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Abstract
In dealing with veracity of data analytics, fuzzy methods are more and more relying
on probabilistic and statistical techniques to underpin their applicability. Conversely,
standard statistical models usually disregard to take into account the inherent fuzziness
of choices and this issue is particularly worthy of note in customers’ satisfaction
surveys, since there are different shades of evaluations that classical statistical tools fail
to catch. Given these motivations, the paper introduces a model-based fuzzy analysis
of questionnaire with sound statistical foundation, driven by the design of a hybrid
method that sets in between fuzzy evaluation systems and statistical modelling. The
proposal is advanced on the basis of cubmixture models to account for uncertainty
in ordinal data analysis and moves within the general framework of Intuitionistic
Fuzzy Set theory to allow membership, non-membership, vagueness and accuracy
assessments. Particular emphasis is given to defuzzification procedures that enable
uncertainty measures also at an aggregated level. An application to a survey run at the
University of Naples Federico II about the evaluation of Orientation Services supports
the efficacy of the proposal.

Keywords Uncertainty · cubmodels · Intuitionistic fuzzy sets · Fuzzy composite
indicators

1 Introduction

Consider an experimental design aimed to investigate an unobservable trait of a pop-
ulation through measurements of opinions, judgements, or preferences. Then, once
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a questionnaire is administered and data are collected as ratings on an ordinal scale,
policy makers should not disregard to take into account the fuzziness of the outcomes.
Indeed, latent constructs like customer satisfaction are inherently vague. For instance,
if on a scale ranging from 1 = ‘completely dissatisfied’ to 7 = ‘completely satisfied’,
the rater marks R = 6 (R = 2, resp.), how strong should our confidence be that
he/she is actually satisfied (dissatisfied)? How confident can the scholar be about the
resulting classification? In the following, we consider the satisfaction of respondents
as latent phenomenon, but the proposed investigation can be applied more generally
for the analysis of agreement and preferences.

A classical way to assess the imprecision and the uncertainty of evaluations is
offered by Fuzzy Sets Theory (Zadeh 1965). When a respondent marks “very satis-
fied” about a particular service, he/she is producing a judgment on the veracity of
the statement “the quality of service is high”, whose plausibility can be encoded in a
Fuzzy measure. The Intuitionistic Fuzzy Set theory (IFS) (Atanassov 1986) proposes
to convey the dual assessment of the membership grade through a non-membership
function. Then the residual degree of indecision and its complementary to one are con-
sidered as measures of uncertainty and accuracy, respectively, measuring the veracity
of the expressed rates. Usually, fuzzy methods for evaluation are preferred over simple
descriptive analysis, but they lack of a sound inferential background that could enhance
their applicability. Moreover, they are strongly grounded on subjective choices, which
makes reproducibility of analysis and conclusions unstable. Thus, the integration with
a proper statistical tool could underpin fuzzy methods’ reliability.

The present paper aims to pursue this task by fostering the application of a suitable
statisticalmethodwithin the fuzzy framework.Due to its psychological and probabilis-
tic structure, an appealing candidate for our purpose is the class of cubmodels (D’Elia
and Piccolo 2005; Iannario and Piccolo 2012). This rationale conceives the data gen-
erating process driving latent perceptions into discrete evaluations as the combination
of two components: the feeling, responsible for the level of agreement/pleasantness
towards the item under investigation, and the uncertainty, accounting for the overall
nuisance affecting a fully meditated response (laziness, difficulties in understanding
the question, ignorance of the topics, wording and length of the scale etc). cubmodels
are then defined as a two-component mixture distribution: a shifted Binomial for
feeling and a discrete Uniform for uncertainty, which explains the acronym cub :
Combination of a Uniform and a shifted Binomial.

Then, the proposal is a new Fuzzy evaluation system for ratings in the setting of
Intuitionistic theory in order to properly account for uncertainty in the data as meant
by the cub paradigm: dually, the heuristic definition of cub uncertainty as a measure
of the intrinsic fuzziness of the decision process is properly justified. As for all fuzzy
schemes (Lalla 2005), the resultingmodel-based fuzzy systemplaces itself as a support
tool to the analysis of ratings.

The advantage of the proposed method is manifold: it is more objective, since fuzzy
functions are structured on both data and inferential procedures and simultaneously
they are designed to be more sensitive to measurement errors; it is able to discriminate
among items of a questionnaire not only at an aggregated level (that is when respon-
dents are grouped according to their choices) and it lends itself to broader extensions to
consider further sources of the fuzziness blurring the response distribution. In partic-
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ular, the resulting modeling allows us to include the so-called shelter effect, occurring
when a proportion of respondents identifies a category as a refuge option for non-
meditated choices (Iannario 2012; Iannario and Piccolo 2016), yielding to inflation of
frequency in some categories.

Our proposal considers membership and non-membership functions of spline type
(Marasini et al. 2015), grounded on sampled information and limiting the subjectivity
of parameters choice. The application of the empirical distribution function within
the fuzzy evaluation system is supported by the literature (Cheli and Lemmi 1995;
Zani et al. 2013) and, in these terms, it allows us to take into account also the feeling
component as meant by cubmodels.

In the end, a Fuzzy analysis of questionnaire is completed with a so-called defuzzifi-
cation procedure. This last step consists in computing synthetic measures that encode
a simultaneous examination of all items across respondents (Van Leekwijck and Kerre
1999): specifically, fuzzy functions have to be suitably weighted and aggregated to
produce fuzzy composite indicators. In Marasini et al. (2015), different criteria and
quantification methods are discussed. In particular, the weights associated with items
can be either uniform or assigned by experts who are in charge of discriminating
the items by assessing their relative importance to the universe of discourse. Here
we propose an aggregator belonging to the class of Intuitionistic Weighted Aggrega-
tor Means (IWAM) (Beliakov et al. 2011), designed to balance both satisfaction and
dissatisfaction for indecision and unpredictability.

With regard to the literature on cubmodels, the novelty of the paper is themulti-item
perspective offered by the defuzzification procedure, in which dimensions affected by
a larger uncertainty are recognized a weaker importance. Although cubmodels are
designed to run an item-by-item investigation, first multidimensional perspectives are
given in (Andreis and Ferrari 2013; Corduas 2015), whereas multi-object analysis are
discussed in Iannario and Piccolo (2012), Capecchi et al. (2016) andmulti-item aggre-
gation is pursued with a model-based composite indicator in Capecchi and Simone
(2018). Very recently, a multivariate extension of cubmodels is proposed in Colombi
and Giordano (2016).

The work is organized as follows: Sect. 2 provides a short overview of the IFS
theory, with a focus on composite indicators given in Sect. 2.2. cubmodels are
shortly described in Sect. 3 and the proposed cub -Fuzzy evaluation system is intro-
duced in Sect. 3.1, where a new Fuzzy composite indicator is defined in terms of the
cub uncertainty parameter. Finally, in Sect. 4, the proposal is illustrated on the basis
of a survey collected at the University of Naples Federico II about the evaluation of
Orientation Services. The discussion is pursued by assuming a comparative perspec-
tive with standard methodologies for multi-item analysis. Summarizing remarks and
some notes on future developments end the paper. The whole analysis has been run
within the R environment: the code is available upon request from Authors.

2 Fuzzy systems: Intuitionistic theory

Let X be the universe of discourse. For instance, assume that we are investigating
customers’ satisfaction and a questionnaire is designed to that purpose: then X is the
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set of all customers, which is observed through the respondents to the survey. A Fuzzy
set A consists of a subset of X endowed with amembership function μA assessing the
degree of membership to the set A,

μA : X −→ [0, 1], x �−→ μA(x),

in such a way that μA(x) = 1 if and only if x is certainly an element of A, while
μA(x) = 0 if and only if x is certainly not. For the illustrative example above, A is
the subset of the satisfied customers. Assume that answers to an item are collected
on an Likert-type scale with m = 10 categories that can be coded with equispaced
integer scores, and that only categories j ≥ 6 have a positive wording. Evalua-
tions are not crisp, and classification of respondents should be elastic, thus it is an
over-simplification to consider certainly satisfied those users whose rate expresses
satisfaction, regardless of the position along the scale. Certainly, j = 6, j = 8 and
j = 10 have to be associatedwith different degrees of belonging to A. A Fuzzy evalua-
tion systemwill frame this circumstance by assigning increasing levels of membership
to increasing scores. Then, it is widely acknowledged that in studies like those on cus-
tomer satisfaction, it is of foremost importance to accompany evaluation of satisfaction
with measures of unsatisfaction and dissatisfaction. In this vein, the rationale of Intu-
itionistic Fuzzy Sets (IFS) puts forth a theory to supply the Fuzzy analysis with a
non-membership function (Atanassov 1986):

νA : X −→ [0, 1], x �−→ νA(x),

expressing the dual assessment of the non-membership grade of an element x to A, in
such a way that if νA(x) = 1, then x is certainly not an element of A.

Membership and non-membership values should be defined in such a way that
0 ≤ μA(x) + νA(x) ≤ 1 (Atanassov 2012), thus a measure of the residual indecision
about the statement “x ∈ A” is given by the hesitancy degree or Fuzzy uncertainty
function:

uA(x) = 1 − μA(x) − νA(x). (1)

Fuzzy uncertainty function (1) parallels the usual confidence band. Indeed the
Interval-Valued Fuzzy Set (IVFS) for an IF singleton < μA, νA > is the function
(Atanassov and Gargov 1989):

MA : X −→ B[0, 1], x �−→ [μA(x), 1 − νA(x)] ,

where B[0, 1] denotes the Borel set of sub-intervals of the unit interval. Then the
hesitancy degree is the range of MA(x) = [μA(x), μA(x) + uA(x)]. For subsequent
purposes, let us underline that some IFS evaluation systems first characterize the
hesitancy degree and then obtain the non-membership function as:

νA(x) = 1 − μA(x) − uA(x). (2)

Within IFS, there are indicators aiming to summarize an item performance when
aggregated among subjects, and to derive information about the latent phenomenon
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when aggregated among items: in particular we refer to the fuzzy score and the fuzzy
accuracy (Xu 2007). The Fuzzy score function (3) indicates how strong is the clas-
sification of membership with respect to the classification of non-membership by
computing how far apart membership and non-membership statements are, that is:

s(x) = μA(x) − νA(x) ∈ [−1, 1]. (3)

The Fuzzy accuracy function, instead, measures the extent to which the fuzzy
classification of membership and non-membership is encompassed:

a(x) = μA(x) + νA(x) = 1 − uA(x) ∈ [0, 1], (4)

in the sense that a(x) = 1 denotes that no undefined state is contemplated other than
membership and non-membership (conversely, a(x) = 0 indicates a fully incomplete
fuzzy statement).

2.1 Spline fuzzy systems

When discussing the IFS framework for questionnaire analysis, a benchmark approach
is the one delivered in Marasini et al. (2015, 2016, 2017). Let us consider a balanced
Likert-type ordinal scale with an odd number m of choices, with an indifference point
i p located at the middle category. This choice is convenient since the indifference
point thresholds membership and non-membership grades, although the setting here
established could be easily extended to scales of even length. The scale is coded into
integer categories, say 1, 2, . . . ,m, so that a rate r = 1 corresponds to the most
unsatisfied choice; conversely, r = m corresponds to an extremely satisfied answer.

According to Marasini et al. (2015), the spline membership function is of the type:

μA(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 ≤ r < a,

1

2
− 1

2

(

2
i p − r

b − a

)ε

, a ≤ r ≤ i p,

1

2
+ 1

2

(

2
r − i p
b − a

)ε

, i p ≤ r ≤ b,

1, b < r ≤ m,

(5)

with ε > 0, and b − a denoting the range of non-crisp responses (notice that for
the sake of the subsequent discussion, we define membership directly on the ordinal
scale, whereas the approach in Marasini et al. (2015) works on the latent continuous
measurement scale). Spline parameters ε, η, θ are chosen according to the sampling
experiment, the strength and vagueness of the wording of the scale and its length. For
instance, in Marasini et al. (2015) the authors advocate to adopt a linear spline (ε = 1)
for items within a certain section of the questionnaire, and a quadratic spline (ε = 2)
for items within another one, measured on a scale whose wording can be perceived
vaguer in the central part of the scale, or in cases in which there is a non-linear step
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between subsequent categories. In the latter cases, at least a quadratic spline should
be recommended.

The hesitancy degree is defined from (5) with:

uA(r) = μA(r)θ (1 − μA(r))η, θ, η ≥ 1, (6)

and then the non-membership function is derived according to (2). This definition is
meant to convey both membership and its residual assessment to uncertainty mea-
surement: for balanced scale, one sets θ = η. As a result, without any prior experts’
assessments on the values of parameters, the Fuzzy spline functions (5) and (2) are
equal for all items evaluated on a common scale.

Although interesting, we will not rely on Definition (6) for the uncertainty function,
but implement a fuzzy uncertainty that carries a specific statistical interpretation in
the spirit of freeing the stakeholders from preliminary subjective assessments.

2.2 Fuzzy composite indicators

Consider a latent phenomenon to be measured by K observable variables, as the items
of a questionnaire. Assume the questionnaire has been filled out by n respondents,
who have chosen among m ordered alternatives, available for each item. Let r j =
(r j,1, r j,2, . . . , r j,K ) be the row vector of ratings given by the j-th respondent for

j = 1, 2, . . . , n, to the K items, and denote with μ
(k)
A (·), ν(k)

A (·) the membership and
non-membership functions for the k-th item, respectively. If seeking for a composite
fuzzy value for each respondent, the IWAM(IntuitionisticWeightedAggregatorMean)
is defined as the pair:

< μA(r j ), νA(r j ) > = <

K∑

k=1

wk μ
(k)
A (r j,k),

K∑

k=1

wk ν
(k)
A (r j,k) >, (7)

where {w1, . . . , wK } is a given system of weights such that
∑K

k=1 wk = 1, estab-
lishing the relative importance of items. Such values could be used to perform
a fuzzy clustering of responses, where belonging of each observation to a clus-
ter is decided on the basis of the fuzzy composite score μA(r j ) − νA(r j ), for
instance. Each aggregated value is considered an IFS singleton < j, μA(r j ),
νA(r j ) >, thus a final composite score can be obtained by considering uniformweights
for subjects:

< μ̄, ν̄ > = <
1

n

n∑

j=1

μA(r j ),
1

n

n∑

j=1

νA(r j ) > . (8)

Then, according to (1) and (8), the uncertainty (or hesitancy degree) is computed as
the global residual degree of indeterminacy of the fuzzy assessment:

ū = 1 − μ̄ − ν̄, (9)
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whereas the overall Fuzzy score and Fuzzy accuracy are given respectively by:

s̄ = μ̄ − ν̄, ā = μ̄ + ν̄.

Different choices of weights in (7) give different indicators. In the framework of
composite indicators, the choice of a weighting system is of primary importance.
As a matter of fact, several applications suggest to choose weights depending on
the loadings of the first principal component or factor. Nevertheless, such choice is
consistent only if that variable explains a large proportion of the variability. For this
reason, and aiming to a fuzzy system that is model-based and thus not subjective, we
will propose a system of weights that is driven by data through estimation procedure:
in this sense, it can be considered a safer option.

3 CUBmodels

Let R be the rating random variable modelling the response distribution to an item of a
questionnaire, measured on a scale withm ordered categories coded as integers from 1
up tom. A cub distribution cub (π, ξ) for R consists in the following two-component
mixture with parameters (π, ξ) ∈ (0, 1] × [0, 1]:

P
(
R = r | π, ξ

) = π br (ξ) + (1 − π) hr , r = 1, 2, . . . ,m ,

where br (ξ), r = 1, 2, . . . ,m for m > 3 denotes the shifted Binomial distribution
with parameter 1 − ξ :

br (ξ) =
(
m − 1

r − 1

)

ξm−r (1 − ξ)r−1, r = 1, 2, . . . ,m ,

and hr = 1

m
is the discrete Uniform distribution over the given support. The parameter

ξ is referred to as the feelingparameter since 1−ξ measures the preference of a category
over the lower ones in a sequence of pairwise comparisons (D’Elia 2000; Iannario and
Piccolo 2016). The parameterπ , instead, is called theuncertainty parameter since 1−π

charges for the inherent fuzziness arisingwhen perception translates into an evaluation,
and thus measures the overall uncertainty of the respondent’s assessment. The role of
the uncertainty component within the cub rationale has been usually considered as
an expression of the inherent indeterminacy of human decisions, generating fuzziness
and thus representing a source of unpredictability of the evaluation process. As a by-
product and since the Uniform distribution represents the least informative model, its
weight in the mixture aims at catching the level of heterogeneity in the data.

It should be emphasized that the choice of the Uniform distribution for the uncer-
tainty component adheres to the baseline cub paradigm: under this assumption, π

is an inverse indicator of heterogeneity. Departing from the defining specification,
other choices can be supported to model uncertainty in the data: response styles and
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category-specific measurement errors can be suitably specified by adjusting this com-
ponent (see Gottard et al. 2016; Simone and Tutz 2018). These extensions do not
affect the distinctive trait of the cub fuzzy evaluation system since this is grounded on
the mixing weight π for the deliberate choice. Alternative distributions for the uncer-
tainty component would simply change interpretation of results and penalize data for
response styles or more specific forms of uncertainty. In the following, we will focus
on some particular circumstances for illustrative purposes.

For instance, in order to further disentangle the fuzziness charged by the uncer-
tainty component, one may contemplate a shelter effect concentrated at category
c ∈ {1, . . . ,m} in the cubmixture distributionwhen inflation in c is observed (Iannario
2012). Let us consider a degenerate random variable D(c)

r such that P
(
D(c)
r = r

) = 1

if r = c and P
(
D(c)
r = r

) = 0 otherwise. Then, the cub distribution cub (π, ξ, δ)

with shelter effect at r = c is:

P(R = r | π	, ξ, δ) = δ D(c)
r + (1−δ)

[
π	 br (ξ)+ (1−π	) hr

]
, r = 1, 2, . . . ,m,

(10)
for m > 4. The additional parameter δ quantifies the importance of the shelter effect.
When testing its significance, it may be useful to deal with (10) according to the
following equivalent parameterization:

P(R = r | π1, π2, ξ) = π1 br (ξ) + π2hr + (1 − π1 − π2) D
(c)
r , r = 1, 2, . . . ,m,

with π1 = π	(1− δ) > 0, π2 = (1−π	)(1− δ) ≥ 0. When the inclusion of a shelter
effect in the model yields to a significant improvement of the fit (to be checked with
a Likelihood Ratio Test, for instance), the overall level of inaccuracy has to convey
both the heterogeneity accounted by the Uniform distribution and the shelter effect
as measured by the parameter δ. Since π1 is the mixture coefficient corresponding
to a deliberate choice, the measure of the overall uncertainty in this augmented case
corresponds to 1 − π1 = π2 + δ taking into account the shelter effect. In order to
provide a general framework not limited to cases where the shelter is significant, we
shall use the notationπ in place ofπ1, since in that cases thewhole discussion holds for
baseline cubmodels. Notice that cubmodels paradigm assumes a linear step between
adjacent categories: for non-linear versions, see Manisera and Zuccolotto (2014).

For our computation we shall rely on the Maximum Likelihood (ML) esti-
mates π̂ , ξ̂ , δ̂ of π, ξ, δ, respectively (equivalently π̂1, π̂2, ξ̂ ) obtained by running
the Expectation-Maximization algorithm (D’Elia and Piccolo 2005; Piccolo 2006) as
implemented in the R package cub (Iannario et al. 2018).

3.1 CUB-fuzzy evaluation system

The idea to use cubmodel parameters in computingmembership functions stems from
the preliminary work (Di Nardo and Simone 2016), but the method here presented is
more accurately designed.

For a preliminary investigation and comparison with the methods introduced in
Sect. 2, we have focussed on balanced Likert-type scales of odd length with indifferent
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point at the midpoint. Suppose the scale is oriented in such a way that “the greater
the score, the higher the feeling”, that is, there is a positive relation between the
latent phenomenon and the scale. Here, negative and positive refer to expression of
satisfaction, so that r < i p (r > i p) corresponds to a negative (positive) evaluation.

Definition 1 For a given item of the questionnaire, the cub -Fuzzy membership func-
tion is:

μA(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 ≤ r ≤ lb,
π̂

2
− π̂

2

F(i p) − F(r)

F(i p) − F(lb)
, lb + 1 ≤ r ≤ i p,

π̂

2
+ π̂

2

F(r) − F(i p)

F(ub − 1) − F(i p)
, i p ≤ r ≤ ub − 1,

1, ub ≤ r ≤ m,

where F(r) denotes the empirical distribution function of the given variable, π̂ is
estimated from a cubmodel fitted to the data1 and lb (ub, resp.) is a fixed lower (upper,
resp.) bound to threshold the categories corresponding to crisp negative (positive, resp.)
scores.

In full generality, the setting of lb and ub may be affected by the wording of the
scale, the problem under investigation and/or a preliminary analysis of the data. For
lb = 1 and ub = m, the membership function (12) corresponds to the totally fuzzy
and relative approach given in Cheli and Lemmi (1995). This choice allows us to
penalize uniformly each category and it is best-suited for our purpose of accounting
for heterogeneity, and thus it is the natural choice for the cub -Fuzzy proposal.

Definition 1 is a linear spline in the distribution function. Specifically and compared
with (5), Definition 1 relies on the cub uncertainty parameter, but also considers a
spline transformation of the empirical distribution function for the item rather than
of ordinal categories as in (5). Indeed, measuring distances between categories via
their differences may be inappropriate since results depend on the chosen scores: this
issue is particularly relevant when the same latent trait is assessed in different groups,
locations or times for comparison purposes. Most importantly, it is not necessary
to specify spline degrees ε, since π̂ will charge for all the unspecified effects and
vagueness of the evaluation, as that derived from the nature of the scale (Iannario
2015).

The rationale and probabilistic genesis behind Definition 1 can be summarized as
follows:

(i) the updating of the category r is penalized with the mixing weight for the feeling
component π̂ since it establishes the accuracy of the preference part of the model
by adjusting its importance for heterogeneity and diverse sources of imprecision
in the data;

(ii) for r > i p (r < i p, resp.) the frequency of the category r is normalized taking into
account the set of positive (negative, resp.) non-crisp choices;

1 π̂ is replaced by π̂1 when shelter effect is considered.
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(iii) the greater is the heterogeneity (that is, as π̂ → 0), the less meaningful is the
contribution of the relative frequencies to the membership degrees.

The choice of normalizing the updating contribution F(r)−F(i p)with F(ub−1)−
F(i p) for the categories i p ≤ r ≤ ub−1 canbe explained as follows: the categories r ≥
ub are certainly associated with membership to A (in our case, A is the set of satisfied
users) asμA(r) = 1. Symmetric arguments apply to the choice F(i p)−F(lb) for lower
categories lb + 1 ≤ r ≤ i p. Hence, the shades of membership across intermediate
positive categories should rather be computed starting from the indifference point
and excluding the categories being assigned crisp membership degrees. Moreover, the
choice of halving π̂ and distinguishing between left and right non-crisp sides of the
scale is due to weight for the dual contribution of each category to the assessment of
membership and non-membership.

The cub -Fuzzy proposal stems from the central idea of giving to 1 − π̂ a proper
definition as measure of fuzziness of the decision process. Thus we assume the range
of the IVFS constantly equal to 1− π̂ for each category r , in agreement with the role
that uncertainty plays in cubmodels.

Definition 2 For a given itemof the questionnaire, the cub -Fuzzy uncertainty function
for A is defined as:

uA(r) =
{
0, 1 ≤ r ≤ lb and ub ≤ r ≤ m,

1 − π̂ , lb + 1 ≤ r ≤ ub − 1.

From (4), the Fuzzy accuracy function results to be:

a(r) =
{
1, 1 ≤ r ≤ lb and ub ≤ r ≤ m,

π̂ , lb + 1 ≤ r ≤ ub − 1,

catching the propensity to assume a meditated response mechanism. Indeed, given the
mixture definition, π is a direct indicator of reliability of predictions under the feeling
component,which could be adjusted to incorporate also overdispersion (Iannario 2014)
or a more general specification (Tutz et al. 2017). Thus, the choice for u(r) = 1 − π

under the cub -Fuzzy system implies that the assessment of membership and non-
membership of score r is penalized by the unpredictability of responses under the
feeling model. In addition, π can be interpreted as a measure of propensity between
a well-structured response-behaviour and a random choice: the close π → 1, the
stronger the frequency distribution can be legitimately used for a fuzzy evaluation
system.

From (2), the non-membership function νA(r) is given by:

νA(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, 1 ≤ r ≤ lb,
π̂

2
+ π̂

2

F(i p) − F(r)

F(i p) − F(lb)
, lb + 1 ≤ r ≤ i p,

π̂

2
− π̂

2

F(r) − F(i p)

F(ub − 1) − F(i p)
, i p < r ≤ ub − 1,

0, ub ≤ r ≤ m.

(11)
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Let us remark that, as the cub -Fuzzy uncertainty decreases (that is, the more π̂

approaches 1), the more the non-membership function (11) increases towards 1 by
moving from the indifference point to the first category, and similarly decreasing in
the opposite direction of the scale. If the scale orientation is opposite, then the definition
of membership and non-membership should be simply switched.

The middle point of the scale is then equally mirrored both in the membership and
non-membership scores, as

μA(i p) = νA(i p) = π̂

2
.

In this way, the indifference expressed by the respondent choosing i p corresponds to
equi-preference of categories, since π is an inverse indicator of heterogeneity. Then,
for each rating, the degrees of membership and non-membership are equally split
around the indifference point i p, by halving the weight of the uncertainty parameter.
Note that for distributions with low heterogeneity and thus with higher concentration,
one has that π → 1 and μA(i p) = νA(i p) → 1/2, as for the spline approach
recalled in Sect. 2.1. In view of the defuzzification procedure, the membership and
non-membership degrees are defined in such a way that the accuracy is lower for the
items affected by higher heterogeneity, regardless of the level of feeling. Indeed, for
increasing heterogeneity (that is, as π̂ → 0), from Definition 1 and (11) we have:

μA(r), νA(r) → 0, uA(r) → 1, a(r) → 0, r = lb + 1, . . . , ub − 1 ,

so that the residual fuzziness uA(r) increases over the accuracy a(r); accordingly, we
are let to negligible membership/non-membership values.

The usage of the empirical distribution function for a Fuzzy evaluation system is
also the key of the approach pursued in Zani et al. (2013), which accomplishes a
questionnaire analysis in a standard Fuzzy Sets (FS) framework, grounded solely on
the membership function:

μA(r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 1 ≤ r ≤ lb,

μA(r − 1) + F(r) − F(r − 1)

1 − F(lb)
, lb < r < ub,

1, ub ≤ r ≤ m.

(12)

In the forthcoming discussion, this classical FS method will be referred to as the
empirical Fuzzy system.

3.2 Scoring uncertainty

For the cub -Fuzzy evaluation system,we propose the IWAM (7) as aggregation index,
but with weights {wk} depending on the cub uncertainty parameter. This choice meets
the well-acknowledged recommendation to assign weights that are larger for the more
explanatory items, as inMarasini et al. (2015). Here, explanatory is meant as related to
accuracy in the assessment of the fuzzy trait and it is inversely related to uncertainty.
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Thus, the rationale of the cub -Fuzzy evaluation system is to penalize itemswith higher
estimated heterogeneity, them being less reliable and explanatory for the assessment
of membership and non-membership to A. In this regard, we shall consider the Fuzzy
proportion of uncertainty function (1):

g(Xk) = 1

n

n∑

j=1

u(k)
A (r j,k), for k = 1, . . . , K . (13)

and apply an inverse transform to impute low weight to more uncertain items:

wk = ln

(
1

g(Xk)

)/ K∑

l=1

ln

(
1

g(Xl)

)

, for k = 1, . . . , K (14)

Here the logarithm transform is taken only to prevent excessive values for very low
uncertainty. This weighting scheme has been already used in the Fuzzy Set literature
(that is, only with reference to membership functions) (Zani et al. 2012, 2013) to
assess the capabilities of each category r in expressing satisfaction across items:

μ̃A(r) =
K∑

k=1

wk μ
(k)
A (r) , r = 1, 2, . . . ,m. (15)

In that case, the weights have been based on the Fuzzy proportion of the achievement
of the target (in our case, respondents’ satisfaction):

g(Xk) = 1

n

n∑

j=1

μ
(k)
A (r j,k), for k = 1, . . . , K , (16)

for which the transformation (14) prevents from giving higher importance to the rare
features among subjects.

More generally, as we are considering that all items are collected on the same
ordinal scale, from Definition 2 with r replaced by r j,k, the proportion g(Xk) in (13)
has the following closed form.

Proposition 1 If π̂ (k) is the estimated cub uncertainty parameter of the k-th item, then

g(Xk) = (
1 − π̂ (k))

(
F (k)(u(k)

b − 1
) − F (k)(l(k)b

))
, for k = 1, . . . , K , (17)

where F (k)(·) is the empirical distribution function of ratings on the k-th item.

Note that F (k)
(
u(k)
b − 1

) − F (k)
(
l(k)b

)
is the percentage of respondents for which

l(k)b < r j,k < u(k)
b , thus whose fuzzy evaluation on the k-th item is not crisp.
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If l(k)b = 1 and u(k)
b = m, Eq. (17) simplifies in the cub -Fuzzy uncertainty function

ū(k):

ū(k) = 1

n

n∑

j=1

u(k)
A (r j,k) = (

1 − π̂ (k))
(
F (k)(m − 1) − F (k)(1)

)
(18)

when aggregating the k-th item among respondents. Then the Fuzzy uncertainty score
ū in (9) can be written as:

ū =
K∑

k=1

wk ū
(k) =

K∑

k=1

wk
(
1 − π̂ (k))

(
F (k)(m − 1

) − F (k)(1
))

.

In this sense, the cub uncertainty parameters are given a precise fuzzy interpretation
also at the aggregated level.

4 A case study

Fuzzymethods for questionnaire analysis are particularly appealing in evaluation stud-
ies. Motivated by this feature, we show how the cub -fuzzy proposal can be applied
on the assessment of satisfaction for the Orientation Services at University of Naples
Federico II. The survey was administered from 2002 to 2008 across all the 13 Faculties
and aimed at measuring the satisfaction towards the service2 across different dimen-
sions of the trait. On a balanced m = 7 point Likert scale: 1 = ‘extremely unsatisfied’,
2 = ‘very unsatisfied’, 3 = ‘unsatisfied’, 4 = ‘indifferent’, 5 = ‘satisfied’, 6 = ‘very
satisfied’, 7 = ‘extremely satisfied’, the following measurements were collected:

– satisfaction on the acquired information (informat);
– evaluation of the willingness of the staff (willingn);
– adequacy of time-table of opening hours (officeho);
– evaluation of the competence of the staff (compete);
– global satisfaction (global).

The present discussion will concern the data collected in 2002, consisting of n =
2179 observations. Motivations for our choice include the fact that the evaluation of
University courses, offices and institutions is a popular topic for fuzzy analysis; in
addition, the first available wave was chosen since these data allows us to discuss and
illustrate all the nuances of the proposal.

In the first part of the section, cubmodels are fitted to the data: the estimation
procedure takes into account the shelter effect, if significant. Then, the cub -Fuzzy
system introduced inSect. 3.1 is comparedwith the empirical and the spline approaches
recalled in Sects. 3.1 and 2 within the classical and IF settings, respectively.

2 Data are available at http://www.labstat.it/home/research/resources/cub-data-sets-2/.

123

http://www.labstat.it/home/research/resources/cub-data-sets-2/


200 E. Di Nardo, R. Simone

Table 1 Parameter estimates: cubmodel no shelter effect (standard errors in parentheses)

informat willingn officeho compete global

π̂ 0.794
(0.016)

0.857
(0.012)

0.680
(0.019)

0.802
(0.015)

0.868
(0.013)

ξ̂ 0.181
(0.005)

0.117
(0.004)

0.197
(0.006)

0.164
(0.005)

0.171
(0.004)

4.1 CUBmodels estimation

The ML estimates of cub parameters for the chosen data are summarized in Table 1.
Overall, there is a moderate level of uncertainty and an extreme positive feeling across
the items, the highest satisfaction being expressed for willingn (1− ξ̂ = 0.8833),
the lowest for officeho (1 − ξ̂ = 0.8029). However, there are certain items
for which uncertainty is not negligible and an evaluation system should properly
consider these differences. In particular, officeho is the item with the highest
estimated uncertainty (1 − π̂ = 0.3198), followed by informat and then by
compete.

Table 2 shows the estimation results when including shelter effects: globally, the
previous comments continue to hold, but uncertainty is disclosed in more details and
feeling estimates are corrected. In particular, notice that informat has a different
shelter category (c = 5) compared with all other items (for which c = 7). Despite the
shelter category is the same for the last four items, its effect is more prominent for
willingn (δ̂ = 0.194), associated also with the lowest weight of the Uniform distri-
bution (π̂2 = 0.123). Instead, even if significant, the shelter effect within global is
the weakest; moreover, this item corresponds to the strongest attitude towards a more
meditated choice, resulting in the highest level of accuracy (π̂1 = 0.828). For the sake
of brevity, statistical results on the model selection (based on the BIC criterion) are
skipped and are available on demand.

The rationale of the cub -Fuzzy evaluation system is to provide statistical mod-
els for rating data with some veracity analytics in the spirit of a fuzzy analysis of
questionnaire. Then, the proposal is not advanced to be a direct competitor of ordi-
nary techniques; nevertheless, it is worth to notice how its performances match with
outcomes of standard procedures.

In this respect, the first two components as obtained from a PCA are sufficient
for our purposes since they account for more than 80% of the total variabil-
ity (Fig. 1). Results confirm that item officeho plays a distinctive role in the
assessment of the latent satisfaction, thus it should be properly discriminated and
weighted.

Notice that Likert-scale categories are ordered measurements that can be thought
of as cutpoints of a latent continuum. Thus, it is not always adequate to fit a PCA or
Factor analysis directly on a data matrix like that from a rating survey, unless a proper
correlation is obtained. In this regard, polychoric correlation is a validated choice
especially when the number of categories is moderate.
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4.2 Classical FS: CUB-fuzzy versus empirical

Figure 2 plots themembership function of thecub -Fuzzy evaluation system (1) against
the empirical one (12) for each item.

For the cub -Fuzzy approach, the higher the value of π̂1 is, the faster the mem-
bership degrees increase moving from the indifference point to the maximum of the
scale. In addition, notice that the two methods behave quite differently, especially for
willingn and global having the lowest estimated heterogeneity (π̂2 = 0.123 and
π̂2 = 0.125, respectively): this indicates a more prominent attitude of the cub -Fuzzy
membership function to correctly discriminate among different levels of heterogeneity,
also when moderate.

In order to aggregate membership values, Table 3 shows the two systems of weights
{wk} employable in computing the aggregator index (15): we refer to (14) paired with
(13) and with (16) for the cub -Fuzzy model (dotted line) and for the empirical model
(solid line), respectively. For comparative purposes, normalized variables loadings
derived for the first principal component (PCA1) are also reported.

For the cub -Fuzzy evaluation system, even if at aggregated level results do not
substantially vary at aggregated level for different weights (see Sect. 4.4), it turns
out that weights based on (16) do not suitably penalize officeho and informat
having a weak importance due to the highest observed uncertainty among the items
(for example 1 − π̂1 = 0.398 for officeho in Table 2). Instead, for the weights
based on (13), the lowest value is attained exactly for officeho (w3 = 0.154).
Notice that willingn is assigned a higher weight than informat (w.r.t. the cub -
Fuzzy system of weights), though it shows a higher uncertainty and a lower feeling,
comparatively. This is explained by willingn having the most prominent shelter
effect at c = 7, indicating a strong tendency of the distribution to be concentrated at
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Fig. 2 Comparison of membership functions for the cub -Fuzzy model (solid line) versus the empirical
model (dashed line)
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Table 3 Weights systems

informat willingn officeho compete global

wk based on (16) 0.216 0.152 0.287 0.196 0.146

wk based on (13) 0.183 0.212 0.154 0.198 0.254

PCA1 0.209 0.201 0.138 0.216 0.236

higher categories. Instead, the shelter at c = 5 for informat acts by deflating the
weight of importance (to assess membership, non-membership, etc.) since it is closer
to the indifference point and thus tends to penalize a positive evaluation of satisfaction.

Figure 3 shows how the cub -Fuzzy system scales membership at aggregated level
more coherently when compared to the expressed global satisfaction. Specifically,
we have run both a cub -Fuzzy evaluation and an empirical system on the first 4 items,
omitting global satisfaction. Then, we have stratified the aggregated membership
values for the two fuzzy systems across increasing level of global satisfaction (by
choosingweights accordingly: the inverse fuzzy proportion of uncertainty for the cub -
Fuzzy proposal and the inverse fuzzy proportion ofmembership for the empirical one).
Then, read on the y-axis, it appears that the cub -Fuzzy proposal is more convincing
in aggregating the information withdrawn from the first four items if used as a proxy
of the global satisfaction. In other words, aggregated values for membership under the
cub -Fuzzy scheme are increasingly more consistent with increasing level of global
satisfaction.

4.3 IFS: CUB-fuzzy versus spline

Without any prior assessment of experts on specific values for the parameters, mem-
bership (5), fuzzy uncertainty (6) and non-membership function (2) will be equal for
all items, as shown in Table 4, where ε = 1, a = 1, b = m − 1 and θ = η have
been set to account for the balanced scale as recommended by Marasini et al. (2015).
In particular, in the following we have tested the cub -Fuzzy proposal against the
spline uncertainty with θ = η = 1 due to its interpretation as a risk measure: indeed,
in this case the spline uncertainty fuzzy function corresponds to the variance of a
Bernoulli random variable whose success trial (the membership to A) has probability
of occurrence set toμA(r). Dually, the fuzzy uncertainty prescribed by the cub -Fuzzy
system accounts for risk in terms of heterogeneity. In Fig. 4, such spline membership
and non-membership values are compared with those obtained with the cub -Fuzzy
proposal. Observe that the membership given in Definition 1 is more accurate and
naturally shaped to the data. What is constant over categories in the cub -Fuzzy model
is the Fuzzy uncertainty function in Definition 2 (that is 1 − π̂1 in Table 2). Indeed
1− π̂1 (equivalently, 1− π̂ when shelter effect is not significant) measures the overall
fuzziness, independently from the membership and non-membership degrees; dually,
π̂1 quantifies the level of accuracy of the Fuzzy evaluation system. This feature is only
partially accomplished by the spline method as the Fuzzy uncertainty function has
symmetric values around the indifference point, see Table 4. Notice that in general,
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Fig. 3 Boxplots of aggregated membership for increasing levels of global satisfaction: comparison
between the cub -Fuzzy (light grey) and Empirical system (dark grey)

Table 4 Spline fuzzy functions

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7

Membership degree 0 0.10 0.30 0.50 0.70 0.90 1

Non-membership degree 1 0.81 0.49 0.25 0.09 0.01 0

Uncertainty degree 0 0.09 0.21 0.25 0.21 0.09 0

the uncertainty function of an IF evaluation system is set in such a way that it attains
a maximum at the indifference category if available. Instead, we consider the uncer-
tainty as uniformly spread along the scale, so that it can be considered as a feature of
the item and not of a single category.

Comparisons between the two methods based, for example, on the composite indi-
cator (15) are meaningless since for the spline one μ̃A(r) = μA(r) = μ

(k)
A (r)

for all k. For this reason, we propose to aggregate the k-th item uniformly across
respondents, achieving a complete IFS evaluation system. More specifically, by keep-
ing the notation introduced in Sect. 3.2, for the membership function we compute
μ̄(k) = 1

n

∑n
j=1 μ

(k)
A (r j,k) both for the (linear) spline and the cub -Fuzzy evaluation

systems, see Table 5. The same is done for the non-membership functions as well as
the Fuzzy score and accuracy measures. As we see from Table 5, the spline approach
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Fig. 4 cub -Fuzzy and spline membership/non-membership functions

Table 5 Fuzzy functions aggregated per item

Function Method�Item: informat willingn officeho compete global

Membership cub -Fuzzy 0.651 0.743 0.571 0.681 0.752

Spline 0.780 0.853 0.733 0.797 0.814

Non-membership cub -Fuzzy 0.136 0.091 0.157 0.131 0.132

Spline 0.113 0.072 0.151 0.104 0.086

Fuzzy uncertainty cub -Fuzzy 0.212 0.166 0.272 0.188 0.116

Spline 0.107 0.075 0.116 0.099 0.100

Fuzzy score cub -Fuzzy 0.515 0.652 0.414 0.550 0.620

Spline 0.667 0.781 0.581 0.693 0.728

Fuzzy accuracy cub -Fuzzy 0.788 0.834 0.728 0.812 0.884

Spline 0.893 0.925 0.884 0.901 0.900

does not sufficiently discriminate the different levels of uncertainty among the items,
yielding to a narrow range for both the fuzzy accuracy and uncertainty. Conversely, the
cub -Fuzzy proposal offers a major flexibility in grading Fuzzy indicators according
to the observed uncertainty. In particular, we stress that the accuracy of the cub -
Fuzzy approach is penalized for items with higher global uncertainty in the sense of
cubmodels, while it increases for items corresponding to a weaker indeterminacy.
For instance, with reference to Table 2, the maximum estimated overall indeterminacy
corresponds to officeho (1 − π̂1 = 0.398), whereas the minimum corresponds
to global (1 − π̂1 = 0.172). As a result, these items coherently are assigned the
minimum and maximum levels of the accuracy, respectively, while the spline model
is more restrictive in accounting for this variability.

Figures 5 and 6 show how the cub -Fuzzy system scales -on the y axis- membership
at aggregated level in a comparable way as the linear spline conditional on increasing
scores for global satisfaction, whereas it is more adequate than the quadratic spline
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Fig. 5 Boxplots of aggregated membership for increasing levels of global satisfaction: comparison
between the cub -Fuzzy (light grey) and linear spline systems (dark grey)

system. Splinememberships have been aggregated with uniformweights across items.
Comparable results are obtained if normalized variable loadings derived from factor
analysis are considered.

Finally, the ultimate step of the Fuzzy evaluation procedure is to provide a measure
of the overall uncertainty by aggregating the functions given in Table 5 among items:
as example, for the membership function we compute μ̄ = ∑K

k=1 wkμ̄
(k) with μ̄(k)

given in Table 5 (first row); similarly, for all fuzzy functions. For the cub -Fuzzy
method we employ the weights (14) paired with (13). For the spline method, instead,
we shall consider uniform weights also across the items (Marasini et al. 2015). The
resulting Fuzzy composite aggregators are reported in Table 6.

Thus, we can conclude that the proposed evaluation system based on cubmodels
is safer in assigning fuzzy values, being designed to account for heterogeneity and
stylistic responses in the data. Nevertheless, it does not miss to provide a global
positive picture (in terms of membership and accuracy).

In conclusion, in order to disclose the different perspectives offered by the cub -
Fuzzy analysis of questionnaire, we combined a two-component PCA analysis with a
k-means clustering on the data-matrix according to a so-called tandem scheme (Arabie
andHubert 1994). Specifically, we compared the closeness of the derived classification
with that of a k-means algorithm applied to the IWAM aggregators (7): k = 5 was set
for the k-means algorithm to identify certainly unsatisfied (R = 1), fairly unsatisfied
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Fig. 6 Boxplots of aggregated membership for increasing levels of global satisfaction: comparison
between the cub -Fuzzy (light grey) and quadratic spline systems (dark grey)

Table 6 Fuzzy composite indicators (aggregation of items)

Weights Membership Non-membership Uncertainty Score Accuracy

cub -Fuzzy Log inverse of Fuzzy unc. 0.690 0.128 0.182 0.562 0.818

Spline Uniform weights 0.795 0.105 0.099 0.690 0.900

Table 7 Cohen’s κ: agreement between the classification obtained from k-means on the first two PCA
components and that obtained from k-means on membership and non-membership aggregators (7) for
different fuzzy methods

Lower Estimate Upper

cub -Fuzzy 0.45 0.49 0.53

Linear Spline 0.33 0.36 0.38

Quadratic Spline 0.18 0.21 0.24

(R = 2, 3), indifferent (R = 4), fairly satisfied (R = 5, 6), and certainly satisfied
(R = 7) respondents. Table 7 reports the Cohen’s κ measure to assess agreement
between the two corresponding classifications, along with lower and upper confidence
bounds:
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Results do not substantially vary if considering the polychoric correlation to run
PCA. Notice that fuzzy clustering has a precise meaning in the literature (Everitt et al.
2011), which is not involved in the present analysis: this perspective will be the subject
of future investigation.

4.4 Sensitivity analysis

A sketch of sensitivity analysis is here accomplished to validate the cub -Fuzzy pro-
posal against the other fuzzy alternatives considered.

First, read top to bottom, Figs. 7, 8 and 9 display membership and
non-membership functions for decreasing levels of heterogeneity and for right-tailed,
symmetric and left-tailed ratingdistributions generated fromvaryingcub distributions:
ξ = 0.8, ξ = 0.5, ξ = 0.1, respectively, and for each of them π = 0.2 (top),
π = 0.4, π = 0.6, π = 0.8 (bottom). Imagine that the distributions correspond to
measurements on a scale 1=“extremely dissatisfied” up to 7=“completely satisfied”.
Then Figs. 7, 8 and 9 correspond to overall dissatisfied, overall neutral and overall
satisfied respondents, respectively. It appears evident that the cub -Fuzzy proposal,
being naturally shaped to the data, is safer and more integrated with the observed
scores. In addition, for data with low heterogeneity (the bottom panels), it is globally
intermediate between the linear and quadratic splines. The price of estimation–which
can be promptly run by means of the R package ‘CUB’ (Iannario et al. 2018)–is com-
pensated with no need of prior choice for spline degrees and parameters, and with a
more flexible and versatile tool for uninformative circumstances.

Secondly,we assess distances between aggregated Intuitionistic Fuzzy sets obtained
with different weighting and fuzzy systems. Specifically, the (normalized) Hamming
distance between IFS sets is computed (Szmidt and Kacprzyk 2000). Briefly, if

B = {< x, μB(x), νB(x) > |x ∈ X}, C = {< x, μC (x), νC (x) > |x ∈ X}

are two IF evaluation systems defined for the universe of discourse X , then the (nor-
malized) Hamming distance between B and C is defined as:

dH (B,C) = 1

2n

n∑

i=1

(

|μB(xi ) − μC (xi )| + |νB(xi ) − νC (xi )| + |uB(xi ) − uC (xi )|
)

,

with n being the number of observations. Back to our case study, in order to support
the consistency of the cub -Fuzzy proposal, we will compute the distance between the
aggregated IWAM fuzzy sets (7) corresponding to different choices of the weighting
system. For l = 1, 2, letw(l) = {w(l)

1 , . . . , w
(l)
K } be two alternative choices for weights

for which:

μ̃
(l)
A (ri ) =

K∑

k=1

w
(l)
k μ

(k)
A (ri,k), ν̃

(l)
A (ri ) =

K∑

k=1

w
(l)
k ν

(k)
A (ri,k)
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Fig. 7 Comparison of membership and non-membership for right-tailed rating distributions (ξ = 0.8)
corresponding to decreasing levels of heterogeneity: π = 0.2 (top) up to π = 0.8 (bottom)

are the corresponding IWAM for membership and non-membership functions across
K items. Then, let:

B = {< ri , μ̃
(1)
A (ri ), ν̃

(l)
A (ri ) > |i = 1, . . . , n}

C = {< ri , μ̃
(2)
A (ri ), ν̃

(2)
A (ri ) > |i = 1, . . . , n}.

As reported inTable 8, the restrained values of the distance support the relative indif-
ference between the fuzzy proportion of uncertainty andmembership values according
to (14) for the cub -Fuzzy Proposal, and with weights derived from PCA-type pro-
cedures. Nevertheless, we acknowledge that weights based on the fuzzy proportion
of uncertainty are the most natural and always applicable choice for cub -Fuzzy sys-
tems, and that weights based on PCA-type are an acceptable option only if the first
component explains an appreciable amount of variability. In addition, some of the
cub -Fuzzy indicators are stable with respect to the reversion of the scale, that is for
samples m − r j,k + 1 with j = 1, . . . , n and k = 1, . . . , K . Indeed, the cub random
variable R is reversible: if R ∼ cub (π , ξ ) over the m categories, then m − R + 1 ∼
cub (π , 1−ξ ) (D’Elia and Piccolo 2005). If the scale is balanced and R ∼ cub (π, ξ),
with shelter at cmeasured by δ, thenm−R+1 ∼cub (π, 1−ξ ) with shelter atm−c+1
measured by δ as well. Due to this property, for reversed ratings the cub -Fuzzy accu-
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Fig. 8 Comparison of membership and non-membership for symmetric rating distributions (ξ = 0.5 for
decreasing levels of heterogeneity: π = 0.2 (top) up to π = 0.8 (bottom)

racy and uncertainty functions remain unchanged, differently from the membership
and non-membership degrees, being dependent on the distribution functions. Instead,
the spline Fuzzy functions would change only at an aggregated level. In addition, also
weights (14) paired with (13) are invariant, being directly related to cub uncertainty
parameters. Conversely, if paired with the Fuzzy proportion of membership degrees
(16), such weights would vary.
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Fig. 9 Comparison of membership and non-membership for left-tailed rating distributions (ξ = 0.1) for
decreasing levels of heterogeneity: π = 0.2 (top) up to π = 0.8 (bottom)

Table 8 Normalized Hamming
distance between IWAM
aggregators (7) of the
cub -Fuzzy system with
different weights

dH (B,C) w(2)

w(1) (14) with (16) PCA loadings Uniform

(14) with (13) 0.028 0.006 0.011

5 Comments and conclusions

The present contribution fosters the application of cubmixture models for ordinal
rating data to account for uncertainty of choices within a fuzzy analysis of question-
naires. The resulting cub -Fuzzy procedure is well-suited for broad applications since
it allows to deal with veracity of rating by means of the assessment of membership
and non-membership grades.

From the statistical modelling point of view, the proposal sheds new light on the
cub paradigm, conveying its vague definition of uncertainty into a precise frame.
From the point of view of fuzzy analysis, it roots membership and non-membership
assessments on the basis of sound statistical procedures, thus fuzzy functions gain
reliability. Moreover, the proposal is build in such a way that the data structures and
relations are preserved, and -when pertinent- results match with traditional methods.
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The proposal stems from the spline approach introduced in Marasini et al. (2015),
suitably adjusted with the cub uncertainty parameter to let the spline approach be
more insightful and freed of subjectivity of parameters choice. The methodology here
introduced meets also a classical proposal based on the empirical distribution function
(Cheli and Lemmi 1995; Zani et al. 2013), which is adjusted within a general IFS
framework. The procedure provides a refined tool to account for heterogeneity and
other forms of nuisances, asmeant by the rationale of cub uncertainty. In particular, the
cubmodel uncertainty 1−π is equal to the Fuzzy hesitancy level for each item, and the
accuracy function results to be more sensitive to different sources of indeterminacy as
heterogeneity and shelter effect (see Table 6). As a result, the cub uncertainty measure
is validated as an effective Fuzzy composite indicator.

Summarizing, the spline methods for fuzzy analysis of questionnaire is a valuable
methodology, whose main criticisms are the subjectivity of choices and the lack of a
statistical foundation, where diversity in scale-usages needs to be taken into account.
The cub -Fuzzy system overcomes these pitfalls by defining fuzzy functions anchored
to the empirical distribution functions and adjusted for uncertainty in the data. Encod-
ing the uncertainty degrees implies that the resulting cub -Fuzzy system is freed of
subjectivity of parameters values for spline functions, without the need of choosing
between a linear or a quadratic splines since the vagueness of responses induced by the
scale is automatically charged by the uncertainty parameter. In addition, it is grounded
on ML estimation and in this sense it is more robust. In the same vein, in order to let
the cub -Fuzzy analysis of questionnaire adhere to respondents’ subjectivity and not
to that of scholars and judges, the uncertainty parameter can be estimated on subjec-
tive basis (πi ) and linked to responses drivers (covariates Yi ) by means of a logistic
transform:

logi t(πi ) = β0 + Yi β.

Future developments in this direction will be adressed to take into account the Hesitant
Fuzzy Set framework too, as proposed in Marasini et al. (2015) and Torra (2010).
Nevertheless, it is worth to underline that the cub -fuzzy proposal can be enriched
by the specification of covariates to disclose response profiles, but it is valid per se,
conversely to some other traditional methods.

In conclusion, let us underline that the proposal does not advance a brand new
statistical model, rather it is tailored to boost the idea that any statistical model should
be prone to offer some veracity analytics of data. Traditional models are able to dis-
criminate sharply between satisfied and dissatisfied respondents, at the price of more
involved model-specifications and no measure of uncertainty (and, dually, no measure
of accuracy/reliability of ratings). Conversely, the proposal offers a multifaceted inter-
pretation of results, with both local modelling (as for cumulative and partial credit
models, for instance), and global assessments (feature that is inherited by cubmodels).
For instance, it allows discrimination of items in terms of their capabilities of iden-
tifying satisfied and unsatisfied respondents (and, in full generality, members and
not-members of latent classes). This advantage can be appreciated the more data are
heterogeneous.
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