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Abstract
Using a wavelet basis, we establish in this paper upper bounds of wavelet estimation
on L p(Rd) risk of regression functions with strong mixing data for 1 ≤ p < ∞. In
contrast to the independent case, these upper bounds have different analytic formulae
for p ∈ [1, 2] and p ∈ (2,+∞). For p = 2, it turns out that our result reduces to a
theorem of Chaubey et al. (J Nonparametr Stat 25:53–71, 2013); and for d = 1 and
p = 2, it becomes the corresponding theorem of Chaubey and Shirazi (Commun Stat
Theory Methods 44:885–899, 2015).

Keywords Regression estimation · L p risk · Convergence rate · Strong mixing ·
Wavelet
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1 Introduction and preliminary

Nonparametric regression estimation plays important roles in practical applications.
The classical approach uses the Nadaraya–Watson type kernel estimators (Ahmad
1995). Because wavelet bases have the local property in both time and frequency
domains, a wavelet provides a new method for analyzing functions (signals) with
discontinuities or sharp spikes. Therefore it is natural to get better estimations than
the kernel method for some cases. Great achievements have been made in this area,
see Delyon and Judisky (1996), Hall and Patil (1996), Masry (2000), Chaubey et al.
(2013), Chaubey and Shirazi (2015), Chesneau and Shirazi (2014) and Chesneau et al.
(2015).

In this paperweconsider the followingmodel:Let (Xi ,Yi )i∈Z be a strictly stationary
random process defined on a probability space (Ω,F , P) with the common density
function
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f (x, y) = ω(x, y)g(x, y)

μ
, (x, y) ∈ R

d × R

where ω stands for a known positive function, g denotes the density function of the
unobserved random variables (U , V ) and μ = Eω(U , V ) < ∞. Then we want to
estimate the unknown regression function

r(x) = E(ρ(V )|U = x), x ∈ R
d

from a sequence of strong mixing data (X1,Y1), (X2,Y2), . . . , (Xn,Yn).
Chaubey et al. (2013) provide an upper bound of the mean integrated squared error

for a linear wavelet estimator when ρ(V ) = V and V ∈ [a, b]; Chaubey and Shirazi
(2015) consider the case of a nonlinear wavelet estimator with d = 1.

In this paper, we further extend these work to the d-dimensional setting over L p

risk for 1 ≤ p < ∞. When p = 2, our result reduces to Theorem 4.1 of Chaubey
et al. (2013); in the case of d = 1 and p = 2, it becomes Theorem 5.1 of Chaubey
and Shirazi (2015).

1.1 Wavelets and Besov spaces

As a central notion in wavelet analysis, Multiresolution Analysis plays an important
role for constructing a wavelet basis, which means a sequence of closed subspaces
{Vj } j∈Z of the square integrable function space L2(Rd) satisfying the following prop-
erties:

(i) Vj ⊆ Vj+1, j ∈ Z. Here and after, Z denotes the integer set and N := {n ∈
Z, n ≥ 0};

(ii)
⋃

j∈Z
Vj = L2(Rd). This means the space

⋃
j∈Z Vj being dense in L2(Rd);

(iii) f (2·) ∈ Vj+1 if and only if f (·) ∈ Vj for each j ∈ Z;
(iv) There exists a scaling function ϕ(x) ∈ L2(Rd) such that {ϕ(· − k), k ∈ Z

d}
forms an orthonormal basis of V0 = span{ϕ(· − k)}.

Whend = 1, there is a simpleway to define anorthonormalwavelet basis. Examples
include the Daubechies wavelets with compact supports. For d ≥ 2, the tensor product
method gives an MRA {Vj } of L2(Rd) from one-dimensional MRA. In fact, with
a scaling function ϕ of tensor products, we find M = 2d − 1 wavelet functions
ψ� (� = 1, 2, . . . , M) such that for each f ∈ L2(Rd), the following decomposition

f =
∑

k∈Zd

α j0,kϕ j0,k +
∞∑

j= j0

M∑

�=1

∑

k∈Zd

β�
j,kψ

�
j,k

holds in L2(Rd) sense, where α j0,k = 〈 f , ϕ j0,k〉, β�
j,k = 〈 f , ψ�

j,k〉 and

ϕ j0,k(x) = 2
d j0
2 ϕ(2 j0x − k), ψ�

j,k(x) = 2
d j
2 ψ�(2 j x − k).
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Wavelet regression estimations with strong mixing data 669

Let Pj be the orthogonal projection operator from L2(Rd) onto the space Vj with
the orthonormal basis {ϕ j,k(·) = 2 jd/2ϕ(2 j · −k), k ∈ Z

d}. Then for f ∈ L2(Rd),

Pj f =
∑

k∈Zd

α j,kϕ j,k . (1)

Awavelet basis can be used to characterize Besov spaces. The next lemma provides
equivalent definitions for those spaces, for which we need onemore notation: a scaling
function ϕ is calledm-regular, if ϕ ∈ Cm(Rd) and |Dαϕ(x)| ≤ c(1+|x |2)−� for each
� ∈ Z and each multi-index α ∈ N

d with |α| ≤ m.

Lemma 1.1 (Meyer 1990) Let ϕ be m-regular, ψ� (� = 1, 2, . . . , M, M = 2d − 1) be
the corresponding wavelets and f ∈ L p(Rd). If α j,k = 〈 f , ϕ j,k〉, β�

j,k = 〈 f , ψ�
j,k〉,

p, q ∈ [1,∞] and 0 < s < m, then the following assertions are equivalent:

(1) f ∈ Bs
p,q(R

d);

(2) {2 js‖Pj+1 f − Pj f ‖p} ∈ lq;
(3) {2 j(s− d

p + d
2 )‖β j‖p} ∈ lq .

The Besov norm of f can be defined by

‖ f ‖Bs
p,q

:= ‖(α j0)‖p +
∥
∥
∥
∥
∥

(

2
j
(
s− d

p + d
2

)

‖β j‖p

)

j≥ j0

∥
∥
∥
∥
∥
q

with ‖β j‖p
p =

M∑

�=1

∑

k∈Zd

∣
∣
∣β�

j,k

∣
∣
∣
p
.

We also need a lemma (Härdle et al. 1998) in our later discussions.

Lemma 1.2 Let a scaling function ϕ ∈ L2(Rd) be m-regular and {αk} ∈ l p, 1 ≤ p ≤
∞. Then there exist c2 ≥ c1 > 0 such that

c12
j
(
d
2 − d

p

)

‖(αk)‖p ≤
∥
∥
∥
∥
∥
∥

∑

k∈Zd

αk2
jd
2 ϕ(2 j x − k)

∥
∥
∥
∥
∥
∥
p

≤ c22
j
(
d
2 − d

p

)

‖(αk)‖p.

In Härdle et al. (1998), the authors assume a weaker condition than m-regularity. For
d = 1, the proof of the lemma can be found in Härdle et al. (1998). Similar arguments
work as well for d ≥ 2. In addition, Lemma 1.2 holds if the scaling function ϕ is
replaced by the corresponding wavelet ψ .

1.2 Problem andmain theorem

In this paper we aim to estimate the unknown regression function

r(x) = E(ρ(V )|U = x), x ∈ R
d (2)
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670 J. Kou, Y. Liu

from a strong mixing sequence (see Definition 1.1) of bivariate random variables
(X1,Y1), (X2,Y2), . . . , (Xn,Yn) with the common density function

f (x, y) = ω(x, y)g(x, y)

μ
, (x, y) ∈ R

d × R, (3)

whereω denotes a weight function, g stands for the density function of the unobserved
bivariate random variable (U , V ) and μ = Eω(U , V ) < ∞. In addition, h(x) is
assumed to be the known density ofU with compact support on [0, 1]d , as in Chaubey
et al. (2013) andChaubey and Shirazi (2015). Throughout the paper, we always require
supp Xi ⊆ [0, 1]d .
Definition 1.1 A strictly stationary sequence of random vectors {Xi }i∈Z is said to be
strong mixing, if

lim
k→∞ α(k) = lim

k→∞ sup{|P(A ∩ B) − P(A)P(B)| : A ∈ �
0−∞, B ∈ �

∞
k } = 0,

where �
0−∞ denotes the σ field generated by {Xi }i≤0 and �

∞
k does by {Xi }i≥k .

Obviously, the independent and identically distributed (i .i .d) data are strong mix-
ing, since P(A ∩ B) = P(A)P(B) and α(k) ≡ 0 in that case. In addition, {Xi } is said
to be geometrically strong mixing , when α(k) ≤ γ δk for some γ > 0 and 0 < δ < 1.
Now, we provide two examples for geometrically strong mixing data.

Example 1 (Kulik 2008) Let Xt = ∑
j∈Z a jεt− j with

{εt , t ∈ Z} i .i .d.∼ N (0, σ 2) and ak =
{
2−k, k ≥ 0,
0, k < 0.

Then it can be proved by Theorem 2 and Corollary 1 of Doukhan (1994) on Page 58
that {Xt , t ∈ Z} is a geometrically strong mixing sequence.

Example 2 (Mokkadem 1988) Let {ε(t), t ∈ Z} i .i .d.∼ Nr (0, �) (r -dimensional normal
distribution) and {Y (t), t ∈ Z} satisfy the auto-regression moving average equation

p∑

i=0

B(i)Y (t − i) =
q∑

k=0

A(k)ε(t − k)

with l × r and l × l matrices A(k), B(i) respectively, as well as B(0) being the
identity matrix. If the absolute values of the zeros of the determinant det P(z) :=
det
∑p

i=0 B(i)zi (z ∈ C) are strictly greater than 1, then {Y (t), t ∈ Z} is geometrically
strong mixing.

Those two important examples tell us that the strong mixing data does not reduce
to the classical i .i .d, although α(k) goes to zero in the so fast way, α(k) = O(δk).
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Wavelet regression estimations with strong mixing data 671

It is well known that a Lebesgue measurable function maps i .i .d. data to i .i .d. data.
When dealing with strong mixing data, it seems necessary to require the functions
ω, ρ, h in (2) and (3) to be Borel measurable. A Borel measurable function f on R

d

means {x ∈ R
d , f (x) > c} being a Borel set for each c ∈ R. In that case, we can prove

easily that { f (Xi )} remains strong mixing and α f (X)(k) ≤ αX (k) (k = 1, 2, . . .), if
{Xi } has the same property, see Guo (2016). This note is important for the proofs of
Propositions 2.2 and 2.3.

Before introducing our estimators, we formulate the following assumptions:

H1. The density function h of the random variable U has a positive lower bound,

inf
x∈[0,1]d

h(x) ≥ c1 > 0.

H2. Theweight functionω has both positive upper and lower bounds, i.e., for (x, y) ∈
[0, 1]d × R,

0 < c2 ≤ ω(x, y) ≤ c3 < +∞.

H3. There exists a constant c4 > 0 such that,

sup
y∈R

|ρ(y)| ≤ c4,
∫

R

|ρ(y)|dy ≤ c4.

H4. The strong mixing coefficient of {(Xi ,Yi ), i = 1, 2, . . . , n} satisfies α(k) ≤
γ e−c5k with γ > 0, c5 > 0.

H5. The density f(X1,Y1,Xk+1,Yk+1) of (X1,Y1, Xk+1,Yk+1) (k ≥ 1) and the density
f(X1,Y1) of (X1,Y1) satisfy that for (x, y, x∗, y∗) ∈ [0, 1]d × R × [0, 1]d × R,

sup
k≥1

sup
(x,y,x∗,y∗)∈[0,1]d×R×[0,1]d×R

|hk(x, y, x∗, y∗)| ≤ c6,

where hk(x, y, x∗, y∗) = f(X1,Y1,Xk+1,Yk+1)(x, y, x
∗, y∗) − f(X1,Y1)(x, y)

f(Xk+1,Yk+1)(x
∗, y∗) and c6 > 0.

The assumptions H1 and H2 are standard for the nonparametric regression model
with biased data (Chaubey et al. 2013; Chesneau and Shirazi 2014). In Chaubey and
Shirazi (2015), the authors assume h ≡ 1. While Y ∈ [a, b] is required by Chaubey
et al. (2013). Condition H5 can be viewed as a ‘Castellana-Leadbetter’ type condition
in Masry (2000).

We choose d-dimensional scaling function

ϕ(x) = ϕ(x1, . . . , xd) := D2N (x1) · · · D2N (xd)

with D2N (·) being the one-dimensional Daubechies scaling function. Then ϕ is m-
regular (m > 0) when N gets large enough. Note that D2N has compact support
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672 J. Kou, Y. Liu

[0, 2N − 1] and the corresponding wavelet has compact support [−N + 1, N ]. Then
for r ∈ L2(Rd) with supp r ⊆ [0, 1]d and M = 2d − 1,

r(x) =
∑

k∈Λ j0

α j0,kϕ j0,k(x) +
∞∑

j= j0

M∑

�=1

∑

k∈Λ j

β�
j,kψ

�
j,k(x),

where Λ j0 = {1− 2N , 2− 2N , . . . , 2 j0}d , Λ j = {−N ,−N + 1, . . . , 2 j + N − 1}d
and

α j0,k =
∫

[0,1]d
r(x)ϕ j0,k(x)dx, β�

j,k =
∫

[0,1]d
r(x)ψ�

j,k(x)dx .

We introduce

μ̂n =
[
1

n

n∑

i=1

1

ω(Xi ,Yi )

]−1

, (4)

α̂ j0,k = μ̂n

n

n∑

i=1

ρ(Yi )

ω(Xi ,Yi )h(Xi )
ϕ j0,k(Xi ) (5)

and

β̂�
j,k = μ̂n

n

n∑

i=1

ρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi ). (6)

By H1–H3, the definitions in (4)–(6) are all well-defined. When ρ(Y ) = Y , μ̂n and
α̂ j0,k in (4) and (5) are the same as those of Chaubey et al. (2013). If d = 1 and
h(x) = I[0,1](x), then μ̂n , α̂ j0,k and β̂�

j,k in (4)–(6) reduce completely to those in
Chaubey and Shirazi (2015).

We define our linear wavelet estimator

r̂ linn (x) =
∑

k∈Λ j0

α̂ j0,kϕ j0,k(x) (7)

and the nonlinear wavelet estimator

r̂ nonn (x) = r̂ linn (x) +
j1∑

j= j0

M∑

�=1

∑

k∈Λ j

β̂�
j,k I

{
|β̂�

j,k |≥κtn
}ψ�

j,k(x), (8)

where tn , j0 and j1 are specified in the Main Theorem, while the constant κ will be
chosen in the proof of the theorem.

Comparing with the wavelet estimators in Chaubey et al. (2013) and Chaubey and
Shirazi (2015), we use a wavelet basis in the whole space instead of wavelets on an
interval. In the later case, boundary elements need be treated appropriately.

The following notations are needed to state our main theorem: For H > 0,

Bs
p,q(H) := {r ∈ Bs

p,q(R
d), ‖r‖Bs

p,q
≤ H}
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Wavelet regression estimations with strong mixing data 673

and x+ := max{x, 0}. In addition, A � B denotes A ≤ cB for some constant c > 0;
A � B means B � A; A ∼ B stands for both A � B and B � A. The indicator
function on a set G is denoted by IG as usual.

Main Theorem Consider the problem defined by (2) and (3) under the assumptions
H1–H5. Let r ∈ Bs

p̃,q(H), p̃, q ∈ [1,∞), s > 0, supp r ⊆ [0, 1]d and either p̃ ≥ p

or p̃ ≤ p < ∞ and s > d
p̃ . Then for 1 ≤ p < +∞, the linear wavelet estimator r̂ linn

defined in (7) with 2 j0 ∼ n
1

2s′+d+d I{p>2} and s′ = s − d( 1p̃ − 1
p )+ satisfies

E
∫

[0,1]d

∣
∣
∣̂rlinn (x) − r(x)

∣
∣
∣
p
dx � n

− s′ p
2s′+d+d I{p>2} ; (9a)

The nonlinear estimator in (8) with 2 j0 ∼ n
1

2m+d+d I{p>2} (m > s), 2 j1 ∼ ( n
(ln n)3

)
1
d and

tn =
[
I{1≤p≤2} + 2

jd
2 I{p>2}

]√
ln n
n satisfies

E
∫

[0,1]d

∣
∣
∣̂rnonn (x) − r(x)

∣
∣
∣
p
dx � (ln n)

3p
2 n−α p, (9b)

where

α =

⎧
⎪⎨

⎪⎩

s
2s+d+d I{p>2} , p̃ >

p(d+d I{p>2})
2s+d+d I{p>2} ,

s−d/ p̃+d/p
2(s−d/ p̃)+d+d I{p>2} , p̃ ≤ p(d+d I{p>2})

2s+d+d I{p>2} .
(9c)

Remark 1 When p = 2, (9a) reduces to Theorem 4.1 of Chaubey et al. (2013); If
p = 2 and d = 1, (9b) becomes Theorem 5.1 in Chaubey and Shirazi (2015) up to a
ln n factor.

In contrast to the linear wavelet estimator r̂ linn , the nonlinear estimator r̂ nonn is
adaptive, which means both j0 and j1 do not depend on s, p̃ and q. On the other hand,
the convergence rate of the nonlinear estimator remains the same as that of the linear

estimator up to (ln n)
3p
2 , when p̃ ≥ p. However, it gets better for p̃ < p. The same

situation happens for i .i .d. case.

Remark 2 Compared with the estimation for i .i .d data in Kou and Liu (2017), the
convergence rate of Main Theorem keeps the same ( up to a ln n factor), when p ∈
[1, 2]. However, it becomes worse for p > 2. This exhibits a major difference between
those two types of data.

For i .i .d case, a lower bound estimation under L p risk is provided by Kou and Liu
(2016). It is a challenging problem for strong mixing data.

Remark 3 From (9a)–(9c) in our Main Theorem, we find that the convergence rates
close to zero, when the dimension d gets very large (curse of dimensionality). In fact,
the same situation happens for the classical i .i .d case (Delyon and Judisky 1996;
Kou and Liu 2017). To reduce the influence of the dimension d on the accuracy of
estimation, a known method is to assume some independent structure of the samples
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674 J. Kou, Y. Liu

(Rebelles 2015a, b; Lepski 2013). Since the strong mixing data is much more com-
plicated than the i .i .d one, it would be a challenging problem to do the same in our
setting. We shall study it in future.

2 Three propositions

In this section, we provide three propositions for the proof of theMain Theoremwhich
is given in Sect. 3. Clearly, μ := Eω(U , V ) > 0 under the condition H2. Moreover,
the following simple (but important) lemma holds.

Lemma 2.1 For the problem defined in (2) and (3) and μ̂n given by (4),

E(μ̂−1
n ) = μ−1, (10a)

E

[
μρ(Yi )

ω(Xi ,Yi )h(Xi )
ϕ j0,k(Xi )

]

= α j0,k, (10b)

E

[
μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi )

]

= β�
j,k, (10c)

where α j0,k = ∫
[0,1]d r(x)ϕ j0,k(x)dx and β�

j,k = ∫
[0,1]d r(x)ψ

�
j,k(x)dx (� =

1, 2, . . . , M).

Proof One includes a simple proof for completeness, although it is essentially the
same as that of Chaubey et al. (2013). By (4),

E(μ̂−1
n ) = E

[
1

n

n∑

i=1

1

ω(Xi ,Yi )

]

= E

[
1

ω(Xi ,Yi )

]

.

This with (3) leads to

E(μ̂−1
n ) =

∫

[0,1]d×R

f (x, y)

ω(x, y)
dxdy = 1

μ

∫

[0,1]d×R

g(x, y)dxdy = 1

μ
,

which concludes (10a). Using (3) and (2), one knows that

E

[
μρ(Yi )

ω(Xi ,Yi )h(Xi )
ϕ j0,k(Xi )

]

=
∫

[0,1]d×R

μρ(y)

ω(x, y)h(x)
ϕ j0,k(x) f (x, y)dxdy

=
∫

[0,1]d
ϕ j0,k(x)

∫

R

ρ(y)

h(x)
g(x, y)dydx

=
∫

[0,1]d
r(x)ϕ j0,k(x)dx = α j0,k .

This completes the proof of (10b). Similar arguments show (10c). ��
To establish the next two propositions, we need an important Lemma.
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Lemma 2.2 (Davydov 1970) Let {Xi }i∈Z be strong mixing with the mixing coefficient
α(k), f and g be two measurable functions. If E | f (X1)|p and E |g(X1)|q exist for
p, q > 0 and 1

p + 1
q < 1, then there exists a constant c > 0 such that

∣
∣
∣cov

(
f (X1), g(Xk+1)

)∣
∣
∣ ≤ c

[
α(k)

]1− 1
p − 1

q
[
E
∣
∣
∣ f (X1)

∣
∣
∣
p] 1

p
[
E
∣
∣
∣g(X1)

∣
∣
∣
q] 1

q
.

Proposition 2.1 Let (Xi ,Yi ) (i = 1, 2, . . . , n) be strong mixing, H1–H5 hold and
2 jd ≤ n. Then

var

[
n∑

i=1

1

ω(Xi ,Yi )

]

� n and var

[
n∑

i=1

ρ(Yi )ψ�
j,k(Xi )

ω(Xi ,Yi )h(Xi )

]

� n. (11)

Proof Note that Condition H2 implies var
(

1
ω(Xi ,Yi )

)
≤ E

(
1

ω(Xi ,Yi )

)2
� 1 and

var

⎡

⎣
n∑

i=1

1

ω(Xi , Yi )

⎤

⎦ ≤ n var

(
1

ω(Xi , Yi )

)

+
∣
∣
∣
∣
∣
∣

n∑

v=2

v−1∑

i=1

cov

(
1

ω(Xv, Yv)
,

1

ω(Xi , Yi )

)
∣
∣
∣
∣
∣
∣
.

Then it suffices to show

∣
∣
∣
∣
∣

n∑

v=2

v−1∑

i=1

cov

(
1

ω(Xv,Yv)
,

1

ω(Xi ,Yi )

)∣∣
∣
∣
∣
� n (12)

for the first inequality of (11). By the strict stationarity of (Xi ,Yi ),

∣
∣
∣
∣
∣

n∑

v=2

v−1∑

i=1

cov

(
1

ω(Xv,Yv)
,

1

ω(Xi ,Yi )

)∣∣
∣
∣
∣

=
∣
∣
∣
∣
∣

n∑

m=1

(n − m) cov

(
1

ω(X1,Y1)
,

1

ω(Xm+1,Ym+1)

)∣∣
∣
∣
∣

≤ n
n∑

m=1

∣
∣
∣
∣cov

(
1

ω(X1,Y1)
,

1

ω(Xm+1,Ym+1)

)∣
∣
∣
∣ .

On the other hand, Lemma 2.2 and H2 show that

∣
∣
∣
∣cov

(
1

ω(X1,Y1)
,

1

ω(Xm+1,Ym+1)

)∣
∣
∣
∣ �

√
α(m)

√

E

∣
∣
∣
∣

1

ω(X1,Y1)

∣
∣
∣
∣

4

�
√

α(m).

These with H4 give the desired conclusion (12),

∣
∣
∣
∣
∣

n∑

v=2

v−1∑

i=1

cov

(
1

ω(Xv,Yv)
,

1

ω(Xi ,Yi )

)∣∣
∣
∣
∣
� n

n∑

m=1

√
α(m) � n.
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To prove the second inequality of (11), one observes

var

⎡

⎣
n∑

i=1

ρ(Yi )ψ
�
j,k(Xi )

ω(Xi , Yi )h(Xi )

⎤

⎦ � n var

(
ρ(Yi )ψ

�
j,k(Xi )

ω(Xi , Yi )h(Xi )

)

+
∣
∣
∣
∣
∣
∣

n∑

v=2

v−1∑

i=1

cov

(
ρ(Yv)ψ�

j,k(Xv)

ω(Xv, Yv)h(Xv)
,

ρ(Yi )ψ
�
j,k(Xi )

ω(Xi , Yi )h(Xi )

)∣∣
∣
∣
∣
∣
.

By (3) and H1–H3, the first term of the above inequality is bounded by

nE

(
ρ(Yi )ψ�

j,k(Xi )

ω(Xi ,Yi )h(Xi )

)2

� n
∫

[0,1]d×R

[
ψ�

j,k(x)
]2 g(x, y)

h(x)
dydx = n.

It remains to show

∣
∣
∣
∣
∣

n∑

v=2

v−1∑

i=1

cov

(
ρ(Yv)ψ

�
j,k(Xv)

ω(Xv,Yv)h(Xv)
,

ρ(Yi )ψ�
j,k(Xi )

ω(Xi ,Yi )h(Xi )

)∣
∣
∣
∣
∣

≤ n

⎛

⎝
2 jd−1∑

m=1

+
n∑

m=2 jd

⎞

⎠

∣
∣
∣
∣
∣
cov

[
ρ(Y1)ψ�

j,k(X1)

ω(X1,Y1)h(X1)
,

ρ(Ym+1)ψ
�
j,k(Xm+1)

ω(Xm+1,Ym+1)h(Xm+1)

]∣
∣
∣
∣
∣
� n

(13)

where the assumption 2 jd ≤ n is needed.
According to H5 and H1–H3,

∣
∣
∣
∣
∣
cov

(
ρ(Y1)ψ

�
j,k(X1)

ω(X1, Y1)h(X1)
,

ρ(Ym+1)ψ
�
j,k(Xm+1)

ω(Xm+1, Ym+1)h(Xm+1)

)∣
∣
∣
∣
∣

≤
∫

[0,1]d×R×[0,1]d×R

∣
∣
∣
∣
∣

ρ(y)ψ�
j,k(x)

ω(x, y)h(x)
·

ρ(y∗)ψ�
j,k(x

∗)

ω(x∗, y∗)h(x∗)

∣
∣
∣
∣
∣
|hm(x, y, x∗, y∗)|dxdydx∗dy∗

�
(∫

R

|ρ(y)|dy
)2 (∫

[0,1]d
∣
∣
∣ψ�

j,k(x)
∣
∣
∣ dx

)2
� 2− jd .

Hence,

2 jd−1∑

m=1

∣
∣
∣
∣
∣
cov

(
ρ(Y1)ψ�

j,k(X1)

ω(X1,Y1)h(X1)
,

ρ(Ym+1)ψ
�
j,k(Xm+1)

ω(Xm+1,Ym+1)h(Xm+1)

)∣
∣
∣
∣
∣
�

2 jd−1∑

m=1

2− jd � 1.

(14)
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On the other hand, Lemma 2.2, H1–H3 and the arguments before (13) tell that

∣
∣
∣
∣
∣
cov

(
ρ(Y1)ψ

�
j,k(X1)

ω(X1, Y1)h(X1)
,

ρ(Ym+1)ψ
�
j,k(Xm+1)

ω(Xm+1, Ym+1)h(Xm+1)

)∣
∣
∣
∣
∣
�
√

α(m)

√
√
√
√
√E

∣
∣
∣
∣
∣

ρ(Y1)ψ
�
j,k(X1)

ω(X1, Y1)h(X1)

∣
∣
∣
∣
∣

4

�
√

α(m) sup

∣
∣
∣
∣
∣

ρ(Y1)ψ
�
j,k(X1)

ω(X1, Y1)h(X1)

∣
∣
∣
∣
∣

√
√
√
√
√E

∣
∣
∣
∣
∣

ρ(Y1)ψ
�
j,k(X1)

ω(X1, Y1)h(X1)

∣
∣
∣
∣
∣

2

�
√

α(m) 2
jd
2 .

Moreover,
∑n

m=2 jd

∣
∣
∣
∣cov

(
ρ(Y1)ψ�

j,k (X1)

ω(X1,Y1)h(X1)
,

ρ(Ym+1)ψ
�
j,k(Xm+1)

ω(Xm+1,Ym+1)h(Xm+1)

)∣
∣
∣
∣ �

∑n
m=2 jd

√
α(m) 2

jd
2 ��

∑n
m=1

√
mα(m) ≤ ∑+∞

m=1 m
1
2 γ e− cm

2 < +∞. This with (14) shows
(13). ��

To estimate E
∣
∣
∣̂α j0,k −α j0,k

∣
∣
∣
p
and E

∣
∣
∣β̂�

j,k −β�
j,k

∣
∣
∣
p
, we introduce a moment bound,

which can be found in Yokoyama (1980), Kim (1993) and Shao and Yu (1996).

Lemma 2.3 Let {Xi , i = 1, 2, . . . , n}be a strongmixing sequence of randomvariables
with the mixing coefficients α(n) ≤ cn−θ (c > 0, θ > 0). If E Xi = 0, ‖Xi‖η :=
(E |Xi |η)

1
η < ∞, 2 < p < η < +∞ and θ >

p η
2(η−p) , then there exists K =

K (p, η, θ) < ∞ such that

E

∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ K ‖Xi‖p
η n

p
2 .

Proposition 2.2 Let r ∈ Bs
p̃,q(H) ( p̃, q ∈ [1,∞), s > 0) and α̂ j0,k, β̂

�
j,k be defined

by (5) and (6). If H1–H5 hold, then

E
∣
∣
∣̂α j0,k − α j0,k

∣
∣
∣
p

�
[
I{1≤p≤2} + 2

j0dp
2 I{p>2}

]
n− p

2 , (15a)

E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p

�
[
I{1≤p≤2} + 2

jdp
2 I{p>2}

]
n− p

2 . (15b)

Proof One proves (15b) only, (15a) is similar. By the definition of β̂�
j,k ,

β̂�
j,k − β�

j,k = μ̂n

μ

[
μ

n

n∑

i=1

ρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi ) − β�
j,k

]

+ β�
j,k · μ̂n

(
1

μ
− 1

μ̂n

)

and E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p

� E
∣
∣
∣
μ̂n
μ

[
μ
n

∑n
i=1

ρ(Yi )
ω(Xi ,Yi )h(Xi )

ψ�
j,k(Xi ) − β�

j,k

]∣
∣
∣
p

+E
∣
∣
∣β�

j,kμ̂n

(
1
μ

− 1
μ̂n

)∣
∣
∣
p
.SinceConditionH3 implies the boundedness of r ,

∣
∣
∣β�

j,k

∣
∣
∣ :=

∣
∣
∣
∫
[0,1]d r(x)ψ

�
j,k(x)dx

∣
∣
∣ � 1 thanks to Hölder inequality and orthonormality of {ψ�

j,k}.
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On the other hand,
∣
∣
∣
μ̂n
μ

∣
∣
∣ � 1 and |μ̂n| � 1 because of H2. Hence,

E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p

� E

∣
∣
∣
∣
∣

μ

n

n∑

i=1

ρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi ) − β�
j,k

∣
∣
∣
∣
∣

p

+ E

∣
∣
∣
∣
1

μ
− 1

μ̂n

∣
∣
∣
∣

p

.

(16)

When p = 2, it is easy to see from Lemma 2.1 and Proposition 2.1 that

E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
2

� var

[
1
n

∑n
i=1

ρ(Yi )ψ�
j,k (Xi )

ω(Xi ,Yi )h(Xi )

]

+ var
[
1
n

∑n
i=1

1
ω(Xi ,Yi )

]
� 1

n . This

with Jensen’s inequality shows E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p

� n− p
2 for 1 ≤ p ≤ 2.

It remains to show (15b) true for p > 2. By the definition of μ̂n ,

E

∣
∣
∣
∣
1

μ
− 1

μ̂n

∣
∣
∣
∣

p

= E

∣
∣
∣
∣
∣

1

n

n∑

i=1

1

ω(Xi ,Yi )
− 1

μ

∣
∣
∣
∣
∣

p

= E

∣
∣
∣
∣
∣

1

n

n∑

i=1

[
1

ω(Xi ,Yi )
− 1

μ

]∣∣
∣
∣
∣

p

.

(17)

Let ηi := 1
ω(Xi ,Yi )

− 1
μ
. Then E(ηi ) = 0 thanks to (10a). Furthermore, η1, . . . , ηn are

strong mixing by the same property of {(Xi ,Yi )} and the Borel measurability of the
function 1

ω(x,y) − 1
μ
(Guo 2016). On the other hand, Condition H2 implies |ηi | � 1

and ‖ηi‖p
η � 1. By Condition H4, θ in Lemma 2.3 can be taken large enough so

that θ >
pη

2(η−p) for fixed p and η with 2 < p < η < +∞. Then it follows from
Lemma 2.3 and (17) that

E

∣
∣
∣
∣
1

μ
− 1

μ̂n

∣
∣
∣
∣

p

� n− p
2 .

Finally, one needs only to show

Qn := E

∣
∣
∣
∣
∣

μ

n

n∑

i=1

ρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi ) − β�
j,k

∣
∣
∣
∣
∣

p

� 2
jdp
2 n− p

2 . (18)

Define ξi := μρ(Yi )
ω(Xi ,Yi )h(Xi )

ψ�
j,k(Xi )−β�

j,k . Then similar arguments to ηi conclude that

E(ξi ) = 0, Qn = 1
n p E |∑n

i=1 ξi |p and ξ1, . . . , ξn are strong mixing with the mixing
coefficients α(k) ≤ γ e−ck . According to H1–H3 and

∣
∣ψ�(x)

∣
∣ � 1,

∣
∣
∣
∣

μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi )

∣
∣
∣
∣ � 2

jd
2 .

Thiswithβ�
j,k = E

[
μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi )
]
leads to E |ξi |η � 2

jdη
2 and ‖ξi‖p

η � 2
jdp
2 .

Using Lemma 2.3 again, one obtains the desired conclusion (18). ��
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To prove the last proposition in this section, we need the following Bernstein-type
inequality (Liebscher 1996, 2001; Rio 1995).

Lemma 2.4 Let (Xi )i∈Z be a strong mixing process with mixing coefficient α(k),

E Xi = 0, |Xi | ≤ M < ∞ and Dm = max
1≤ j≤2m

var
(∑ j

i=1 Xi

)
. Then for ε > 0

and n,m ∈ N with 0 < m ≤ n
2 ,

P

(∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
≥ ε

)

≤ 4 · exp
{

− ε2

16

(

nm−1Dm + 1

3
εMm

)−1
}

+ 32
M

ε
nα(m).

From the next proposition, we realize the reason for choosing 2 j1 ∼
(

n
(ln n)3

) 1
d
in

our Main Theorem. The classical choice is 2 j1 ∼
(

n
ln n

) 1
d
, see Chesneau and Shirazi

(2014).

Proposition 2.3 Let r ∈ Bs
p̃,q(H) ( p̃, q ∈ [1,∞), s > 0), β̂�

j,k be defined in (6) and

tn =
√

ln n
n . If H1–H5 hold and 2 jd ≤ n

(ln n)3
, then for w > 0, there exists a constant

κ > 1 such that

P

(∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣ ≥ κtn

)
� 2−w j .

Proof According to the arguments of (16),
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣ � 1

n

∣
∣
∣
∑n

i=1

[
1

ω(Xi ,Yi )
− 1

μ

]∣
∣
∣+

∣
∣
∣ 1n
∑n

i=1
μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi ) − β�
j,k

∣
∣
∣ . Hence, it suffices to prove

P

(
1

n

∣
∣
∣
∣
∣

n∑

i=1

[
1

ω(Xi ,Yi )
− 1

μ

]∣∣
∣
∣
∣
≥ κ

2
tn

)

� 2−w j and

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

[
μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi ) − β�
j,k

]∣∣
∣
∣
∣
≥ κ

2
tn

)

� 2−w j . (19)

One shows the second inequality only, because the first one is similar and even simpler.
Define ξi := μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi ) − β�
j,k . Then E(ξi ) = 0 thanks to (10c), and

ξ1, . . . , ξn are strong mixing with the mixing coefficients α(k) ≤ γ e−ck because of

Condition H4. By H1–H3,
∣
∣
∣

μρ(Yi )
ω(Xi ,Yi )h(Xi )

ψ�
j,k(Xi )

∣
∣
∣ � 2

jd
2 and

|ξi | ≤
∣
∣
∣
∣

μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi )

∣
∣
∣
∣+ E

∣
∣
∣
∣

μρ(Yi )

ω(Xi ,Yi )h(Xi )
ψ�

j,k(Xi )

∣
∣
∣
∣ � 2

jd
2 .
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According to Proposition 2.1, Dm = max
1≤ j≤2m

var
(∑ j

i=1 ξi

)
� m. Then it follows

from Lemma 2.4 with m = u ln n (the constant u will be chosen later on) that

P

(
1

n

∣
∣
∣
∣
∣

n∑

i=1

ξi

∣
∣
∣
∣
∣
≥ κ

2
tn

)

= P

(∣
∣
∣
∣
∣

n∑

i=1

ξi

∣
∣
∣
∣
∣
≥ κ

2
ntn

)

� exp

{

− (κ n tn)2

64

(

nm−1Dm + 1

6
κ n tn2

jd
2 m

)−1
}

+ 64
2

jd
2

κ n tn
nγ e−cm . (20)

Clearly, 64 2
jd
2

κ n tn
nγ e−cm � ne−cu ln n holds due to tn =

√
ln n
n , 2 jd ≤ n

(ln n)3
and

m = u ln n. Choose u such that 1 − cu < −w
d , then the second term of (20) is

bounded by 2−w j . On the other hand, the first one of (20) has the following upper
bound

exp

⎧
⎨

⎩
−κ2 ln n

64

(

1 + 1

6
κ

√
ln n

n

(
n

(ln n)3

) 1
2
m

)−1⎫⎬

⎭
� exp

{

−κ2 ln n

64

(

1 + 1

6
κu

)−1
}

thanks to Dm � m, 2 jd ≤ n
(ln n)3

and m = u ln n. For this estimation, 2 jd ≤ n
(ln n)3

is essential, one can not replace that condition by 2 jd ≤ n
ln n . Obviously, there exists

sufficiently large κ > 1 such that exp
{
− κ2 ln n

64

(
1 + 1

6κu
)−1
}

� 2−w j . Finally, the

desired conclusion (19) follows. ��

3 Proof of main theorem

This section proves theMain Theorem.We rewrite it as Theorem 3.1. Themain idea of
the proof comes fromDonoho et al. (1996). When p = 2, the corresponding estimates
seems easier (see Chaubey et al. 2013; Chaubey and Shirazi 2015), because L2(Rd)

is a Hilbert space.

Theorem 3.1 Consider the problem defined by (2) and (3) with the assumptions H1–
H5. Let r ∈ Bs

p̃,q(H)( p̃, q ∈ [1,∞), s > 0), supp r ⊆ [0, 1]d and either p̃ ≥ p or

p̃ ≤ p < ∞ and s > d
p̃ . Then for 1 ≤ p < +∞, the linear wavelet estimator r̂ linn

defined in (7) with 2 j0 ∼ n
1

2s′+d+d I{p>2} and s′ = s − d
(
1
p̃ − 1

p

)

+ satisfies

E
∫

[0,1]d

∣
∣
∣̂rlinn (x) − r(x)

∣
∣
∣
p
dx � n

− s′ p
2s′+d+d I{p>2} ; (21a)

123



Wavelet regression estimations with strong mixing data 681

The nonlinear one in (8) with 2 j0 ∼ n
1

2m+d+d I{p>2} (m > s), 2 j1 ∼
(

n
(ln n)3

) 1
d
and

tn =
[
I{1≤p≤2} + 2

jd
2 I{p>2}

]√
ln n
n satisfies

E
∫

[0,1]d

∣
∣
∣̂rnonn (x) − r(x)

∣
∣
∣
p
dx � (ln n)

3p
2 n−α p, (21b)

where

α =

⎧
⎪⎨

⎪⎩

s
2s+d+d I{p>2} , p̃ >

p(d+d I{p>2})
2s+d+d I{p>2} ,

s−d/ p̃+d/p
2(s−d/ p̃)+d+d I{p>2} , p̃ ≤ p(d+d I{p>2})

2s+d+d I{p>2} .
(21c)

Proof When p̃ ≤ p and s > d
p̃ , s′− d

p = s− d
p̃ > 0.By the equivalenceof (1) and (3) in

Lemma 1.1, Bs
p̃,q(H) ⊆ Bs′

p,q(H
′) for some H ′ > 0. Then r ∈ Bs′

p,q(H
′) and ‖Pj0r −

r‖p = ‖∑∞
j= j0(Pj+1r−Pjr)‖p �

∑∞
j= j0 ‖Pj+1r−Pjr‖p �

∑∞
j= j0 2

− js′ � 2− j0s′

thanks to (2) of Lemma 1.1. Moreover,

‖Pj0r − r‖p
p � 2− j0s′ p. (22)

It is easy to see from Lemma 1.2 that

E
∥
∥
∥̂rlinn − Pj0r

∥
∥
∥
p

p
= E

∥
∥
∥
∥
∥
∥

∑

k∈Λ j0

(̂α j0,k − α j0,k)ϕ j0,k

∥
∥
∥
∥
∥
∥

p

p

� 2
pd
(

j0
2 − j0

p

) ∑

k∈Λ j0

E
∣
∣
∣̂α j0,k − α j0,k

∣
∣
∣
p
.

According to Proposition 2.2 and |Λ j0 | ∼ 2 j0d ,

E
∥
∥
∥̂rlinn − Pj0r

∥
∥
∥
p

p
� 2

j0dp
2

(
I{1≤p≤2} + 2

j0dp
2 I{p>2}

)
n− p

2 . (23)

Thiswith (22) shows that E
∫
[0,1]d

∣
∣̂rlinn (x)−r(x)

∣
∣pdx ≤ E

∫
Rd

∣
∣̂rlinn (x)−r(x)

∣
∣pdx �

E
∥
∥̂rlinn − Pj0r

∥
∥p
p + ∥∥Pj0r − r

∥
∥p
p � 2− j0s′ p + 2

j0dp
2
[
I{1≤p≤2} + 2

j0dp
2 I{p>2}

]
n− p

2 . To

get a balance, one chooses 2 j0 ∼ n
1

2s′+d+d I{p>2} . Then

E
∫

[0,1]d

∣
∣
∣̂rlinn (x) − r(x)

∣
∣
∣
p
dx � n

− s′ p
2s′+d+d I{p>2} , (24)

which is the desired conclusion (21a) for p̃ ≤ p and s > d
p̃ .

From the above arguments, one finds that when p = p̃, s′ = s > 0 and the
inequality (24) still holds without the assumption s > d

p̃ . It remains to conclude (21a)
for p̃ > p ≥ 1. By Hölder inequality,

∫

[0,1]d

∣
∣
∣̂rlinn (x) − r(x)

∣
∣
∣
p
dx �

[∫

[0,1]d

∣
∣
∣̂rlinn (x) − r(x)

∣
∣
∣
p̃
dx

] p
p̃

.
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Using Jensen inequality and (24) with p = p̃, one gets

E
∫

[0,1]d

∣
∣
∣̂rlinn (x) − r(x)

∣
∣
∣
p
dx �

[

E
∫

[0,1]d

∣
∣
∣̂rlinn (x) − r(x)

∣
∣
∣
p̃
dx

] p
p̃

� n
− s′ p

2s′+d+d I{p>2} .

This completes the proof of (21a).
Similar to the arguments of (21a), it suffices to prove (21b) for p̃ ≤ p and s > d

p̃ .

In this case, (21c) can be rewritten as

α = min

{
s

2s + d + d I{p>2}
,

s − d/ p̃ + d/p

2(s − d/ p̃) + d + d I{p>2}

}

.

By the definitions of r̂ linn and r̂ nonn , r̂ nonn (x) − r(x) =
[
r̂ linn (x) − Pj0r(x)

]
−
[
r(x) −

Pj1+1r(x)
]

+
j1∑

j= j0

M∑

�=1

∑

k∈Λ j

[
β̂�
j,k I{|β̂�

j,k |≥κtn} − β�
j,k

]
ψ�

j,k(x). Hence,

E
∫

[0,1]d

∣
∣
∣̂rnonn (x) − r(x)

∣
∣
∣
p
dx � I1 + I2 + Z , (25)

where I1 := E
∥
∥
∥̂rlinn − Pj0r

∥
∥
∥
p

p
, I2 :=

∥
∥
∥r − Pj1+1r

∥
∥
∥
p

p
and

Z := E

∥
∥
∥
∥
∥
∥

j1∑

j= j0

M∑

�=1

∑

k∈Λ j

[

β̂�
j,k I

{
|β̂�

j,k |≥κtn
} − β�

j,k

]

ψ�
j,k

∥
∥
∥
∥
∥
∥

p

p

.

According to (23), 2 j0 ∼ n
1

2m+d+d I{p>2} (m > s) and the definition of α in (21c),

I1 = E
∥
∥
∥̂rlin − Pj0r

∥
∥
∥
p

p
� 2

j0dp
2

[
I{1≤p≤2} + 2

j0dp
2 I{p>2}

]
n− p

2 ≤ n−α p.

The same arguments as (22) shows
∥
∥Pj1+1r − r

∥
∥p
p � 2− j1s′ p. On the other hand,

s′
d = s

d − 1
p̃ + 1

p ≥ α thanks to p̃ ≤ p and s > d
p̃ . Then it follows from 2 j1 ∼ ( n

(ln n)3

) 1
d

and 0 < α < 1
2 that

I2 =
∥
∥
∥Pj1+1r − r

∥
∥
∥
p

p
� (ln n)

3p
2 n−α p.

The main work for the proof of (21b) is to show

Z = E

∥
∥
∥
∥
∥
∥

j1∑

j= j0

M∑

�=1

∑

k∈Λ j

[

β̂�
j,k I

{
|β̂�

j,k |≥κtn
} − β�

j,k

]

ψ�
j,k

∥
∥
∥
∥
∥
∥

p

p

� (ln n)
3p
2 n−α p. (26)
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Note that Lemma 1.2 tells

Z � ( j1 − j0 + 1)p−1
j1∑

j= j0

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

E

∣
∣
∣
∣β̂

�
j,k I

{
|β̂�

j,k |≥κtn
} − β�

j,k

∣
∣
∣
∣

p

.

Then the classical technique (see Donoho et al. 1996) gives

Z � ( j1 − j0 + 1)p−1(Z1 + Z2 + Z3), (27)

where

Z1 =
j1∑

j= j0

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

E

[∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
I{|β̂�

j,k−β�
j,k |> κtn

2

}

]

,

Z2 =
j1∑

j= j0

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

E

[∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
I{|β̂�

j,k |≥κtn , |β�
j,k |≥ κtn

2

}

]

,

Z3 =
j1∑

j= j0

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

∣
∣
∣β�

j,k

∣
∣
∣
p
I{|β̂�

j,k |<κtn , |β�
j,k |≤2κtn

}.

For Z1, one observes that

E

[∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
I{|β̂�

j,k−β�
j,k |> κtn

2

}

]

≤
[

E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
2p
] 1

2
[

P

(

|β̂�
j,k − β�

j,k | >
κtn
2

)] 1
2

thanks to Hölder inequality. By Proposition 2.3,

P

(
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣ > κ2

jd
2

√
ln n

n

)

≤ P

(
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣ > κ

√
ln n

n

)

� 2−w j .

On the other hand, Proposition 2.2 implies E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p

� 2
jdp
2 n− p

2 for 1 ≤ p <

+∞. Therefore,

E

[∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
I{|β̂�

j,k−β�
j,k |> κtn

2

}

]

� 2
jdp
2 n− p

2 2− w j
2 .

Then for w > 2pd in Proposition 2.3, Z1 �
∑ j1

j= j0
2pd(

j
2− j

p )2 jd2
jdp
2 n− p

2 2− w j
2 ��

( 1
n

) p
2 2− j0(

w
2 −pd) �

( 1
n

) p
2
( 1
n

)
w
2 −pd

2m+d+d I{p>2} ≤ ( 1
n

)α p, where one uses α < 1
2 and the

choice 2 j0 ∼ n
1

2m+d+d I{p>2} (m > s). Hence,

Z1 ≤ n−α p. (28)
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To estimate Z2, one rewrites

Z2 =
⎛

⎝
j∗0∑

j= j0

+
j1∑

j= j∗0 +1

⎞

⎠

⎧
⎨

⎩
2
pd
(

j
2 − j

p

) M∑

�=1

∑

k∈Λ j

E

[∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
I{|β̂�

j,k |≥κtn , |β�
j,k |≥ κtn

2

}

]
⎫
⎬

⎭

:= Z21 + Z22

with the integer j∗0 ∈ [ j0, j1] being specified later on. By Proposition 2.2,

Z21 :=
j∗0∑

j= j0

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

E

[∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
I{|β̂�

j,k |≥κtn , |β�
j,k |≥ κtn

2

}

]

�
j∗0∑

j= j0

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

[
I{1≤p≤2} + 2

jdp
2 I{p>2}

]
n− p

2

�
[

2
j∗0 pd
2 I{1≤p≤2} + 2 j∗0 pd I{p>2}

] (1

n

) p
2
. (29)

On the other hand, it follows from Proposition 2.2, Lemma 1.1(3) and tn =[
I{1≤p≤2} + 2

jd
2 I{p>2}

]√
ln n
n that

Z22 :=
j1∑

j= j∗0 +1

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

E

[∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
I{|β̂�

j,k |≥κtn , |β�
j,k |≥ κtn

2

}

]

�
j1∑

j= j∗0 +1

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p
( |β�

j,k |
κtn/2

) p̃

�
j1∑

j= j∗0 +1

(ln n)−
p̃
2

(
1

n

) p− p̃
2

2− j
(
s p̃+ p̃d

2 + p̃d
2 I{p>2}− pd

2 − pd
2 I{p>2}

)

.

Define

ε := s p̃ + p̃d

2
+ p̃d

2
I{p>2} − pd

2
− pd

2
I{p>2}.

Then for ε > 0, Z22 � (ln n)−
p̃
2 ( 1n )

p− p̃
2
∑ j1

j= j∗0 +1 2
− jε � (ln n)−

p̃
2 ( 1n )

p− p̃
2 2− j∗0 ε. To

balance this with (29), one takes

2 j∗0 ∼
( n

ln n

) 1−2α
d+d I{p>2} .
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Note that 0 < α ≤ s
2s+d+d I{p>2} < 1

2 and 2 j0 ∼ n
1

2m+d+d I{p>2} (m > s). Then

2 j∗0 ≤ 2 j1 ∼
( n

(ln n)3

) 1
d and 2 j∗0 �

( n
ln n

) 1
2s+d+d I{p>2} � n

1
2m+d+d I{p>2} ∼ 2 j0 (m > s).

Since ε > 0, p̃ >
p(d+d I{p>2})
2s+d+d I{p>2} and α = s

2s+d+d I{p>2} thanks to (21c). Moreover, it
can be checked that

p − p̃

2
+ 1 − 2α

d + d I{p>2}

(

s p̃ + p̃d

2
+ p̃d

2
I{p>2} − pd

2
− pd

2
I{p>2}

)

= α p

by considering p > 2 and p ∈ [1, 2] respectively. This with the choice of 2 j∗0 leads
to

Z22 �
(
ln n

)− p̃
2
(1

n

) p− p̃
2
( ln n

n

) 1−2α
d+d I{p>2}

(
s p̃+ p̃d

2 + p̃d
2 I{p>2}− pd

2 − pd
2 I{p>2}

)

�
(1

n

)α p
.(30)

On the other hand, (29) with the choice of 2 j∗0 implies

Z21 �
(1

n

)α p
(31)

for each ε ∈ R.

For the case ε ≤ 0, p̃ ≤ p(d+d I{p>2})
2s+d+d I{p>2} and α = s− d

p̃+ d
p

2(s− d
p̃ )+d+d I{p>2}

(see (21c)). Define

p1 := (1 − 2α)p. Then α ≤ s
2s+d+d I{p>2} and p̃ ≤ p(d+d I{p>2})

2s+d+d I{p>2} ≤ (1 − 2α)p = p1.

Similar to the case ε > 0, Z22 �
∑ j1

j= j∗0 +1 2
pd(

j
2− j

p )∑M
�=1

∑
k∈Λ j

E
∣
∣
∣β̂�

j,k − β�
j,k

∣
∣
∣
p

( |β�
j,k |

κtn/2

)p1
. Because p̃ ≤ p1 and r ∈ Bs

p̃,q(H),
∥
∥β j

∥
∥p1
p1

≤ ∥
∥β j

∥
∥p1
p̃ � 2− j

(
s− d

p̃ + d
2

)
p1

and

Z22 �
(
ln n

)− p1
2
(
1

n

) p−p1
2

j1∑

j= j∗0 +1

2− j
(
sp1− dp1

p̃ + dp1
2 + dp1

2 I{p>2}− dp
2 − dp

2 I{p>2}+d
)

.

By the definitions of p1 and α, sp1 − dp1
p̃ + dp1

2 + dp1
2 I{p>2} − dp

2 − dp
2 I{p>2} +d = 0

and Z22 �
(
ln n

)− p1
2
(
1
n

) p−p1
2

(ln n) �
(
ln n

)(
1
n

)α p
. This with (30) and (31) shows

in both cases,

Z2 = Z21 + Z22 � ln n

(
1

n

)α p

. (32)

123



686 J. Kou, Y. Liu

Finally, one estimates Z3. Clearly,

Z31 :=
j∗0∑

j= j0

2
pd

(
j
2− j

p

)
M∑

�=1

∑

k∈Λ j

∣
∣
∣β�

j,k

∣
∣
∣
p
I{|β̂�

j,k |<κtn , |β�
j,k |≤2κtn

}

≤
j∗0∑

j= j0

2
pd

(
j
2− j

p

)
M∑

�=1

∑

k∈Λ j

∣
∣
∣2κtn

∣
∣
∣
p

�
j∗0∑

j= j0

2
jdp
2

[
I{1≤p≤2} + 2

jdp
2 I{p>2}

]( ln n

n

) p
2

� 2
j∗0 dp
2

[
I{1≤p≤2} + 2

j∗0 dp
2 I{p>2}

]( ln n

n

) p
2

.

This with the choice of 2 j∗0 shows

Z31 �
(
ln n

) p
2
(1

n

)α p
. (33)

On the other hand,

Z32 :=
j1∑

j= j∗0 +1

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

∣
∣
∣β�

j,k

∣
∣
∣
p
I{|β̂�

j,k |<κtn , |β�
j,k |≤2κtn

}

≤
j1∑

j= j∗0 +1

2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

∣
∣
∣β�

j,k

∣
∣
∣
p
∣
∣
∣
∣
∣

2κtn
β�
j,k

∣
∣
∣
∣
∣

p− p̃

�
(
ln n

n

) p− p̃
2

j1∑

j= j∗0 +1

2− jε.

The same arguments as (30) shows that for ε > 0,

Z32 �
(
ln n

) p
2
(
1

n

)α p

. (34)

To prove (34) true when ε ≤ 0, one writes

Z32 =
⎛

⎝
j∗1∑

j= j∗0 +1

+
j1∑

j= j∗1 +1

⎞

⎠

⎧
⎨

⎩
2
pd
(

j
2− j

p

) M∑

�=1

∑

k∈Λ j

∣
∣
∣β�

j,k

∣
∣
∣
p
I{|β̂�

j,k |<κtn , |β�
j,k |≤2κtn

}

⎫
⎬

⎭

:= Z321 + Z322,

where the integer j∗1 ∈ [ j∗0 + 1, j1] will be determined in the following. Similar to the
case ε > 0,

Z321 �
(
ln n

n

) p− p̃
2

2− j∗1 ε (35)
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holds for ε ≤ 0. By s > d
p̃ and

∥
∥β j

∥
∥
p̃ � 2− j(s− d

p̃ + d
2 ),

Z322 ≤
j1∑

j= j∗1 +1

2
pd

(
j
2− j

p

)
M∑

�=1

∑

k∈Λ j

∣
∣
∣β�

j,k

∣
∣
∣
p ≤

j1∑

j= j∗1 +1

2
pd

(
j
2− j

p

)
∥
∥
∥β j

∥
∥
∥
p

p̃

�
j1∑

j= j∗1 +1

2− j
(
d+sp−pd/ p̃

)

� 2− j∗1
(
d+sp−pd/ p̃

)

.

To make a balance with (35), one takes
( ln n

n

) p− p̃
2 2− j∗1 ε ∼ 2− j∗1

(
d+sp−pd/ p̃

)

, which
means

2 j∗1 ∼
( n

ln n

) α
s−d/ p̃+d/p

,

where ε ≤ 0 is equivalent to p̃ ≤ p(d+d I{p>2})
2s+d+d I{p>2} and α = s− d

p̃ + d
p

2(s− d
p̃ )+d+d I{p>2}

. In that

case,
(

n
ln n

) 1−2α
d+d I{p>2} ∼ 2 j∗0 ≤ 2 j∗1 ≤ 2 j1 ∼

(
n

(ln n)3

) 1
d
. Note that

p − p̃

2
+ αε

s − d/ p̃ + d/p
= p − p̃

2
+ s p̃ + p̃d

2 + p̃d
2 I{p>2} − pd

2 − pd
2 I{p>2}

2
(
s − d

p̃

)
+ d + d I{p>2}

= α p.

Then Z321 �
(
ln n

) p
2
( 1
n

)α p and Z322 �
(
ln n

) p
2
( 1
n

)α p. Therefore, Z32 = Z321 +
Z322 �

(
ln n

) p
2
( 1
n

)α p for ε ≤ 0. Combining this with (33) and (34), one knows

Z3 �
(
ln n

) p
2
( 1
n

)α p in both case. This with (27), (28) and (32) shows

Z �
(
ln n

)p−1
[

n−α p +
(
ln n

)(1

n

)α p +
(
ln n

) p
2
(1

n

)α p
]

�
(
ln n

) 3p
2
(
1

n

)α p

,

which is the desired conclusion.Although (ln n)
3p
2 canbe replacedby (ln n)max {p, 3p2 −1}

in the last inequality, it can not be in (21b) because one uses Jensen inequality for
p̃ ≥ p. ��
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