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Abstract Missing data arise in many statistical analyses, due to faults in data acqui-
sition, and can have a significant effect on the conclusions that can be drawn from
the data. In environmental data, for example, a standard approach usually adopted by
the Environmental Protection Agencies to handle missing values is by deleting those
observations with incomplete information from the study, obtaining a massive under-
estimation of many indexes usually used for evaluating air quality. In multivariate time
series, moreover, it may happen that not only isolated values but also long sequences of
some of the time series’ components may miss. In such cases, it is quite impossible to
reconstruct the missing sequences basing on the serial dependence structure alone. In
this work, we propose a new procedure that aims to reconstruct the missing sequences
by exploiting the spatial correlation and the serial correlation of the multivariate time
series, simultaneously. The proposed procedure is based on a spatial-dynamic model
and imputes the missing values in the time series basing on a linear combination of
the neighbor contemporary observations and their lagged values. It is specifically ori-
ented to spatio-temporal data, although it is general enough to be applied to generic
stationary multivariate time-series. In this paper, the procedure has been applied to the
pollution data, where the problem of missing sequences is of serious concern, with
remarkably satisfactory performance.
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1 Introduction

In the last few decades, a considerable number of epidemiological studies estab-
lishes the link between air pollution and health (see, for example, Biggeri et al. 2002;
Raaschou-Nielsen et al. 2013), recognising air quality to be a fundamental issue for
human health. Among the pollutants, PM10 refers to the particles with diameters up to
10µm due to the emission produced by motor vehicles, industrial activities and other
natural sources. PM10 particles are so small that they can get into the lungs, potentially
causing severe health problems (see Aga et al. 2003), confirming the acute, adverse
effects ofPM10 onmortality. In 2013 the International Agency for Research on Cancer
and theWorldHealthOrganization designated airborne particulates aGroup 1 carcino-
gen. In response, the European Union has developed an extensive body of legislation
which establishes health-based standards and objectives for some pollutants in the air.
For example, in the air quality directive (2008/EC/50), the EU has set two limit values
for particulate matter (PM10) for the protection of human health: the PM10 daily mean
value may not exceed 50micrograms per cubic metre (µg/m3)more than 35 times in a
year and the PM10 annual mean value may not exceed 40 micrograms per cubic metre
(µg/m3). In this context, missing data, usually due to equipment failures or to errors in
measurements, represent themain problem to count the number of excesses of the fixed
limit and monitoring the air quality. The most common approach usually adopted by
the Environmental Protection Agencies to handle missing values is by deleting those
observations from the study, obtaining a massive underestimation of the number of
excesses of the admitted limit for PM10. In the literature, various techniques have been
proposed to impute missing values in environmental data (see, for example, Norazian
et al. 2008; Junninen et al. 2004). However, these methods perform well only when
the number of missing values is small (see, for example, Fitri et al. 2010). Moreover,
many models have been proposed in literature taking into account the spatio-temporal
dependence of PM10 located in near places (see, for example, Cameletti et al. 2011).
In particular, Cameletti et al. (2011) compare different hierarchical spatio-temporal
models differing from each other in how they model the residual detrended process
and in how the spatio-temporal correlation is treated. Regardless, the authors explicitly
observe that in the dataset they used for their comparisons the percentage of missing
data is less than 20% and they are not sequential.

In the more general contexts of multivariate time series, characterised by both serial
and cross-correlation, ignoring the missing values can lead to bias and error during
data mining. Nevertheless, it happens very frequently that the only procedures imple-
mented in the multivariate time series analysis to face missing values are a list-wise
deletion, single imputation (mean imputation, k-Nearest Neighbour imputation) or
multiple imputations (multivariate normal, multivariate imputation by chained equa-
tions). Although all of them do not account for the fact that variables are correlated and
that those relationships exist across time. Recently, some new approaches have been
proposed to fill this gap with clear evidence of substantial advantages compared with
the standard methods described above (see, in particular, Pollice and Lasinio 2009;
Liu and Molenaar 2014; Oehmcke et al. 2016 and Sect. 1.1 for a description of such
proposals). Mainly, the new approaches combine two different imputation methods
in separate stages (for example, k-NN and Fourier transform), so that the first one
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accounts for cross-correlation among variables and the second one deals with serial
correlation in univariate time series. Recently, in Calculli et al. (2015) the authors
proposed a multivariate hidden dynamic geostatistical model and maximum likeli-
hood parameter estimate using EM algorithm, able to handle with multiple variables
sampled at different monitoring networks and missing data, were provided.

In this paper we propose a new procedure for estimating (even long) missing
sequences in time series, focusing on an application to PM10 data. Our method uses an
approach based on the generalized spatial-dynamic autoregressive model. This model
was first proposed in Dou et al. (2016) and belongs to the family of spatial economet-
ric models (see Lee and Yu 2010b for an introduction and a survey of such kinds of
models). These models include, in the form of a weighted multivariate autoregression,
the distances among the considered locations (i.e., among the monitoring stations). In
this way, we can take into account spatial correlation in the data and estimate missing
sequences in PM10 for a station by looking at the values of PM10 in the near stations,
but also by looking at the previous lags of the same station and the neighbour stations.

The advantages of our imputation procedure compared with the alternative
approaches described in Sect. 1.1 are several. First of all, it takes into account both
the serial correlation and the spatial correlation simultaneously, in a single stage. Sec-
ondly, it does not depend on any tuning parameter (like, for example, the value k of
the Nearest Neighbor method) or user choice (like, for instance, the selection of the
method for the combination of results from multiple imputation methods). Moreover,
our approach is computationally feasible and scales up to high dimension of the mul-
tivariate time series, so that it can also be applied in those cases where the length of
the time series (= number of observations) is smaller than the dimension (= number
of variables/locations), contrary to what happens, for example, in Liu and Molenaar
(2014). The simulation study, presented in Sect. 4.2, shows that our imputation pro-
cedure has a good performance also when the percentage of missing values (or the
length of missing sequences) is very high, even for moderate sample sizes. Last but
not least, our imputation procedure also works in those cases where the whole line
(i.e., all observations at time t) or the entire column (i.e., all observations of location i)
of the dataset are missing. This latter is a very interesting feature almost never assured
by other imputation methods.

Thepaper is organised as follows. In the followingof this section,webrieflydescribe
the imputation techniques proposed in the literature for multivariate time series to
introduce our competitor. Section 2 describes the proposed imputation method, its
underlyingmodel and the estimationprocedure.Moreover, the theoretical justifications
for our proposal are presented in Sect. 2.4 and stated in Theorem 1, whose proof is
reported in the Appendix. In Sect. 3 an application to environmental data is presented
and discussed. In Sect. 4 a simulation experiment is performed to validate the method.
Some conclusions close the paper.
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1.1 Literature review for multivariate time series imputation

There are several methods proposed in the literature for the imputation of missing
values, and many of them are also implemented in R software packages. However,
very few approaches are suitable for multivariate time series.

In the context of PM10 concentration, in Pollice and Lasinio (2009) an imputation
technique based on linear spatial regression is used, where no spatial correlation struc-
ture is assumed for the imputed data, all the stations being considered equivalent in
the linear predictor, presenting some problems in the case of massive datasets or high
dimensionality.

In Oehmcke et al. (2016) an algorithm was proposed to create an ensemble of mod-
els based on weighted k-Nearest Neighbours imputation with Dynamic TimeWarping
as distance measurement with a linear interpolation preprocessing step. This ensemble
creates training problems with multivariate data that the authors solve with a prepro-
cessing step, normalising distances, applying correlation weighting and penalising
gaps, penalising this preprocessing whenever values are consecutively missing. The
ensemble ensures diversity among individual models with diversity methods such as
different penalty strength. Apparently, in this way, the serial and spatial correlations
are considered in two different steps, dealing with some inefficiencies with a not
computationally feasible algorithm.

Finally, in Liu and Molenaar (2014) the authors propose an imputation method
based on vector autoregressive models, called iVAR. They show through a simulation
study that theirmethod produces better estimates compared to the standard approaches,
thanks to the autocorrelation structure captured by VAR. However, they also highlight
several limitations of the procedure. Above all, the difficulty to handle large datasets,
since VAR models are affected by the curse of dimensionality problem.

The most popular R packages available on the CRAN are, among others,
AmeliaII (Honaker et al. 2011), mice (Buuren and Groothuis-Oudshoorn 2011),
VIM (Kowarik and Templ 2016), missMDA (Josse and Husson 2016) and imputeTS
(Moritz et al. 2017). Among these, the only ones that give direct support for longitudi-
nal data are the packages imputeTS (Moritz et al. 2017) and AmeliaII (Honaker
et al. 2011).

The imputeTS package can handle with univariate time series imputation and
include multiple imputation algorithms. There are also other packages that deal with
univariate time series imputation (see Moritz et al. 2017 for a list). However, the
common feature of all these packages is that they only rely on univariate time depen-
dencies to impute the missing values. As a consequence, they cannot reconstruct long
sequences of missing values and, therefore, cannot be considered as our competitors.

The AmeliaII package is designed to impute cross-sectional data and it also
considers the case of longitudinal data. The imputation model in Amelia assumes that
the complete data (that is, both observed and unobserved) are multivariate normal. It
draws imputations of the missing values using a bootstrapping approach, the EMB
(expectation-maximization with bootstrapping) algorithm. To deal with time series,
AmeliaII builds a general model of patterns within variables across time by creating
a sequence of polynomials of the time index, up to the user-defined k-th order, (k ≤ 3).
If cross-sectional units are specified, these polynomials can be interacted with the
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cross-section unit to allow the patterns over time to vary between cross-sectional
units. Moreover, to improve multivariate time-series imputation, AmeliaII can also
include lags and leads of specific variables into the imputation model. So, it can
also reconstruct sequences of missing values and, therefore, it can be considered as a
competitor of our procedure. We will use the AmeliaII method in the application
and the simulation study for a comparison with our approach.

2 The proposed method for the imputation of missing values and
missing sequences

2.1 The model

Our imputation method is model based. We use a spatio-temporal model for PM10
time series, intended to manage a network of near monitoring stations.

Let us consider a multivariate stationary process {yt } of order p, where the vector
yt collects the observations at time t from p different locations (=stations). The gen-
eralized Spatial Dynamic Panel Data model (G-SDPD) first introduced in Dou et al.
(2016) is

yt = μ + D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + εt , (1)

where μ is a constant vector (connected to the mean value of the process) and the
errors εt are serially uncorrelated, have zeromean value andmay show cross-sectional
correlation and heteroscedasticity, so they generally have full variance/covariance
matrix Σε, for all t . The matrices D(λ j ) are diagonal, for j = 0, 1, 2, and the vectors
λ j collects the parameters λ j i for i = 1, . . . , p and j = 0, 1, 2.

Model (1) belongs to the category of econometric spatialmodels born by the seminal
idea of Anselin (1988). They are based on the presence of a spatial matrix W which
measures the spatial correlation among the p components of the multivariate time
series. This matrix has zero main diagonal and it is generally assumed known. In
the fundamental idea of econometric spatial modelling, the matrix W was related to
“proximity in space” between the single components of the time series, and therefore
it was derived by the inverse of some physical distance among locations. However,
the concept of space may also be intended in a wider sense and it can be measured
by some association or correlation distance among the components of the multivariate
time series. In our real data application, we will consider both the approaches.

The G-SDPD model in (1) is characterized by the sum of three terms (overlooking
the intercept for brevity) : (i) the spatial component, driven bymatrixW and the vector
parameter λ0, which captures spatial effects in the data; (ii) the dynamic component,
driven by the vector parameter λ1, which takes into account the dependence on past
observations; and (iii) the spatial–dynamic component, driven by W and λ2, which
considers spatial effects from past observations. For the estimation of the parameters
λ j , in Dou et al. (2016) the authors propose an innovative procedure based on the
combination of the least squares’method and theYule–Walker approach. The appeal of
this procedure is that the estimators of the λ j coefficients can bewritten in closed form,
contrary to most of the alternative estimators proposed in the spatial econometrics
literature (see Lee and Yu 2010b and references therein). This novel approach allows
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the estimation procedure to be fast and easy to implement. The details will be shown
in Sect. 2.2.

2.2 Estimation of model parameters

In the sequel, we assume that y1, . . . , yT are realizations from the stationary process
defined by (1). A natural estimator for the mean is ȳ = T−1 ∑

1≤t≤T yt . At this stage
we assume μ = 0 in (1). In practice, we should centre the data first, i.e. replace yt by
yt − ȳ.

Having a process with mean zero, we denote with Σ j = Cov(yt , yt− j ) =
E(yty′

t− j ) the autocovariance matrix of the process at lag j , where the prime sub-
script denotes the transpose operator.

The parameters of model (1) can be estimated following Dou et al. (2016). In
particular, assuming that the process is stationary, from (1) we derive the Yule–Walker
equation system

(I − D(λ0)W)Σ1 = (D(λ1) + D(λ2)W)Σ0,

where I is the identity matrix of order p. The i-th row of the above multivariate
equation system is

(e′
i − λ0iw′

i )Σ1 = (λ1ie′
i + λ2iw′

i )Σ0, i = 1, . . . , p, (2)

wherewi is the i-th row vector ofW and ei is the unit vector with the i-th element equal
to 1. Note that (2), for a given i , is a system of p linear equations with three unknown
parameters, λ0i , λ1i and λ2i . Replacing Σ1 and Σ0 by the sample (auto)covariance
matrices

Σ̂1 = 1

T

T−1∑

t=1

yt+1y′
t and Σ̂0 = 1

T

T∑

t=1

yty′
t ,

the vector (λ0i , λ1i , λ2i )
′ is estimated by the least squares method, i.e. to solve the

minimization problem

min
λ0i ,λ1i ,λ2i

‖Σ̂ ′
1(ei − λ0iwi ) − Σ̂0(λ1iei + λ2iwi )‖22,

where ‖ · ‖2 denotes the Euclidean norm. The resulting generalized Yule–Walker
estimator can be written in closed form:

(̂λ0i , λ̂1i , λ̂2i )
′ = (X̂′

i X̂i )
−1X̂′

i Ŷi , i = 1, 2, . . . , p, (3)

where X̂i =
(
Σ̂

′
1wi , Σ̂0ei , Σ̂0wi

)
and Ŷi = Σ̂

′
1ei .
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2.3 The novel iterative imputation procedure

We assume that the time series has (sequences of) missing values at some locations
and the goal of this section is to propose an imputation procedure for such values.
We also assume that missing values happen at random, in the sense that they occur
independently on their (unobserved) levels and independently on the other values in
the multivariate time series.

The proposed method consists of the prediction of the missing values basing on
a linear interpolation of the neighbor contemporary observations and their lagged
values. In such a way, we simultaneously take into account the cross-correlation and
the serial correlation among the observations. The weights of the interpolation are
given by the strength of the spatial correlation among locations. Then, the procedure
runs in recursive steps of substitution/estimation of missing values, until some form
of convergence is reached.

In this section, we assume that the observed multivariate time series is a realisation
of a process as in (1), with possibly non-zero intercept μ.

Let δt = (δt1, . . . , δtp) be a vector of zeroes/ones that identifies all the missing
values in the observed vector yt , so that δti = 0 if the observation yti is missing,
otherwise it is δti = 1.

The procedure starts, at iteration 0, by initializing the mean centered vector ỹ(0)
t as

ỹ(0)
t = δt ◦

(
yt − ȳ(0)

)
, t = 1, . . . , T, with ȳ(0) =

∑T
t=1 δt ◦ yt
∑T

t=1 δt
, (4)

where the operator ◦ denotes the Hadamard product (which substantially implies
replacing the missing values with zero) and the ratio between the two vectors in the
formula of ȳ(0) is made componentwise.

Then, the generic iteration s of the procedure, with s ≥ 1, requires that:

(a) we estimate (̂λ
(s−1)
0 , λ̂

(s−1)
1 , λ̂

(s−1)
2 ) as explained in Sect. 2.2, but using the centered

data {̃y(s−1)
1 , . . . , ỹ(s−1)

T };
(b) we compute, for t = 1, . . . , T ,

ŷ(s)
t = D

(
λ̂

(s−1)
0

)
Wỹ(s−1)

t + D
(
λ̂

(s−1)
1

)
ỹ(s−1)
t−1 + D

(
λ̂

(s−1)
2

)
Wỹ(s−1)

t−1

ȳ(s) = 1

T

T∑

t=1

(
δt ◦ yt + (1 − δt ) ◦ (̂y(s)

t + ȳ(s−1))
)

ỹ(s)
t = δt ◦ (yt − ȳ(s)) + (1 − δt ) ◦ ŷ(s)

t , (5)

where 1 is a vector of ones. We iterate steps (a) and (b) with increasing s = 1, 2, . . .,
until

‖̃y(s)
t − ỹ(s−1)

t ‖22 ≤ γ (6)

with γ sufficiently small. At the end of the procedure, the reconstructed multivariate
time series is given by ỹ(s)

t + ȳ(s), t = 1, 2, . . . , T, where the original missing data
have been replaced by the estimated values.
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Remark 1 Note that the mean vector used to center the data is initially computed with
the observed values alone, but then it is updated at each iteration and computed using
the whole series, including the imputed values [compare the formula of ȳ(0) in (4) with
the formula in (5)]. Similarly and simultaneously, the sample covariance matrices �̂0
and �̂1 are updated at each iteration and used to derive new estimations of the spatial
coefficients and more precise estimations of the missing values.

2.4 Theoretical foundations

Let denote with α the proportion of missing values, defined as

α = 1

T p

T∑

t=1

‖1 − δt‖22. (7)

The following assumptions are required for the consistency of the imputation proce-
dure:

A1 The spatial weight matrix W has zero main diagonal elements; moreover, matrix
S(λ0) = (I − D(λ0)W) is invertible.

A2 The disturbance εt satisfiesCov(yt−1, εt ) = 0. Moreover, the process yt in model
(1) is strictly stationary and α-mixing, with the mixing coefficients satisfying
condition A2(c) of Dou et al. (2016) (there you can also find a definition for the
α-mixing coefficients).

A3 The rank of matrix (Σ ′
1wi ,Σ0ei ,Σ0wi ) is equal to 3, for all i .

These assumptions guarantee the validity of Theorem 1 of Dou et al. (2016), which
assures the consistency of the estimator (3), so justifying step (a) of the iterative
procedure in Sect. 2.3. However, we must also prove that in presence of missing
values the difference in (6) tends to zero as the number of iterations goes to infinity,
s → ∞, so that the algorithm reaches a stable solution. The latter is assured by the
following assumption and next Theorem 1 (shown in the Appendix).

A4 Missing values occur at random, independently of the process level. Moreover, the
spatial coefficients are such that ‖D(λ0)W‖2 + ‖D(λ1) + D(λ2)W‖2 < 1.

Theorem 1 Under the assumptions A1–A4, for s → ∞ the difference in (6) goes to
zero and the iterative imputation procedure converges to a unique solution, for any α

and T . Such a solution converges in probability to the true limit y∗
t as long as T → ∞.

Remark 2 As clear from the proof of Theorem 1 in the Appendix, the last part of
Assumption A4 is only a sufficient condition necessary to guarantee the convergence
of the iterative algorithm to a stable solution under any fixed T . It could be relaxed
if one considers the exact convergence rates of all the stochastic limits as a function
of the percentage of missing values, α, for T → ∞. However, the evaluation of such
rates goes beyond the aims of this paper.

By assumption A1, we can formulate model (1) in the following reduced form

yt = μ∗ + A∗yt−1 + ε∗
t , (8)
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whereμ∗ = [I−D(λ0)W]−1μ, the coefficientmatrix isA∗ = [I−D(λ0)W]−1[D(λ1)

+ D(λ2)W] and the error process is ε∗
t = [I − D(λ0)W]−1εt . Given the (8), one

can verify the stationarity assumptions by checking the eigenvalues of matrix A∗.
Moreover, since the model can be seen as a particular VAR(1) process, it is easy
to derive the link between the autocovariance matrix Σ j and the variance-covariace
matrix of the error process Σε. It is given by

Σ j =
∞∑

i=0

(A∗) j+i [I − D(λ0)W]−1Σε[I − D(λ0)W]−1′(A∗′)i , j = 0, 1.

Of course, the above expression becomes simpler if one assumes a scalar variance-
covariance matrix for the error process, i.e. Σε = σεI. However, note that a full
variance-covariance matrix Σε allows for other sources of correlation in the data that
are not captured and explained by the spatial matrix W, without the necessity of
including other regressors in the model (as instead is made in the other SDPD models
that assumes a scalar error variance, as in Lee and Yu 2010a, b).

3 Application to environmental data

In our analysis, we consider daily PM10 data (in µg/m3) from 1 January 2015 to 19
October 2016 (658 days) by gravimetric instruments at 24 sites in Piemonte. Piemonte
is an Italian region in the western part of the Po valley and surrounded on three sides by
the Alps. Data were provided from the website of Agenzia Regionale per la Protezione
Ambientale (ARPA) Piemonte http://www.arpa.piemonte.gov.it. Data are shown in
Fig. 1. The red points indicate the missing values showing the presence of a lot of
missing sequences in the time series. For this dataset, we assume that missing values
occur at random, meaning that they occur independently on their (unobserved) values.
The presence of a spatial correlation between the considered time series is clear, in the
sense that high/low values of PM10 concentration are in common between the stations
and the same for high/low variability.

The names of the sites are reported in Table1, together with the number and the
corresponding percentage of missing values for each station, ranging from 0% to 34%.

In order to impute the missing values and missing sequences by means of our
procedure, we use two different spatial matrices, denoted asW1 andW2. For the first
one, W1, we take a normalized sample correlation matrix of yt , i.e. we let wi j be
the sample correlation between the i-th and j-th locations for i 
= j , and wi i = 0
for i = 1, . . . , p, and then replace wi j by wi j/

∑p
k=1 |wk j |. For the second spatial

matrix, W2, we consider wi j = 1/(1 + di j ) where di j is the geographical distance
between the i-th and j-th stations for i 
= j , and wi i = 0 for i = 1, . . . , p, and then
we row-normalize the matrix as before.

In all the runs of our procedure, here and in the simulation study, we set the max-
imum number of iterations to Niter = 100 which determines a convergence value of
δ = O(10−10).

Our missing data imputation was compared regarding performance with the one
implemented in the AmeliaII imputation procedure as described in Sect. 1.1. For it,
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Fig. 1 Plots of the 24 time series for PM10 data, observed daily from January 2015 to October 2016 at the
Italian stations listed in Table 3. Red points indicate missing values (color figure online)

we always consider a polynomial path of order k = 3 andwe also add the lagged values
and leads in the imputation model. In a view to do this, in the command amelia()
we use the argumentsts=“time”,cs=“location”,lags=“serie”,leads=“serie” and
polytime=3, where “time” is the name of the covariate representing the time index,
“location” is the name of the covariate representing the cross-section index, while
“serie” contains the data.

In Fig. 2, as an illustrative example of how our procedure works, we consider the
case of Torino Grassi (i = 19), in which the highest percentage of missing values is
observed (34.04%), at the first step of the iterative procedure.On the top, the scatter plot
of y19 t against the spatial regressorwT

i yt , the dynamic regressor yi,t−1 and the spatial-
dynamic regressor wT

i yt−1 are reported on the left, center and right, respectively. All
the values have been mean-centered and the missing values have been replaced by
the mean value, therefore they are concentrated on the x-axis. The three plots on the
bottom show the time-plots of the estimated spatial signal (dotted red line, on the left
panel), the estimated dynamic signal (dotted blue line, in the center) and the estimated
spatial-dynamic signal (dotted green line, on the right panel), which are superimposed
on the observed time series (black line). The dashed horizontal line shows the EU
threshold. Note how the estimated dynamic signal (blue line) is not able to reconstruct
the missing sequences at the first step. In Fig. 3, the case of Torino Grassi is shown at
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Fig. 2 Results for Torino-Grassi station (i.e., i = 19), at the first step of the procedure, using W1. The
three plots on the top show the scatter-plots of the PM10 data yit (after centering around the mean) against
the spatial regressorwT

i yt , the dynamic regressor yi,t−1 and the spatial-dynamic regressorwT
i yt−1 (on the

left, center and right, respectively). The missing values have been replaced by the mean. On the bottom, the
time-plots of the estimated spatial signal (dotted red line, on the left panel), the estimated dynamic signal
(dotted blue line, in the center) and the estimated spatial-dynamic signal (dotted green line, on the right
panel), are superimposed on the observed time series (black line). The dashed horizontal line shows the EU
threshold (color figure online)

the last step of our imputation procedure. At this step, the missing values have been
replaced by the estimated values. Therefore, also the estimated dynamic signal (blue
dotted line) is entirely defined. Finally, in Fig. 4 the reconstructed time series of Torino
Grassi is plotted. It is obtained simply as the sum of all the estimated components of
Fig. 3, i.e. the pure spatial signal (red curve), the pure dynamic signal (blue curve), the
spatial-dynamic signal (green curve) and the mean. The solid horizontal line denotes
the mean value of the time series while the dashed red line is the upper threshold for
the PM10 set by the European Commission (50µg/m3).

Moreover, the 2008/50/EC directive states that the threshold 50µg/m3 can be
exceeded no more than 35 days a year. So it becomes interesting to estimate the mean
number of days per year of exceedances the legal limit. In Table 2 this mean number
is calculated (i) based on the original data in which missing values are present; (ii)
based on the reconstructed time series in which the proposed method is implemented
by using the spatial matrix W1 and (iii) basing on the reconstructed series using the
spatial matrixW2. The number of surplus with respect to the legal limit of 35 times per
year is also indicated in all the cases. Clearly, by using the original data, the number of
exceedances is often heavily underestimated (see Torino Grassi and Tortona Carbone
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Fig. 3 As in Fig. 2, for the last step of the iterative procedure (color figure online)

1/15 3/15 5/15 7/15 9/15 11/15 1/16 3/16 5/16 7/16 9/16

Fig. 4 Final output of our iterative procedure for the Torino-Grassi station. The dotted segments are the
missing sequences that have been reconstructed by our imputation procedure. The solid horizontal line
denotes the mean value of the time series while the dashed red line is the upper threshold for the PM10 set
by the European Commission (color figure online)
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Table 2 Number of days when the PM10 level exceeds 50µg/m3, for each station, during the year

Stations Number of days exceeding the threshold

Original data Fitted with W1 Fitted with W2

Days Surplus Days Surplus Days Surplus

1 Alba-Tanaro 34.95 37.17 (+2) 37.17 (+2)

2 Alessandria-DAnnunzio 62.13 (+27) 67.67 (+33) 67.67 (+33)

3 ArquataScrivia-Minzoni 30.51 46.6 (+12) 46.6 (+12)

4 Asti-Baussano 65.46 (+30) 65.46 (+30) 65.46 (+30)

5 Biella-Sturzo 15.53 16.64 16.64

6 BorgaroTorinese-Caduti 51.59 (+17) 55.47 (+20) 55.47 (+20)

7 Borgomanero-Molli 19.41 21.08 21.08

8 Borgosesia-Tonella 19.41 21.08 21.08

9 Carmagnola-IMaggio 76 (+41) 80.99 (+46) 80.99 (+46)

10 CasaleMonferrato-Castello 47.71 (+13) 48.26 (+13) 48.26 (+13)

11 Cerano-Bagno 51.59 (+17) 52.14 (+17) 52.14 (+17)

12 Cossato-Pace 26.07 26.63 26.63

13 Cuneo-Alpini 13.31 13.87 13.87

14 Druento-LaMandria 18.31 18.31 18.31

15 Novara-Verdi 37.17 (+2) 43.82 (+9) 43.82 (+9)

16 NoviLigure-Gobetti 33.28 41.05 (+6) 39.94 (+5)

17 Pinerolo-Alpini 8.88 10.54 11.09

18 Torino-Consolata 68.23 (+33) 72.11 (+37) 72.11 (+37)

19 Torino-Grassi 62.13 (+27) 91.53 (+57) 91.53 (+57)

20 Torino-Lingotto 59.91 (+25) 65.46 (+30) 65.46 (+30)

21 Torino-Rebaudengo 72.11 (+37) 82.65 (+48) 82.65 (+48)

22 Torino-Rubino 59.91 (+25) 63.79 (+29) 63.79 (+29)

23 Tortona-Carbone 39.94 (+5) 59.35 (+24) 58.8 (+24)

24 Vercelli-CONI 39.38 (+4) 41.6 (+7) 41.6 (+7)

Such a number should be less than 35 in a year. In brackets, the number of additional days exceeding
the limit of 35, calculated (i) basing on the original data (i.e. ignoring the missing values), (ii) basing on
the reconstructed series using our iterative procedure and the spatial matrix W1 and (iii) basing on the
reconstructed series using the spatial matrix W2

in which the number of missing values is higher). Moreover, the number of surpluses
estimated using the matrix W1 and W2 are in accordance in almost all the cases,
showing that the covariance matrix is in accordance with the geographical distances.

4 Validating the procedure

To validate our procedure we evaluate the performance of our imputation technique
against Amelia package on different sets of data: (1) PM10 concentrations, in which
we randomly remove some observed data, as described in the next subsection; (2)
some simulated data, both with zero and with non-zero mean value, as described in
the last two subsections.
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Fig. 5 From PM10 data, 50 observed values were removed and considered as missing (chosen randomly
in the dataset, among which 30 as a single missing sequence). Then, all the missing values (original +
simulated) have been imputed by using our procedure and by using the AmeliaII imputation procedure.
The boxplots show the distribution of the imputation error for the 50 simulated missing values. The first
one on the left shows our results using the spatial matrix W1, while the second one shows our results
using the spatial matrixW2. The boxplot on the right summarises the results obtained with the AmeliaII
imputation procedure, by using a local polynomial of order k = 3 and adding the (first order) lagged values
of the series

4.1 Some performance indicators with PM10 data

FromPM10 data, 50 observed values were removed and considered asmissing (chosen
randomly in the dataset, among which 30 as a single missing sequence). Then, all the
missing values (original and simulated) have been imputed by using our procedure
and by using the AmeliaII imputation procedure. The imputation error have been
calculated, only for the simulated missing values, as

eit = yit − ỹi t , (9)

where yit is the true value and ỹi t is the estimated value. The boxplots in Fig. 5 shows
the distribution of the imputation error for the 50 simulated missing values. In the first
case on the left, our procedure has been implemented using the spatialmatrixW1 while
the second boxplot in the centre is based on the spatial matrixW2. In the third boxplot
on the right, the AmeliaII imputation procedure was applied considering a local
polynomial of order k = 3 and adding the lags and leads of the series. Our imputation
method produces a distribution of the imputation error with a lower variability with
respect to AmeliaII, and the performance is substantially the same with the two spatial
matrices W1 and W2. Note that such a lower variability of our imputation procedure
is also confirmed by the simulation study reported in Sects. 4.2 and 4.3. We explicitly
observe that the boxplot for the Amelia procedure shows a bias probably due to the
difficulty of correctly estimating the truemean because of themanymissing sequences
in the dataset (this difficulty is also confirmed by the simulation results in Sect. 4.3.

4.2 Performance with synthetic data with zero mean value

To further test the new imputation procedure, in this section we present the results
of a Monte Carlo simulation study. We consider a case with p = 30 locations and
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T = (50, 100, 500, 1000) observations. The spatial matrix W1 has been randomly
generated as a full rank symmetric matrix and has been row-normalized. The param-
eters of model (1) have been randomly generated in the interval [−0.6, 0.6], assuring
that the stationarity condition of the model is guaranteed. Assumption A4 is not sat-
isfied for the simulated model, since ‖D(λ0)W1‖2 + ‖D(λ1) + D(λ2)W1)‖2 ≈ 5.
In such a way, we show how robust the imputation procedure is against violation of
this assumption (remember that A4 is only a sufficient condition). The error com-
ponent εt has been generated from a multivariate normal distribution, with mean
vector zero and diagonal variance-covariance matrix, with heteroscedastic variances
(σ 2

1 , . . . , σ 2
p), where the standard deviations have been generated randomly from a

Uniform distribution U (0.5; 1.5).
In the first part of the simulation study, we assume μ = 0 in the model (1).
We simulated N = 400 replications of the model and, for each one, we removed

50 values and considered them as missing values. Of course, we kept a record of the
true values. In particular, we simulated a missing sequence of length 30 for location 2
(i.e., the first 30 values of this location have been removed and considered as missing).
The other 20 missing values have been generated randomly at other locations. Let M
denote the index set of all themissing values, so that {yit ,∀i, t ∈ M} are all considered
missing.

For each Monte Carlo replication, indexed by r = 1, . . . , N , the imputation error
have been calculated as in (9)

e(r)
i t = yit − ỹ(r)

i t , ∀i, t ∈ M,

where yit is the true value (that has been removed from data and not used for the
estimations) and ỹ(r)

i t is the estimated value. In the same way, we also derive the impu-

tation error for the AmeliaII procedure. Note that e(r)
i t also represents an estimation

of the error component εi t of model (1). Remembering this, we derive the average
estimation error and the average squared error as follows,

AEit = 1

N

N∑

r=1

(
yit − ỹ(r)

i t

)
, (10)

ASEit =
√
√
√
√ 1

N

N∑

r=1

(
yit − ỹ(r)

i t

)2
, ∀i, t ∈ M (11)

and compare them with the true values E(εi t ) = 0 and sd(εi t ) = σεi , respectively.
Figure 6 shows the estimation error for the missing data for increasing time series
length (T = 50 on the left side, T = 100 on the center and T = 500 on the right
side). The x-axis of the plots summarises the 50 missing values, and the x-labels show
the index of the location where the missing values have been simulated. As explained
above, the first 30 missing values are sequentially generated from location 2, so they
represent amissing sequence, whereas the last 20 are isolatedmissing values occurring
at other locations.
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Fig. 6 Using the synthetic data of Sect. 4.2, the plots evaluate the estimation error for the missing data
when the length of the time series is T = 50, 100, 500, respectively. The x-axis summarizes the 50 missing
values and the x-labels show the number of the location where the missing values have been generated. The
first 30 missing values are sequentially generated from location 2, so they represent a missing sequence,
whereas the last 20 are isolated missing values occurring at other locations. The red dashed bands represent
the interval 0±σεi , showing the true variability of the error component for those locations. The solid black
line ismean(yit − ỹi t ), while the dashed black bands represent the intervalmean(yit − ỹi t )±sd(yit − ỹi t ),
where the mean and sd operators are calculated using the formula (10) and (11), respectively, and ỹi t are
estimated using our approach. The solid blue line ismean(yit − ŷi t ), while the dotted blue bands represent
the intervalmean(yit − ŷi t )± sd(yit − ŷi t ), where ŷi t are estimated using the package AmeliaII. When
T increases, the blue and black bands should tend to be equal to the red ones. The three plots on the top
consider the case when the spatial matrix is W1 whereas the three plots on the bottom consider the case
when the spatial matrix is W2 (color figure online)

The red dashed bands in Fig. 6 represent the interval 0±σεi , for different values of
i , showing the true variability of the heteroscedastic error component εi t (note that for
the missing sequence, i.e. the first 30 points, the true variability is constant because
the location is the same). The solid black line is mean(yit − ỹi t ), while the dashed
black bands represent the intervalmean(yit − ỹi t )±sd(yit − ỹi t ), where themean and
sd operators are calculated using the formula (10) and (11), respectively, and ỹi t are
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estimated using our approach. Finally, the solid blue line ismean(yit − ŷi t ), while the
dotted blue bands represent the intervalmean(yit − ŷi t )± sd(yit − ŷi t ), where ŷi t are
estimated using the package AmeliaII. Note that, when T increases from 50 to 500
(from the left to the right side of the figure), the blue and black bands should tend to
be equal to the red ones, as expected for the consistency of the procedures. This latter
is true for our procedure (black dashed bands) since the variance is very soon close
to the true value. On the other side, for the AmeliaII procedure (blue dotted bands),
the variance of the imputation error is higher, and the convergence to the true value
appears to bemuch slower. Concerning bias, both themethods seem to be substantially
unbiased (as shown by the lines along the x-axis).

Moreover, to show the robustness of our imputation procedure when the spatial
matrix W1 is not given, we derive the imputation errors using the spatial matrix W2,
the row-normalized sample correlation matrix, as in Sect. 4. Note that data have still
been simulated using matrixW1, the true spatial matrix, but then the estimations have
been derived using matrixW2, which is the sample correlation matrix. In such a way,
we analyse the robustness of the results when the true spatial matrix is unknown and,
therefore, replacedwith the estimated sample correlationmatrix. The results are shown
in the three plots on the bottom of Fig. 6. The performance is equivalent to the case
where the spatial matrix is known.

Finally, we analyse the performance of the imputation procedures for different
percentages of missing values in the dataset. Tables3 and 4 show the results. The first
one reports the mean (and standard deviations in brackets) of the standardized root
mean square error for the estimated missing values, i.e. the mean value (and standard
deviations) of ASEit/σεi calculated over i, t ∈ M , using our imputation procedure
and the spatial matricesW1 andW2 (true and estimated spatial matrices, respectively)
and using the Amelia procedure. The data are simulated as before, but with different
percentages of missing values. In particular, over the total number of observations
of the multivariate time series, T × p, the 2%, 5%, . . . , 50% are randomly chosen
and considered as missing. For example, there are 750 missing values when T = 50,
p = 30 and the percentage is 50%. Among these, we always simulate a sequence
of missing values which is long the 2%, 5%, . . . , 50% of the time series length T ,
respectively. For example, when the time series length is T = 100 and the percentage
is 50%, the missing sequence includes 50 sequential values.

The results in Table3 confirm the better performance of our imputation procedure
compared with Amelia. In fact, our procedure is consistent since the averages, and
the standard deviations of the standardised root mean square error always decrease
for increasing values of the time series length. On the other side, we can note that the
Amelia procedure always produces worse results, and it does not improve when the
time series length increases.

In order to better investigate on the bias of the two imputation procedures, Table4 is
derived similarly to Table3, but nowwe focus on the average estimation error given by
formula (10). The new results show that the two procedures are substantially equivalent
in terms of bias, though our method shows slightly better results.
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Fig. 7 Using the synthetic data of Sect. 4.2, the plots evaluate the estimation error for the missing data
when the length of the time series is T = 50, 100, 500, respectively. The x-axis summarizes the 50 missing
values and the x-labels show the number of the location where the missing values have been generated. The
first 30 missing values are sequentially generated from location 2, so they represent a missing sequence,
whereas the last 20 are isolated missing values occurring at other locations. The red dashed bands represent
the interval 0±σεi , showing the true variability of the error component for those locations. The solid black
line ismean(yit − ỹi t ), while the dashed black bands represent the intervalmean(yit − ỹi t )±sd(yit − ỹi t ),
where the mean and sd are calculated using the formula (10) and (11), respectively, and ỹi t are estimated
using our approach. The solid blue line ismean(yit − ŷi t ), while the dotted blue bands represent the interval
mean(yit − ŷi t )±sd(yit − ŷi t ), where ŷi t are estimated using the package AmeliaII. When T increases,
the black and blue bands should tend to be equal to the red ones (but this happens only for black bands).
The three plots on the top consider the case when the spatial matrix is W1 whereas the three plots on the
bottom consider the case when the spatial matrix is W2 (color figure online)

4.3 Performance with synthetic data with non-zero mean value

Here we use the same setup as in the previous section apart from the mean value
of the process, that is now assumed different from zero. In particular, we simulate
the multivariate time series with intercept vector μ = (10, . . . , 10)′. Figure 7 is
organized similarly to Fig. 6, but now the plots show a substantial bias for the Amelia
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Table 5 Ratio between the computational times of Amelia and our procedures.

Percentage of missing values T = 50 T = 100 T = 500 T = 1000

2% 1.52 2.30 5.74 7.80

50% 1.46 2.26 5.58 6.74

procedure when it estimates a sequence of missing values, whereas our procedure
remains unbiased, in both the cases base on W1 and W2.

4.4 Computational times

From the computational point of view, it is worth to stress that all the estimations
involved in our imputation procedure are expressed in closed form, as they substantially
represent weighted sums. As a consequence, the computational procedure is very fast
and can be used efficiently also for very high dimensional datasets. Table5 reports
the ratio between the computational times of Amelia (in the numerator) and of our
procedure (in the denominator), for the simulated datawith different time series lengths
and different missing percentages. In order to make comparisons fair, bootstrap is
absent in both the methods.

5 Conclusions

This paper deals with missing values, sparse or sequences, in multivariate time series.
We propose an iterative imputation technique able to handle with also high order time
series. It is essentially based on the spatio-temporal model first introduced in Dou et al.
(2016) and whose estimation can be easily implemented since the involved estimators
are obtained in closed form. The model belongs to the category of econometric spatial
dynamic models, driven by the presence of the spatial matrix W which measures the
spatial correlation among the p components of the multivariate time series. We prove
the consistency of our procedure in Theorem 1. Moreover, the simulation experiment,
in which suitable missing sequences and values were randomly generated shows that
our procedure produces estimates very close to the true values. Also, the estimated
errors seem to have variance less than the ones produced by looking at the method
implemented in AmeliaII package. Further, when the time series length increases the
variance of the imputation error converges to zero, as expected by the consistency of the
procedure. Finally, the proposed imputation procedure seems to be robust to different
percentages of missing values, showing a good performance even when half of the
dataset is missing. This latter feature is due to the high capability of the imputation
model to capture different sources of correlation from the observed part of the data
(in time and/or space), and to use them in order to better forecast the missing part of
the time series.
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Appendix A: Proof of Theorem 1

For the sake of simplicity, we assume here a process with zero mean value. First, we
consider the case in which the parameters λ0,λ1,λ2 are known. For s ≥ 1 we have

ỹ(s+1)
t − ỹ(s)

t = (1 − δt ) ◦
(
ŷ(s+1)
t − ŷ(s)

t

)

and ‖̃y(s+1)
t − ỹ(s)

t ‖2 ≤ ‖̂y(s+1)
t − ŷ(s)

t ‖2, so we focus on ŷ(s+1)
t − ŷ(s)

t . We can write

ŷ(s+1)
t − ŷ(s)

t = D(λ0)W
(
ỹ(s)
t − ỹ(s−1)

t

)
+ [D(λ1) + D(λ2)W]

(
ỹ(s)
t−1 − ỹ(s−1)

t−1

)
,

and

‖̂y(s+1)
t − ŷ(s)

t ‖2 ≤ ‖D(λ0)W(̃y(s)
t − ỹ(s−1)

t )‖2
+‖ [D(λ1) + D(λ2)W] (̃y(s)

t−1 − ỹ(s−1)
t−1 )‖2

≤ ‖D(λ0)W‖2‖̃y(s)
t − ỹ(s−1)

t ‖2
+‖D(λ1) + D(λ2)W‖2‖̃y(s)

t−1 − ỹ(s−1)
t−1 ‖2. (12)

Defining the vector operator 	 j (xt ) = (1 − δt− j ) ◦ xt− j and iterating the inequality
in (12), we obtain

≤
s−1∑

j=0

(
s − 1

j

)

‖D(λ0)W‖s−1− j
2 ‖D(λ1) + D(λ2)W‖ j

2

∥
∥
∥	 j

(
ŷ(2)
t − ŷ(1)

t

)∥
∥
∥
2

≤ (‖D(λ0)W‖2 + ‖D(λ1) + D(λ2)W‖2)s−1 max
j

∥
∥
∥	 j

(
ŷ(2)
t − ŷ(1)

t

)∥
∥
∥
2
.

In the extreme case when α = 0, we have	 j (·) ≡ 0 for all t, j , because all the vectors
(1 − δt ) are zero, and the convergence of the iterative procedure is trivially proved.
In the opposite case when α = 1 (only theoretically, of course), we have 	 j ≡ 0
for all j because all ŷ(s)

t are zero vectors, so again the convergence of the iterative
algorithm is trivially proved. In the remaining more realistic cases when α ∈ (0, 1),
the convergence is guaranteed by assumption A4. All this implies that the iterative
procedure always converges to a limit ỹ(∞)

t , for any T and α, under the assumption of
known parameters λ j .

Note that A4 is a sufficient condition to get the convergence of (12) for any T ,

and could be relaxed if one considers that max j

∥
∥
∥	 j

(
ŷ(2)
t − ŷ(1)

t

)∥
∥
∥
2
also converges

to zero in probability as T → ∞, with a rate depending on the percentage of missing
values, α. However, the analysis of the exact rate goes beyond the aim of this paper.

In order to deal with the estimated parameters, we consider the following Taylor
expansion of ŷ(s)

t
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ŷ(s)
t = D(λ0)Wỹ(s−1)

t + D(λ1)̃y
(s−1)
t−1 + D(λ2)Wỹ(s−1)

t−1

+D(̂λ
(s−1)
0 − λ0)Wỹ(s−1)

t + D
(
λ̂

(s−1)
1 − λ1

)
ỹ(s−1)
t−1

+D(̂λ
(s−1)
2 − λ2)Wỹ(s−1)

t−1

where the first row of the equality is exactly the quantity analysed in the (12) whereas

the other rows depend on the differences λ̂
(s)
j − λ j , j = 0, 1, 2. Now, remembering

the (4), λ̂
(0)
j − λ j converges to zero in probability for T → ∞ by Theorem 1 in Dou

et al. (2016), for all j . So, assuming λ̂
(s−1)
j and ỹ(s−1)

t consistent and following the

iterative algorithm, by induction, we can conclude that also λ̂
(s)
j − λ j converges to

zero in probability for T → ∞. Combining this with the previous result in (12), we
finally have that ŷ(s)

t and ỹ(s)
t converge in probability to the limit y∗

t , for T → ∞ and
s → ∞.

Of course, the convergence rates of all the previous stochastic limits are expected
to depend on the percentage of missing values, α. Again, the evaluation of the exact
rates goes beyond the aims of this paper. Here, instead, we analyse heuristically the
“quality” of the imputation output, i.e. how near the final imputed values are to the
true latent ones, as a function of the proportion of missing values in the time series.

By simple algebra, we can write

yt − ŷ(s+1)
t = D(λ0)W

(
yt − ỹ(s)

t

)
+ [D(λ1) + D(λ2)W]

(
yt−1 − ỹ(s)

t−1

)

+ D
(
λ̂

(s)
0 − λ0

)
Wỹ(s)

t +
[
D

(
λ̂

(s)
1 − λ1

)
+ D

(
λ̂

(s)
2 − λ2

)
W

]
ỹ(s)
t−1 + εt

= L1(α) + L2(α) + εt .

In the extreme case when all data are missing (only theoretically, of course), α = 1
and the algorithm imputes zero to all data since ỹ(s)

t ≡ 0 for all s and t , as obvious. In
such a case, L2(α) ≡ 0 and the imputation error is

yt − ŷ(s)
t = D(λ0)Wyt + [D(λ1) + D(λ2)W] yt−1 + εt for α = 1,∀s,∀T,

which is something very different from desired (worst imputation quality), still cen-
tered around zero but with higher variability. In the other cases, assuming α ∈ [0, 1)
approximately fixed for T → ∞, we have (̂λ

(s)
j −λ j )

p→ 0 by Theorem 1 of Dou et al.

(2016) and, then, (yt − ỹ(s)
t )

p→ 0 by (12). Therefore, L1(α)
p→ 0 and L2(α)

p→ 0 for
T → ∞ and the imputation error converges to

yt − ŷ(s)
t

p−→ εt for α ∈ [0, 1), s → ∞ and T → ∞, (13)

as desired (best imputation quality), but the convergence rate of the (13) is expected
to be faster as long as the proportion α approaches to zero. The fastest convergence
rate is derived in Dou et al. (2016) and is reached when α = 0. •
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