficial for improving products in the auto-
motive industry in order to enhance the quality of the driving experience and the driver’s
comfort (Bostrom 2005). Actually, according to the American Highway Traffic Safety
Administration, high stress levels negatively impact drivers reactions, especially in
critical situations (Smart et al. 2005), which is one of the lead causes in vehicle acci-
dents. Hence, the ability to detect driver’s stress in a timely fashion may provide key
indicators for valuable and timely decision making. In addition, a driver’s stress level
monitoring is important in order to avoid traffic accidents and hence promote safe and
comfortable driving. For instance, researches have used sensors for data collection in
order to build models for better human affective state understanding and to design
smart human-centric interfaces (Tao and Tan 2005).

Physiological data such as Electrocardiogram (ECG), Electromyogram (EMG),
Electrodermal Activity (EDA) and Respiration (Resp) have been proven to reflect
stress levels during driving tasks (Singh and Queyam 2013; Singh et al. 2012; Deng
et al. 2012; Rigas et al. 2008). Usually, various types of features are extracted from
these physiological measurements. It is thus crucial to select only features that are
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relevant in the recognition of the different stress levels during a given task (such as
driving in different routes). In this context, there is a dearth of literature that focused
on features selection and the study of the correlation between the selected features and
the driving route complexity (Singh and Queyam 2013).

In practice, given that real-world driving data collection is very challenging, having
access to an open database with physiological measurements captured while driving,
offers great benefits in carrying studies such as the one at hand.Unfortunately, very few
open databases are available. We have used in our study the open database “drivedb”,
available on the PhysioNet website (Goldberger et al. 2000). The data were captured
during real-world driving experiments that were originally collected byHealey (2000).
The database includes various physiological measurements namely: ECG, EMG, EDA
(measured on hand and foot), and respiration of 17 drives performed along a fixed
itinerary, which switches between city and highway driving conditions. The origi-
nal study analyzed twenty two features, derived from non-overlapping segments of
physiological signals, extracted from the rest, highway, and city periods of all drives
(Healey and Picard 2005). A correlation analysis was performed between the features
extracted from the physiological signals and the driver’s affective state assessed by a
stress metric created from the experiment video recording. We recall that the original
study of Healey and Picard (2005) found that the driver’s stress level was correlated
the most with the EDA and the Heart Rate (HR) extracted from the ECG. However,
that study did not formally address the selection of physiological features. Moreover,
it did not consider any use of multi-resolution analysis of any physiological signal.

It is worth noting that since then, several studies have relied on the drivedb database.
We note in particular (Sidek and Khalil 2011; Chaudhary 2013; Karmakar et al. 2014)
studies that used ECG signals while (Imam et al. 2014) used ECG and Respiration
data. Several studies on stress level recognition relied on the complete set of the phys-
iological variables: we note in particular the work of Zhang et al. (2010) that proposed
an approach based on Bayesian Network for the fusion of features extracted from the
whole drivedb database. Akbas (2011) presented an evaluation of the mean and stan-
dard deviation computed on the various drivedb physiological signals, covering all rest
and driving periods of the experiments. In Deng et al. (2012) study, the importance
of features selection on stress level recognition was explored using the whole data of
drivedb. We note that the bibliographical study of Sharma and Gedeon (2012) found
that the stress modeling techniques did not include Random Forests (RF). Recently,
Guendil et al. (2015); Ayata et al. (2016); Granero et al. (2016) used RF as a classifi-
cation technique for emotion recognition. But there is no study that benefited from the
variable importance offered by RF in order to select or rank the physiological variables
allowing stress level recognition.

Variable selection and functional data

We recall that the random forests algorithm, introduced byBreiman (2001), is based on
aggregating a large collection of tree-based estimators. These methods have relatively
good predictive performances in practice and work well in high dimensional prob-
lems. The RF power was demonstrated in several studies, summarized in Verikas et al.
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(2011). Moreover, random forest methods provide several measures of the importance
of the variables with respect to the prediction of the outcome variable. It has been
shown that the permutation importance measure introduced by Breiman, is an effi-
cient tool for variables selection (Díaz-Uriarte and Andrés 2006; Genuer et al. 2010;
Gregorutti et al. 2016). One of the main issues of variable selection methods in high
dimensional data (data with small number of observations compared to the number of
variables) is their instability. Indeed, the set of selected variables may change when
slight perturbation is introduced to the training set. One solution to solve this insta-
bility consists in using bootstrap samples and a stable solution can then be obtained
by aggregating selections performed on several bootstrap subsets of the training data.
A similar solution is in fact proposed in this paper by introducing a selection through
repetitions of random forests based methods, intensively based on bootstrap resam-
pling.

Functional Data Analysis (FDA) is a field that analyzes data for which explana-
tory variables are functions (of time in our case). One possible approach in FDA
consists in considering the projections of the observations into finite dimensional
spaces such as splines, wavelets, Fourier (see for instance Ramsay and Silverman
2005; Ferraty and Vieu 2006). Many studies (Ullah and Finch 2013; Ramsay and
Silverman 2002) propose classification or regression methods for functional data in
one of two possible situations: with one functional predictor and recently for several
functional variables. Classification based on several possibly functional variables has
also been considered using the CART algorithm for similar driving experiences in
the study of Poggi and Tuleau (2007), and using SVM in Yang et al. (2005). Vari-
able selection using random forests was recently performed in the study of Genuer
et al. (2015). In our study, we will adopt multivariate functional data using random
forests and the grouped variable importance measure proposed by Gregorutti et al.
(2015).

The main contributions of this study are twofold: on the methodological side, it
takes advantage of the functional nature of the physiological data and offers a pro-
cedure of data processing and variable selection. For that, the physiological signals
are decomposed on a common wavelet basis and then analyzed in search of important
variables using grouped variable importance. This analysis is applied on two levels
of data selection strategies, based on a proposed “endurance” score. On the applied
side, the proposed method provides a blind (i.e. without prior information) proce-
dure of driver’s stress level classification that does not depend on the extraction of
expert-based features of physiological signals.

Paper outline

This paper is organized as follows. After this introductory section, Sect. 2 is dedicated
to the description of the protocol and the database used in this study. Section 3 recalls
the random forest model and the variable selection procedure based on the variable
importance measure. Section 4 presents the three main steps of variables selection.
Results of the variables selection applied to the “drivedb” database are presented in
Sect. 5. Finally, Sects. 6 and 7 present the discussion and the conclusions of the work.
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2 Experimental protocol and data collection

The drivedb database was selected in our study for two main reasons: it is an open
access database and its content has been explored in several studies due to its clear
annotation. In fact, each dataset related to a drive includes a marker signal providing
annotation of each driving segment, namely: city, highwaydriving, and the rest periods.
In this section, we present the real-world driving protocol, originally proposed by
Healey (2000). Specifically,wewill describe the cohort and detail the data construction
process.

2.1 Real-world driving protocol

All the driving experiments were based on a drive path which extended over 20 miles
of open roads in the greater Boston area (Healey and Picard 2005). The driver was
asked to follow a set of instructions in order to keep the drive regular. He/she was
requested to respect the speed limits and to shut down the radio. The choice of the
driving path was considered to imitate a typical daily commute and thus would induce
reactions revealing stress levels usually evoked in normal daily driving trip. To ensure
that all drivers made the same route, they were shown a map of the driving path before
the driving session. An observer accompanied each participant on his/her drive. The
observer sat in the rear seat in order not to interfere with the driver’s normal behavior
and affective state. This observer has also to monitor the experiment using a laptop
displaying the recorded physiological signals and videos recording the inside and the
outside scenes of the vehicle. Depending on the traffic density, the drive duration
varies between 50 and 90 min. All driving sessions began with a 15 min rest period
for the driver, after which the driver drove the car out of the garage, onto a ramp
until he/she reached a congested city street. The driver then went into a main street,
which has several traffic signals. It is assumed that driving on this road produces high
stress-levels. The path continued from the city into a highway, where medium stress
levels were usually evoked. After exiting the highway, the driver turned around, re-
entered the highway in the opposite direction, followed the same route, and got back
to the garage. After a complete driving session, the driver was requested to rest again.
For each of the rest periods, the driver is asked to sit in the garage inside the vehicle
(with an idle engine) with closed eyes. Thereby, this setting inducing the lowest stress
level along the experiment was introduced to establish baseline measurements. Each
driving session includes periods of rest, highway, and city driving (see Fig. 1), meant
to produce respectively low, medium, and high stress levels. These assumptions were
validated by two methods developed in Healey and Picard (2005): the first method
included a survey and the second consisted on a score derived from observable events
and actions coded from the video tapes recorded during each drive.

2.2 Cohort description

The set of data used in ourwork refers to 10 drives carried out by 4 participants denoted
by M-3, M-4, F-8 and Ind 4, whose individual driving sequence details are shown in
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Fig. 1 Description of the driving setting. For simplification, the toll and the turnaround segments are
considered as city driving

Table 1 Description of the
different 10 drives. Note that
each participant is labeled by a
sequence composed of gender
(M or F) followed by the number
of years of the driving
experience. No information was
available on Ind 4

Drive Participant
label

Date (mm-dd-yy) Duration
(hh:mm:ss)

1 M-3 07-28-99 1:24:15

2 08-04-99 1:20:46

3 M-4 07-15-99 1:28:38

4 08-05-99 1:21:11

5 08-13-99 1:10:52

6 F-8 08-02-99 1:21:16

7 08-05-99 1:21:13

8 08-06-99 1:23:04

9 08-09-99 1:17:38

10 Ind 4 07-16-99 1:04:57

Table 1. According to the original study of Healey (2000), participantM-3, contributed
in the database by 2 drives and was an undergraduate male. He had 3 years of driving
experience though he was not a regular driver. Participant M-4 is an undergraduate
student with over 4 years of driving experience. He had not driven a month prior to
the experiment. He contributed to the database by 3 driving experiments. Participant
F-8 was a female undergraduate having 8 years of driving experience. Four driving
experiments in the database are related to this driver. Finally, Ind 4 participated by just
one driving experience. No gender or driving experience information of Ind 4 were
provided.

2.3 Data construction

The open database drivedb, available in PhysioNet website, contains only 17 out of the
24 total driving experiments (Drive01, Drive02, …, Drive16, Drive17a, Drive17b).

In our study, only 10 out of those 17 driving experiences are considered (namely:
Drive05, Drive06, …, Drive12, Drive15, Drive16), since not all data were complete
for the listed drives. In fact, seven out of the 17 drives report incomplete data including
missing information, as indicated in Table 2.

For each of the 10 considered drives, seven segments, of 5 min each, were extracted
for analysis in our work, as shown in Fig. 2. However, two 5-min segments (correspond
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Table 2 Details of the missing
data for the 7 drives excluded
from the analysis due to the
reported incomplete data in the
drivedb database

Drive number Missing data

01 Marker

02 Hand EDA and EMG

03 HR, EMG and Marker

04 EMG

13 Hand EDA

14 HR

17a and 17b (two parts of one experiment) Marker is not complete

Fig. 2 Illustration of segment extraction of different physiological signals of Drive 7. Note that the physi-
ological data were stored based on the same sampling frequency Fs = 15.5 Hz

to the second rest period of Drive 5 and Drive 10) were not considered since the mark-
ers that annotate the end of the second rest period are missing. Thus only 68 segments
were subject of our analysis. In order to avoid driver’s both memory recall and antic-
ipatory effects, only the middle segments of highway and city driving are retained as
representative samples of respectively medium and high stress levels. This choice was
proposed by Healey and Picard (2005) where also the last 5 min of the two rest periods
are considered, and this was chosen in order to give the participant enough time to
relax from the previous tasks, thus inducing a low stress baseline.

Since drivedb data is in raw form, a standardization task is performed. For that, we
adopt the same preprocessing proposed by Healey and Picard (2005), were the data
were normalized in order to ensure the comparability between individuals.
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For instance, EDA standardization, proposed by Lykken (1972), is achieved by
centering the EDA values using the minimum value (during the first rest period), then
dividing by the EDA overall range (i.e. the difference between the maximum of the
signal during the entire experiment and theminimumvalue during the first rest period).
The HR, EMG and RESP signals are normalized by subtracting from each sample the
mean value of the each signal over the first rest period. The physiological data were
stored based on one same sampling frequency Fs = 15.5 Hz.

Let S be the vector of physiological signals used here as explanatory variables. We
extract 5 min segments. The choice of this window size allows the extracted segments
to be informative and comparable. Five minutes corresponds to 4650 samples based
on the used sampling period Δt = 1

Fs
= 1

15.5 = 0.065 s.
In order to project these segments into a wavelet basis (see Sect. 4.1), we keep the

first 212 samples (since a power of two simplifies the discrete wavelet decomposition)
which corresponds to 4096 samples. Functions S = (S1, . . . , S p) ∈ S p where S j =
{S j (t) ∈ R, t ∈ [0, T ]} ∈ S can be considered as functions of finite energy over
[0, T ] where T = 264.26 s and j = 1, . . . , p where p = 5.

Let i be the index of the extracted segment, i = 1, . . . , N where N = 68.
For a given i , Si (t) = (S1

i (t), . . . , S p
i (t)) presents 5 physiological signals used as

explanatory variables corresponding to the stress level yi ,

yi =
⎧
⎨

⎩

H = High stress level,
M = Medium stress level,
L = Low stress level.

⎫
⎬

⎭

3 Random forests and variables selection using variable importance

3.1 Random forests and variable importance measure

Let X = (X1, . . . , X p), X ∈ R
p denote the explanatory variables and Y the response

variable that takes numerical values in the case of regression context, and a class label
in the case of classification.

Let L = {(X1, Y1), . . . , (Xn, Yn)} be a learning set, consisting in n independent
observations of the vector (X, Y ).

Random Forests (RF) is a non-parametric statistical method, originally introduced
by Breiman (2001) as an extension and improvement of decision trees (Breiman et al.
1984). RF provides estimators of either a Bayes classifier ( f : R �→Y minimizing the
classification error P(Y �= f (X))), in the classification case, and of the regression
function g that verifies Y = g(X)+ ε with E[ε|X] = 0, in the regression case (Hastie
et al. 2001). A random forest is basically a set of decision trees, constructed over ntree

bootstrap samples L1, . . . , Lntree of the training set L .
At each node, a fixed number of variables is randomly picked to determine the

splitting rule among them. The trees are not pruned so all the trees of the forest are
maximal trees. The resulting learning rule is the aggregation of all the estimators
resulting from those trees, denoted by f̂ 1, . . . , f̂ntree . The response value at a new
point x is hence obtained by the aggregation which consists in building the following
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f̂ (x) =
{

1
ntree

∑ntree
k=1 f̂k(x) in regression,

arg max1≤c≤C
∑ntree

k=1 1 f̂k (x)=c in classification.
(1)

We now introduce the Out-Of-Bag (OOB) sample that will be used to define the
variable importance measure, provided by the RF. For each tree t , the OOB sample,
denoted by OOBt , is the set of observations that are not included in the bootstrap
sample used to construct t . This OOB sample leads to a “smart” estimate of the error
by calculating the error of tree t on the observations of OOBt which can be used as
test sample. This estimate is called the OOB error of a tree t . In order to assess the
contribution of a variable to explain the response variable of interest in the RF model,
we can use the permutation importance measure originally proposed by Breiman
(2001), and denoted henceforth as VI. It is defined as the mean increase, over all the
trees in the forest, of the OOB error of a tree obtained when randomly permuting the
variables in the OOB samples. The OOB error of a tree is measured by the Mean
Square Error (MSE) for the regression case and by the misclassification rate for the
classification on the OOB sample.

More formally, a variable X j is considered important if when breaking the link
between X j and Y , the prediction error increases. The prediction error of each tree f̂
is evaluated among its OOB sample with the empirical estimator

R̂( f̂ , L̄) =
{

1
|L̄|

∑
i :(X i ,Yi )∈L̄(Yi − f̂ (X i ))

2 in regression,
1

|L̄|
∑

i :(X i ,Yi )∈L̄ 1 f̂ (X i ) �=Yi
in classification.

(2)

Let
{

L̄ j
k , k = 1, . . . , ntree

}
refers to the set of OOB permuted samples resulting from

random permutations of the values of the j-th variable in each out-of-bag sample
OOBtk .

The VI is defined as the mean increase in the prediction error (estimated thanks to
the OOB error) over all trees, and estimated by

Î (X j ) = 1

ntree

ntree∑

k=1

[
R̂

(
f̂k, L̄ j

k

)
− R̂

(
f̂k, L̄k

)]
. (3)

Several authors were interested in the numerical study of this VI (see Strobl and Zeileis
2008; Nicodemus et al. 2010; Auret and Aldrich 2011). Some theoretical results are
also available in this regard (see Louppe et al. 2013; Gregorutti et al. 2015). For
instance, Zhu et al. (2012) proved that Î (X j ) converges to I (X j ), where

I (X j ) = E[(Y − f (X( j)))2] − E[(Y − f (X))2]. (4)

where X( j) = (X1, . . . , X ′ j , . . . , X p) is a random vector such that X ′ j is an indepen-
dent replication of X j , independent of Y and of Xk, k �= j .

The selection of groups of variables is a relevant topic in itself, see for example
the Group Lasso allowing to select groups of variables in the linear model using the
lasso selection strategy (see Bach 2008). In our case, obvious interesting groups of
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variables are, for a given functional variable, the coefficients of the function consid-
ered as a whole or the wavelet coefficients at a given level, for example. In order
to generalize the random forests based selection strategies, Gregorutti et al. (2015)
extend the permutation importance definition for a group of variables. To estimate the
permutation importance of a group of variables denoted by XJ, let us consider for each
k ∈ {1, . . . , ntree}, L̄J

k the permuted set of L̄k resulting by randomly permuting the

group XJ in each OOB sample L̄ j
k . The permutation importance of XJ is estimated by

Î (XJ) = 1

ntree

ntree∑

k=1

[
R̂

(
f̂k, L̄J

k

)
− R̂

(
f̂k, L̄k

)]
. (5)

When the number of variables considered in a group increases, the grouped VI may
increase (Gregorutti et al. 2015), which is particularly true in the case of an additive
model and independent variables. In order to take group size into account, we shall
use the normalized version of the VI (Gregorutti et al. 2015):

Inor(XJ) = 1

|J | I (XJ). (6)

3.2 Variable selection using random forest-based recursive feature elimination

Random Forests-based Recursive Feature Elimination (RF-RFE) algorithm, summa-
rized in Table 3, was originally proposed by Gregorutti et al. (2015), and inspired
from Guyon et al. (2002) that introduced the Recursive Feature Elimination algorithm
for SVM (SVM-RFE).

Let us first sketch the statistical model used in the Random Forest framework. Let
L = {(S1, Y1), . . . , (Sn, Yn)} be a learning set, consisting in n independent observa-
tions of the random vector (S, Y ). The (Si (t), yi ), introduced in Sect. 2.3, are then
considered as realization of unknown distribution of this sample. We aim to build an
estimator of the Bayes classifier f : R �→Y that minimizes the classification error

Table 3 Summary of the selection algorithm based on RF-RFE

1. Split the whole data L into a training set LT containing 2
3 of the data and a validation set LV

containing the remaining 1
3 . Set the subset of the variables V to the whole explanatory variables

2. Fit a random forest model using LT and considering the set of variables V
3. Compute the VI measure (respectively the grouped VI measure)

4. Compute the error using the validation sample LV

5. Eliminate the least important variable (resp. group of variables) and update V
6. Repeat 2–5 until no further variables (resp. groups of variables) remain

7. Select the variables (resp. the groups of variables) involved in the model minimizing the prediction
error
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P(Y �= f (S)). We denote by f̂ an estimator belonging to the fully non parametric set
of models given by the random forests framework introduced in Sect. 3.1.

The proposed algorithm in Table 3 will be briefly explained in the case of scalar
variables since the case of functional variables is similar. In fact, the variable groups
are predefined depending on the type of data, and in our case this definition depends on
the functional reconstruction procedure. At the first step, the dataset is randomly split
into a training set containing two thirds of the data and a validation set containing the
remaining one third. Steps 2–5 of the procedure are a loop. This loop starts by fitting the
model using all the explanatory variables using Random Forests. Then, the variables
are ranked from the most to the least important based on their VI values, computed on
the training set. Then, the least important predictor is eliminated, themodel is re-trained
and the prediction error computed on the validation set. The variable ranking and
elimination steps are repeated until no variable remains. The final model is chosen by
minimizing the prediction error. It should be noted that at each iteration, the predictors
importance is recomputed according to the model composed of the reduced set of
explanatory variables. Indeed, variations to this approach are conceivable, namely
using an ascending strategy where the variables are sequentially invoked according
to a given ranking of their respective importance obtained once and for all at the
beginning. These variants are suboptimal but less time consuming, which can be
especially interesting in the high dimensional case. This exact same algorithm detailed
in Table 3 can be applied for the selection of functionnal variables, as well as wavelet
coefficients grouped by wavelet level.

4 The 3 steps of the variable selection approach

One goal of the affective computing research in the automotive field is to recognize
the driver’s stress level. Although using many sensors to capture physiological signals
is likely to increase accuracy of the results, but integrating many sensors in the vehicle
may be a complex task. In fact, there is a trade-off between the adequate number of
sensors and stress level recognition accuracy.

Consequently, we propose an approach that not only removes irrelevant physiolog-
ical variables from the classification model, but also selects the most relevant wavelet
features among the wavelet levels resulting from the decomposition of the retained
variables; allowing an optimal stress-level recognition.

A summary of the 3-step procedure is listed in Table 4. This procedure repeatedly
applies the RF-RFE algorithm described in Table 3. A detailed description of our
approach is given below.

4.1 Step 1. Wavelet decomposition of the physiological functional variables

For the sake of clarity, we shall first recall few basic concepts related to wavelets
and their relationship to functional variables. Given a space of functions F (typically,
L2([0, 1])which is the space of square integrable functions defined on [0, 1]) and
a probabilistic space �, a functional random variable is a measurable application
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Table 4 Summary of the proposed 3-step approach

Step 1. Wavelet decomposition of the physiological functional variables

Step 2. Physiological functional variable removal:

1. Repeat 10 times: RF-RFE (G(1), . . . , G(p))

2. Compute an “endurance” score for each group G(�) as following:

score(G(�)) =
p∑

m=1
nbocc (G(�), Qm ) × [(p − m) + 1]. (7)

where 1 ≤ � ≤ p, Qm is the list of the selected variables, all over the 10 executions, at the
rank m, m = 1, . . . , p, and nbocc(G(�), Qm ) corresponds to the number of occurrences of
G(�) in the list Qm

3. Remove the less “enduring” functional variables (those of a score below a threshold δ)

Step 3. Selection of wavelet levels among the R retained functional variables:

1. Repeat 10 times:

RF-RFE ({G(1, S1), . . . , G(J, S1), . . . , G(1, SR), . . . , G(J, SR)})
2. Compute a selection score for each group G( j, Sr ) as following:

score(G( j, Sr )) =
p∑

m=1
nbocc (G( j, Sr ), Qm ) × [((J × R) − m) + 1]. (8)

where 1 ≤ j ≤ J , Qm is the list of the selected wavelet levels, all over the 10 executions, at
the rank m, m = 1, . . . , p, p = J × R, and nbocc (G( j, Sr ), Qm ) corresponds to the
number of occurrences of G( j, Sr ) in the list Qm

3. Select the most “enduring” wavelet levels (those having a score higher than a threshold δ′)

S : � → F . A function of F is defined on [0, 1] ([0, T ] equivalently in our specific
situation) with values in R.

Starting from compactly supported scaling function φ and mother wavelet ψ , the
sequence of functions φ j,k(t) = 2 j/2φ(2 j t − k) and ψ j,k(t) = 2 j/2ψ(2 j t − k) are
obtained by dyadic translations and dilations of φ and ψ . This allows us to build
several orthonormal wavelet bases, for any j0 ≥ 0

B =
{
φ j0,k, k = 0, . . . , 2 j0 − 1

} ⋃{
ψ j,k, j ≥ j0, k = 0, . . . , 2 j − 1

}
. (9)

Therefore, a wavelet transform of a function s of L2([0, 1]) can be written as an
expansion on B:

s(t) =
2 j0−1∑

k=0

c j0,kφ j0,k(t) +
∞∑

j= j0

2 j0−1∑

k=0

d j,kψ j,k(t). (10)

with c j,k = 〈
s, φ j,k

〉

L2 and d j,k = 〈
s, ψ j,k

〉

L2 .

The first term in Eq. (10) is the smooth approximation of s at level j0 while the
second term is the detail part of the wavelet representation, then the c j,k are the scaling
coefficients and d j,k are the wavelet coefficients at level j and position k. Thanks to the
formalism of multi-resolution analysis of L2, introduced by Mallat (1989), the whole
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space is the limit of a sequence of nested subspaces Vj of approximation associated
to the scale levels j ∈ Z and of increasing resolution. It allows thus to define the
Discrete Wavelet Transform (DWT) as a simple algorithm to perform for an input
signal of length N = 2J and for the maximum level of wavelet given by the size N of
the sampling grid. The wavelet decomposition of s given in a similar form as Eq. (10)
is thus as follows,

s̃J (t) = c0φ0,0(t) +
J−1∑

j=0

2 j −1∑

k=0

d j,kψ j,k(t). (11)

where c0 is the single scaling coefficient and d j,k denotes the empirical wavelet coef-
ficients derived from applying the DWT to the sampled values.

For a givenwavelet function, the physiological functional variables are decomposed
into a common wavelet basis at the first step of the approach.

4.2 Step 2. Physiological functional variable removal

The wavelet coefficients provided by the first step of the proposed approach are con-
sidered as inputs, which are then grouped by physiological variable. Let G(�) denote
the group of the wavelet coefficients resulting from the wavelet decomposition of the
physiological variable S�. The RF-RFE algorithm (see Table 3), is applied then on
these groups of wavelet coefficients G(�) where 1 ≤ � ≤ p, p is the number of
the physiological variables considered in the initial model. As a result, the list of the
physiological variables ordered using the VI measure and the number of the selected
variables are provided.

It should be mentioned that the values of the results vary for different execution
repetitions. Therefore, a procedure is proposed to improve the stability of the method.
This procedure consists in executing the RF-RFE 10 times and computing a selection
score that helps, at this step, to remove the less “enduring” physiological variables.
The “endurance” of a variablemeasures the ability for it to be selected in the first ranks.
The “endurance” score is built based on the number of occurrences of the variable in
the lists of selected variables, and on the weights attributed according to the selection
rank (see Table 5 for more details on the weights). This score aggregates information
concerning the results of 10 executions of the RF-RFE algorithm over the entire set
of variables.

Table 5 illustrates this result. For each execution e, the algorithm offers a list of the
ranked variables G(.)1e, . . . , G(.)

p
e and a number of the selected variables nbsele. Let

us define Qm as a list that aggregates the selected variables, all over the 10 executions,
at the rank m where 1 ≤ m ≤ p. For instance, if nbsele ≥ 1 for an execution e
(1 ≤ e ≤ 10) then Q1 contains the list of the 10 selected variables at the first rank. Qm

may be empty in the case that no variable was selected at the rankm and it may contain
several occurrence of the same variable. Let nbocc(G(.), Qm) denote the number of
occurrences of a variable G(.) in the list Qm .

The “endurance” score of a variable is the weighted sum of the number of occur-
rences of the variable all over the lists Qm , 1 ≤ m ≤ p. The weight of a variable in a
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Table 5 Summary of results of the 10 executions of the RF-RFE

Execution Num Weights Number selected var

p p − 1 … 1

Execution 1 G(·)11 G(·)21 … G(·)p
1 nbsel1

.

.

.
.
.
.

.

.

.

Execution 10 G(·)110 G(·)210 … G(·)p
10 nbsel10

list of rank m is equal to (p − m) + 1. The computation of this score on the physio-
logical variables is detailed in Step 2 of Table 4. The obtained selection scores allow
to rank physiological variables according to their “endurance” in the selection proce-
dure. Those having a score less than a threshold δ are removed. Thus, R physiological
variables are retained and to be considered in the next step of the procedure.

4.3 Step 3. Wavelet levels selection

This step consists in applying the same procedure detailed in Sect. 4.2, except that for
this step the wavelet coefficients are grouped by wavelet levels. In addition, the coeffi-
cients considered here concern only the R retained physiological functional variables
after the removal process is applied. Let Sr , 1 ≤ r ≤ R, be the r -th physiological vari-
able retained after removal based on Step 1. Let G( j, Sr ) denote the group of wavelet
coefficients resulting from the decomposition of the variable Sr on the wavelet scale
level j , 1 ≤ j ≤ J and J is the common maximum scale level that physiological
variables Sr , r = 1, . . . , R can be decomposed on.

Let nbocc(G( j, Sr ), Qm) denote the number of occurrences of the group ofwavelet
coefficients G( j, Sr ) in the list Qm , where 1 ≤ m ≤ p. In this case, p = R × J .
The “endurance” score in this step is computed in the same way as in Step 1. It is
the weighted sum of the number of occurrences of the group of wavelet coefficients
G( j, Sr ) all over the lists Qm , 1 ≤ m ≤ p. This score provides then a ranking of
the wavelet levels according to their “endurance” in the selection procedure. This step
aims mainly to select the most “enduring” wavelet levels. Thus, wavelet levels having
an endurance score higher than δ′ are selected.

Let us denote the procedure detailed at the Sect. 3.2 as RF-RFE (Gr p1, . . . , Gr pp)

then:

– the procedure described in Sect. 4.2 is indicatedwithGr p� = G(�), corresponding
to wavelet coefficients grouped by physiological variables �, � = 1, . . . , p.

– the procedure described in Sect. 4.3 is indicated with Gr p� = G( j, Sr ), corre-
sponding to wavelet coefficients grouped by wavelet scale j, j = 1, . . . , J of the
selected functional variable Sr , r = 1, . . . , R.

Remark It must be noted that the removal of the functional variables (respectively
wavelet levels) depends on the choice of the threshold δ (respectively δ′). A classical
strategy is to apply a rule similar to the elbow criterion that allows to determine the
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number of factors in the PCA, see Jolliffe (2012). We propose here a classical trick:
we look at the consecutive differences of the selection score. When starting from the
highest values of the endurance scores, we select variables just before the biggest gap
or when starting from the lowest values of endurance scores, remove variables just
after the big gap. The threshold can then be selected based on a visual inspection, if
the number of variables is small.

5 Variables selection on the drivedb database

In this section, we present the different variable selection strategies and their applica-
tions on the drivedb database. The objective of variable selection is not only to remove
irrelevant functional variables, but also to retain the most relevant wavelet-based fea-
tures in stress level recognition.

5.1 Step 1. Wavelet decomposition of the physiological functional variables

Recall that five physiological signals are considered, namely Hand EDA, Foot EDA,
HR, RESP and EMG. In a first stage, we perform a functional variable decomposition
using the Haar wavelet, which is considered as the simplest one. This choice is suffi-
cient for our analysis since the main goal at this stage is to benefit from a basic scale
information without the need for choosing a suitable wavelet type, which is required
for instance, in the detection of some specific events or patterns. We recall that the
Haar wavelet’s mother wavelet function ψ(t) is given by:

ψ(t) =

⎧
⎪⎨

⎪⎩

1 0 ≤ t < 1
2 ,

−1 1
2 ≤ t < 1,

0 otherwise.

(12)

and the corresponding scaling function φ(t) is given by:

φ(t) =
{
1 0 ≤ t < 1,

0 otherwise.
(13)

We have opted for a full wavelet decomposition corresponding to 12 decomposition
levels, which correspond to themaximum levels compatible with 212 = 4096 samples.

For all computational tasks, we used the R software (R Core Team 2016), with the
randomForest package proposed by Breiman and Cutler (2015) and RFgroove
package developed by Gregorutti (2016).

5.2 Step 2. Physiological functional variables removal

In this section, the importance of physiological functional variables considered in our
study will be presented. Since not all of these variables are important, we will proceed
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Fig. 3 Boxplots of grouped VI by physiological signals for 100 executions

to the elimination of the less important physiological signals, which do not contribute
significantly in the identification of stress level.

Importance of physiological variables

Data resulted from thephysiological functional variable decompositionprovide 4096×
5 scalar variables corresponding to the wavelet coefficients. Taking advantage of the
grouped VI, the scalar variables were grouped by physiological variable and the VI of
each considered group was computed. Thereby, the grouped VI allowed to consider
only 5 informative VI instead of 20,480 VI of the scalar variables.

In order to examine the VI of each group, we present in Fig. 3 the boxplots of the
grouped VI values, computed for 100 executions.

It can be noticed that Foot EDA is the most important physiological variable with
a VI distribution around 4%. RESP is the second most important variable since the
median value of the distribution of 100VI is about 3%.Hand EDA comes out important
when compared to the EMG and HR. The distribution of its 100 VI is around 2%. Foot
EDA and Hand EDA are found to be among the most important variables. This result
is in agreement with Healey and Picard (2005) findings that EDA is among the most
correlated variable with the driver’s stress level. EMG and HR variables are found to
have a distribution of values corresponding to 100 VI around 0.

RF-RFE on the grouped physiological functional variables

In order to eliminate the less relevant physiological variables, we applied the RF-RFE
algorithm ten times to the wavelet coefficients grouped by functional variables. Each
execution offers a ranking of the 5 variables and provides the list of variables retained
by the selected procedure. Table 6 shows the result of 10 executions of the RF-RFE
algorithm on the five physiological variables. The italicized values correspond to the
final retained variables. For instance, Foot EDA, RESP, and Hand EDA are selected in
the first execution.

Based on these 10 executions, Foot EDA is always included in the selected model.
Additionally, EMG and HR (except for one execution) are excluded from the list
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Table 6 Selected model for 10 executions of the RF-RFE algorithm

Ex. Num Weights Num sel var

5 4 3 2 1

1 Foot EDA RESP Hand EDA HR EMG 3

2 HR RESP Hand EDA Foot EDA EMG 4

3 Foot EDA Hand EDA HR EMG RESP 1

4 Foot EDA RESP Hand EDA EMG HR 1

5 RESP Foot EDA Hand EDA HR EMG 2

6 Foot EDA RESP Hand EDA EMG HR 2

7 Foot EDA Hand EDA RESP HR EMG 1

8 Foot EDA RESP Hand EDA HR EMG 1

9 Foot EDA Hand EDA RESP EMG HR 1

10 Foot EDA RESP Hand EDA HR EMG 3

The italicized values correspond to the retained variables

Fig. 4 Endurance score of the
five physiological variables for
100 runs. The two last
physiological variables are
removed

of the variables selected in the model. It can be noticed that the number of selected
variables and the order of importance of these selected variables vary from an iteration
to another. Thus, we propose to use the procedure detailed in Table 4 in order to
aggregate the information contained in these 10 executions and to select the most
“enduring” physiological variables. Figure 4 displays the “endurance” score of the
five physiological variables computed based on equation (7). The results confirm
the order found by the VI measure (see Fig. 3) where both EMG and HR had low
endurance score. Moreover, the endurance score reveals that Foot EDA is the most
important variable in driver’s stress level classification, followed by RESP and Hand
EDA. Thus it is confirmed again that the EDA is an important variable in driver’s stress
level recognition. These findings corroborate with the findings of Healey and Picard
(2005), who reported that features extracted from the EDA and HR have the highest
correlation with the stress metric built from the driving video recordings. However,
it should be noted that the Foot EDA was not considered in the original study. The
original study (Healey and Picard 2005) determined the most correlated physiological
signals to driver’s stress using features extracted from four physiological variables,
namely the mean and the standard deviation of the Hand EDA, EMG, RESP, the mean
and 4 metrics extracted from the HR.

In contrast with the results of Healey and Picard (2005), RESP is selected in our
analysis. This can be explained by the fact that the wavelet-based features used here
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may be more informative than the mean and the standard deviation used in the original
study. In addition, the RESP wavelet features are proved sensitive in detecting the
transient changes in respiration signal (Alkali et al. 2014). HR was found to be of
less relevance in our proposed model. This may be due to additional information
contained in the expert-based features that are not present in the proposed wavelet
features.

Our analysis having included both Hand and Foot EDA, has revealed that the
Foot EDA is as important as Hand EDA and may be even more relevant for the
experienced stress levels of the drivers. Usually, EDA is measured on the fingers or
on the palms. However, these two placements are not preferred in real-world task
performance because they may hinder hand functionality. Measuring EDA on foot
or shoulders is more practical, while having no significant difference from the sig-
nal captured from the fingers (Van Dooren et al. 2012). Several other studies have
also shown the importance of the placement of the EDA sensor (Picard et al. 2016;
Boucsein 2012; Van Dooren et al. 2012). Hence, one can suggest to consider Foot
EDA in future studies that aim to recognize stress levels experienced in real-world
driving.

Based on the “endurance” score, the final model retains the three physiological
variables: Foot EDA, RESP, and Hand EDA as most relevant in stress level classifi-
cation. In the next subsection, the wavelet levels of these selected three variables will
be considered. We will then seek the model based on their most “enduring” wavelet
levels to the selection procedure.

5.3 Step 3. Wavelet levels selection from the three retained physiological
variables

The goal of this step is to identify, for the retained physiological functional variables,
the corresponding wavelet levels most able to predict the driver’s stress class. To
achieve this goal, the wavelet coefficients are now grouped by levels.

Let us denote the approximation of the signal s as A12 and the detail at level j by
Dj then the wavelet decomposition can be written as follows

s̃ = A12 +
12∑

j=1

Dj, (14)

where A12(t) is reconstructed from the single scaling coefficient at level 12 and details
of increasing resolution Dj are reconstructed from theDWTwavelet coefficients (d j,k)

[see Eq. (11)].

Wavelet levels importance

Let V1 stand for Hand EDA, V2 for Foot EDA, and V5 for RESP. We simply denote by
V x_A12 or V x_Dj the wavelet decomposition components of the functional variable
V x .
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(a)

(b)

Fig. 5 Grouped VI of the wavelet levels for 10 iterations. a Grouped VI of the V1, V2 and V5 wavelet
levels, b grouped VI of the V1, V2 and V5 wavelet levels without V2_A12 and V5_A12

Figure 5a depicts the distribution of the VI computed over 10 executions of the
different wavelet levels of the three physiological variables. The distributions show
that the approximation level (A12) of both Foot EDA and RESP are the most important
wavelet levels in the stress level classification. The variation of the distribution of the
other wavelet levels is not clearly visible in Fig. 5a. In order to better investigate the
relative variation of small VI, we present a graph obtained by removing the dominant
variables V 2_A12 and V 5_A12 and the outliers in Fig. 5b. We find that for the Hand
EDA (V1), levels from 1 to 8 are the most important. Wavelet levels from 3 to 8 are
important for the Foot EDA (V2). For the RESP (V5), levels 1 and 2 are the most
important.

In the next paragraph, we compute the “endurance” score for all wavelet levels that
allows to select the final model.
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Fig. 6 Wavelet levels selection for 10 executions

Wavelet levels selection

When applying the RF-RFE algorithm to the groups composed by the wavelet levels
of the three retained variables several times, the selected model varies in terms of the
number of the selected levels, the validation error and even the ranking of the different
wavelet levels. In order to reduce this variability, an “endurance” score, introduced
earlier by Equation (8), is proposed. It allows to rank the different wavelet levels
according to their ability to persist in the selection procedure. The plot of the ranked
variables using this score is displayed in Fig. 6. There are two ways to select variables
of the final model, when examining the consecutive differences of the “endurance”
scores: one can start from the highest value and cut off at the largest gap of this
difference or start from the lowest score and cut off at the largest gap of this difference.
When applying the first approach on the wavelet details corresponding to the three
retained physiological variables, we select V 2_D4 and V 5_A12. If the second way
of selection is chosen, V 2_D4, V 5_A12, and V 2_D3 will be selected. Three wavelet
signals that correspond to levels 4 and 3 of details and the approximation at level 12,
among 39 = 13× 3 wavelet signals, are selected in our case. This can be justified by
the fact that the third level (V 2_D3) is not too different from V 2_D4.

Based on the selected wavelet levels, we examine then the reconstructed physio-
logical signals. For instance, Foot EDA wavelet details on levels 3 and 4 and RESP
wavelet approximation at level 12 corresponding to Drive 07 are depicted in Fig. 7.
Indeed, using only two selected levels for Foot EDA allows to distinguish between the
three segments of city, highway, and rest. The reconstructed approximation level of
the respiration (Fig. 7) highlights the fact that the 3 periods can be easily recognized.
It can be also noticed that the value of RESP approximation level decreases when the
stress level increases which is aligned with the conclusion of the study of Lin et al.
(2011), showing that stress is negatively correlated with the respiration rate.

An additional “unidimensional” information

In this subsection, we propose to investigate, for each physiological functional vari-
able, wavelet levels that are the most able to classify drivers stress level. Therefore,
three models, aiming each at recognizing stress level based on a given physiological
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Fig. 7 Illustration of the reconstructed signals corresponding to Drive 07 for Foot EDA (left column) and
RESP (right column), based on the three selected wavelet levels (see Fig. 6). The letter “R” corresponds to
rest period, “C” to city driving and “H” to highway driving

variable, are considered. The selection of wavelet levels is then performed indepen-
dently, for model composed by Hand EDA, Foot EDA and RESP respectively. For that,
Equation (8) is used first to compute the “endurance” score of the different wavelet
levels of the Foot EDA. We note that two wavelet detail levels are selected, based
on the “endurance” score shown in Fig. 8a, which are namely levels 4 and 5. For
this physiological predictor, the wavelet level 4 was selected in the final model that
combines the different wavelet levels of the three physiological predictors.

Figure 8b reveals that the first and the second details of the wavelet levels and the
approximation at level 12 are selected for the RESP predictor.

Figure 8c shows Hand EDA wavelet levels ordered by endurance score. When
starting from the smallest value of the score and looking at the consecutive difference,
levels 1 to 8 (except 7) are selected for Hand EDA. The same result was found based
on VI analysis of Hand EDA levels (see Fig. 5b). In addition, the “endurance” score
proposes that D4, D5 then D6, are in the same order as for Foot EDA (see Fig. 8c for
comparison).

When considering separate models composed by each physiological variable, the
proposed endurance score provides a similar order of the wavelet levels as given by VI
of the global model (see Fig. 5). This additional separate analysis supports the findings
based on the proposed endurance score.

In the next subsection, the performance of the 3-step based approach will be pre-
sented and an assessment of the final misclassification rate will be performed.
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(a) (b)

(c)

Fig. 8 Wavelet levels endurance score of the three retained physiological variables after 10 executions. a
Foot EDA, b RESP, c Hand EDA

5.4 Performances of the proposed “blind” approach

Recall that the “blind” 3-step approach applied on the drivedb database resulted in the
selection of Hand EDA, Foot EDA and RESP as themost relevant functional variables,
in addition to their most important wavelet decomposition levels. Specifically, this
resulted in a total of 3 wavelet signals corresponding to levels 3 and 4 of the Foot EDA
wavelet details and level 12 of the RESP wavelet approximation.

In this section, we first assess the performances of the RF-based model when con-
sidering these retained variables in the classification of the driver’s stress level, in
terms of misclassification rate. Then we perform a cross-validation like-procedure for
model error estimation taking into account the particularity of the cohort used in the
experiments. Finally, we proceed with evaluation of the resulting performance of the
proposed “blind” approach, when compared to those obtained by the “expert-based”
approach.

Recall that a total of 669 correspondingwavelet coefficients were finally considered
as input variables to the RF algorithm (for the Foot EDA, 512 = 2(12−3) and 256 =
2(12−4) coefficients and 1 coefficient corresponding to the level 12 of theRESP wavelet
approximation).

In order to evaluate the performances of the proposed blind approach, two different
procedures were considered: the first one consists in evaluating the error of the model,
composed of the whole set of variables. The second procedure considers the error
resulting from a wavelet level selection among the three signals corresponding to the
retained wavelet levels using the RF-RFE method summarized in Table 3.

The model error corresponds to the average of the misclassification rate obtained
in each iteration of the evaluation procedure, which is repeated 100 times in order to
reduce the variability of the estimation. The misclassification rate is estimated in two
different ways: the error obtained using a test set ( 13 of the data) and the OOB error
embedded in the RF algorithm.

As can be seen in Table 7a, the model errors resulting from the wavelet selection are
lower than those obtainedwhen considering the complete set of coefficients. Themodel
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Table 7 Model error: misclassification rate averaged over 100 executions

(a) Performances of the “blind” 3-step approach

Input variables Test error OOB error

With selection 0.28 (sd = 0.09) 0.27 (sd = 0.02)

Without selection 0.31 (sd = 0.09) 0.31 (sd = 0.03)

(b) Performances of the “blind” 3-step and expert-based approaches for cross validation like procedure.
Config1 (training set size=54 and test set size=14), Config2 (training set size=48 and test set size=
20) and Config3 (training set size=40 and test set size=28)

Input variables Selection Config1 Config2 Config3 Mean

Wavelet features With selection 0.19 (sd=0.05) 0.22 (sd=0.04) 0.26 (sd=0.03) 0.22

Without selection 0.31 (sd=0.04) 0.22 (sd=0.05) 0.27 (sd=0.04) 0.27

Expert-based
features

0.33 (sd=0.01) 0.14 (sd=0.02) 0.25 (sd=0.04) 0.25

Fig. 9 Three configurations of training and test sets choice in the cross validation like procedure

error assessed on the test set with wavelet level selection is 0.28 (sd = 0.09)while the
OOB error is 0.27 (sd = 0.02). When the 669 coefficients are considered, the OOB
error is 0.31 (sd = 0.03) and the error estimated using the test set is 0.31 (sd = 0.09).

Recall that thedrivedbdatasets are basedon a real-world drivingof four participants,
some of whom repeated the experiment. In order to compute the misclassification rate,
we adopt a particular cross-validation procedure taking into account this particularity
of the experiments (see Fig. 9).

In fact, the error assessment was evaluated for two models: one composed of the
whole set of features (without selection) and the second procedure considered the
resulting error based on a wavelet level selection, among the retained three levels
using RF-RFE (with selection).

In Table 7b, we consider the three configurations of the cohort disposition defined in
Fig. 9. The partitioning of the dataset into 3 configurations is done as follows: Config
k consists in considering the data of the driver k, k = 1, . . . , 3 as the test set, while
the retained data related to the other drivers is considered as the training set as shown
in Fig. 9. We note that the data related to driver 4 was considered in the training set
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Table 8 Features related to the EDA (Foot and Hand) and to the respiration signals proposed by Healey
and Picard (2005)

Type of features Signals Features

6 Statistical features Hand EDA, Foot
EDA and RESP

Mean

Standard deviation

4 Power spectral power features RESP Spectral power density in the bands 0–0.4 Hz

8 Startle features Hand EDA and
Foot EDA

Total number of startle

Sum of the magnitudes

Sum of the duration

Sum of the areas under the startles

of the 3 configurations since he performed only one test drive. Table 7b shows the
mean error over the 3 configurations of the “blind” approach in both cases: with and
without selection, in addition to the model error resulting from the RF using the 18
expert-based features shown in Table 8. The estimated model error considering the
wavelet features (without selection) is 0.27 while it is 0.22 with selection. We note
that the expert-based approach had a model error of 0.25.

The expert-based features, proposed by Healey and Picard (2005), was also used
in the Deng et al. (2012) study, which relied on the drivedb dataset as well. In such
study, the PCAmethod was used for variable selection. The misclassification rate was
estimated using ten-fold cross validation approach. The misclassification rate average
based on five fusion algorithms (including LDF, C4.5, SVM, NB and KNN), applied
to the PCA selected features, was found to be equal to 0.30 (sd = 0.07) while the
misclassification rate of the expert based features (22 features) is 0.33 (sd = 0.10).
The best misclassification rate, estimated using the PCA selected features and the
SVM as fusion method, was found to be equal to 0.21 (sd = 0.03). The worst
misclassification rate, estimated considering the whole features with KNN was equal
to 0.38 (sd = 0.07). We note that when considering the LDF method, used as well in
Healey and Picard (2005), the misclassification rate was found to be around 0.34 for
the two sets of features (complete set of features and PCA selected features).

In summary, we note that our blind approach performances are comparable (within
the same range) of the expert based ones.

6 Discussion

In this section, we summarize the rationale for our approach and discuss the obtained
results. First, we recall that this study was based on the open PhysioNet drivedb
database, which is a subset of the original data constructed and used in Healey and
Picard (2005) study.

Most studies using drivedb data relied on features extraction as a basis for drivers
stress level classification in real-world driving experiments. This is in contrast with our
study where a functional variable approach, coupled with a multi-resolution wavelet

123



Random forest-based approach for physiological functional… 181

decomposition, are considered as the input for Random Forest-based classification
procedure.

The developed approach consisted, at a first stage, in functional variables decompo-
sition using the Haar wavelet. The irrelevant functional variables were removed based
on a proposed endurance score. This score reflected the variable ability to persist (in
the sense of being selected and well ranked) when applying the variable selection
procedure 10 times, based on RF-RFE and grouped variable importance. The corre-
sponding wavelet levels of the retained functional variables were ranked based on the
same score. Themost “enduring” wavelet levels to the selection procedure were finally
retained.

The developed procedure, inspired from Gregorutti et al. (2015) work, was applied
considering onlymodels composed of p, p−1, . . . , 1 variables, where p is the number
of variables. Thus, not all variable combinations were considered, which could lead
to lower error rate. In fact, when p is large it is computationally costly to consider all
variable combinations.

Recall that our “blind” 3-step approach allowing to classify driver’s stress level
using various physiological measurements, resulted in the ordered selection of the
Foot EDA, RESP and Hand EDA. Moreover, a finer wavelet-based analysis suggested
a total of 3 wavelet signals corresponding to the levels 3 and 4 of Foot EDA wavelet
details and the approximation corresponding to level 12 of RESP. The fact that the
EDA emerges as important in driver’s stress level recognition is expected since Healey
and Picard (2005) original study reported that features related to EDA and HR are the
most correlated to the stress metric extracted from video-based subjective evaluations.

Furthermore, our findings are in alignment with more recent studies (Picard et al.
2016; Boucsein 2012), which revealed the importance of the EDA sensor placement
in a given experiment. In that regard, our study, which included both Hand and Foot
EDA, has indicated that the Foot EDA is as important and may be even more relevant
in detecting stress levels of the drivers in real-world driving situations.

Several performance indexes were evaluated using different error rates. For that, we
assessed themodel performances, in terms ofmisclassification rate, with regards to the
retained variables in the classification of the driver’s stress level. We then performed
a cross-validation like-procedure for model error estimation, taking into account the
particularity of the cohort used in the experiments. Finally, we examined the perfor-
mances of our model using the proposed “blind” approach, as it compares with the
results from the “expert-based” approach. The results show that our blind approach
performances were comparable (i.e. within the same range) to the expert based ones.

7 Conclusion

This study is based on physiological functional variable selection for driver’s stress
level classification using random forests. The physiological datasets used here con-
sisted in ten real-world driving experiments extracted from the open drivedb database.
Several physiological signals were collected using portable sensors during real-world
driving experiments in three types of routes (rest area, city, and highway) in the Boston
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area. These signals are: the electrodermal activity measured on the driver’s left hand
and foot, electromyogram, respiration, and the heart rate.

The contributions of this work are twofold since they touched on themethod as well
as the application aspects of this problem. The proposed approach was based on RF
Recursive Feature Elimination (RF-RFE) and grouped variable importance applied
to two different levels of data selection strategies: physiological and wavelet-based
variables. For that, all physiological signals were decomposed on a common Haar
wavelet basis and then analyzed in search of important variables using a proposed
“endurance” score.

The developed method provided a “blind” procedure (without prior information) of
driver’s stress level classification that resulted in amodel error close to the expert-based
approach performance. In addition, our approach suggested newphysiological features
based on the wavelet levels. Moreover, the proposed approach offered a ranking of
physiological variables according to their importance in drivers stress level classifi-
cation in city versus highway driving, with restful period for baseline reference. For
the considered case of study, the analysis results suggest that the electromyogram and
the heart rate signals are less relevant when compared to the electrodermal and the
respiration signals. Furthermore, the electrodermal activity measured on the driver’s
foot emerged as more relevant than that captured on the hand.

The different changes of road type are the same for all the experiments, since all the
drivers follow the same road-map, but occur at different instants. By using classical
time warping techniques, one could synchronize these events across the experiments.
This would enable the interpretation of each wavelet coefficient and could allow a
deeper analysis of the signal by adding an other step to select the most important
coefficients within the details selected in Step 3 of our procedure.

One way to further improve the methodology adopted in this study would be to
consider costs that penalize the high versus low confusion. In fact, confusing a low
stress level with a high one is more serious than predicting the high level as medium
one, or the medium as high stress level. This can be easily achieved by introducing
different misclassification costs to grow each tree of the forest. The second variant is
a preprocessing of the segments extracted from the driving experience recordings. A
pre-selection of the coefficients in order to reduce dimension can be performed using
wavelet based techniques or Principal Components Analysis for instance, to ensure
better stability of the variable selection process. Finally, we could also consider a
preprocessing of each driving experience considered as a whole and redefine new
original signals realigned on a single time interval by synchronizing typical events.

In this study, the variable of interest was built according to the type of route traveled
by the driver, thus it depended mainly on the hypothesis assuming that the stress
level increases when driving in the city and decreases when the participant is at the
rest. Such hypothesis remains simplified since it does not take into account several
factors such as the driver’s cognitive state, mental workload, and anticipation of some
situations. The effect of the external visual and sonic environmental complexity could
as well affect the driving performance (Horberry et al. 2006) thus the driver’s stress
level. Additional information can be gathered using measurements characterizing the
affective state of the driver, the driving environment and the inside vehicle complexity
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(see El Haouij et al. 2018). Thereby, a finer analysis of the groupings can be proposed
for the coefficients resulting from wavelet decompositions as well.
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