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Abstract We complement the work of Cerioli, Riani, Atkinson and Corbellini by
discussing monitoring in the context of robust clustering. This implies extending the
approach to clustering, and possibly monitoring more than one parameter simulta-
neously. The cases of trimming and snipping are discussed separately, and special
attention is given to recently proposed methods like double clustering, reweighting in
robust clustering, and fuzzy regression clustering.

Keywords Double clustering · Fuzzy clustering · Multidimensional monitoring ·
Reweighting · Snipping · Tuning

1 Introduction

First of all, let us commend the authors of Cerioli et al. (2018) for a very clear and
thought-provoking paper.

For the past several years the authors have given substantial contributions in the
area of robust statistics. Their extensive work on the forward search has lead them to
realize that monitoring robust procedures has an intrinsic informative power. In this
paper they give some ideas on this, and illustrate with several interesting examples.We
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believe that monitoring might indeed be very informative, and might also contribute
to lead several innovative and sound methods in robust statistics to be more often used
in practice, and ultimately become the standard for applied sciences.

It is apparent in our opinion that monitoring is closely related to sensitivity analysis.
The idea of tilting tuning parameters is certainly not new, and is often the simplest
route to follow when no optimal choice is available (e.g., Farcomeni and Greco 2015;
Farcomeni 2009). The welcome and very innovative concept in Cerioli et al. (2018)
is that the informative content obtained by monitoring goes beyond the mere aid to
choice of tuning parameters.

Monitoring has also an intuitive appeal which might make robust estimators more
widely accepted, as it immediately allows the user to understand to what extent data
are contaminated and classical estimators are (not) reliable (Farcomeni and Ventura
2012).

We believe that one should not necessarily monitor focusing on a single parameter.
Several aspects can be varied simultaneously (generating a 3-D, or in general a p-D
movie). The biggest challenge is computational, as in most cases robust estimators
shall be computed from scratch for each new set of tuning parameters. In this sense,
monitoring opens the issue of obtaining simple and quick updating rules when tuning
parameters are tilted (e.g., increased) only slightly. Another issue opened by the idea
of monitoring is that, as the authors are well aware, it becomes much more difficult to
study the theoretical properties of the monitored procedures (Cerioli et al. 2014).

In the remaining part of this contribution to the discussion we will focus on the
power of monitoring in robust clustering, through examples.

We extend the monitoring to clustering in a completely natural way: we compute
minimal Mahalanobis distances as the minimal Mahalanobis distance of trimmed
observations from their closest centroid, and maximal Mahalanobis distances as the
maximal distances of non-trimmed values from their assigned centroid. Other indica-
tors, like the average silhouette width, can be used directly. In the following we will
mostly focus on monitoring with respect to the trimming level.

2 Monitoring and reweighting

Reweighting is a general principle in robust statistics according to which, after an
initial very robust but possibly inefficient estimator has been obtained, discarded or
downweighted observations are used to improve efficiency. In most cases reweighting
is a two-step procedure, but it can also be iterative (Cerioli 2010; Dotto et al. 2017).

Dotto et al. (2017) introduced rtclust, a robust model based clustering method
based on reweighting. The procedure is initialized with a robust clustering partition
based on a very high trimming level and is then iterated throughout a sequence of
decreasing trimming levels. At each step parameters are updated and the clean obser-
vations, initially flagged as outlying, are possibly reinserted in the active set. Each
observation is moved to the active set if its Mahalanobis distance is lower than a
threshold. The latter is obtained by fixing an opportune quantile (1−αL) of the target
distribution of the Mahalanobis distance. The parameter αL establishes how far out-
liers are supposed to be with respect to the bulk of data. Thus such choice is pretty
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Fig. 1 Swiss banknote data: monitoring estimated proportion of outliersπK+1 and individualMahalanobis
distances as obtained through rtclust

subjective and strongly depends on the context of application. Code is available from
the authors upon request.

In this section we apply the philosophy of Cerioli et al. (2018) to explore features of
data bymeans ofmonitoring the outcomes ofrtclustwith respect to αL .We use the
well known Swiss banknotes dataset. The involved data describe six features (length,
left and right height, lower and upper distance of inner frame to closest border, diagonal
length) of 200 Swiss 1000-franc bank notes. It is a priori known that there are two
balanced groups, made by genuine and counterfeit notes, respectively. Additionally
Flury (1988) pointed out that the group of forged bills is not homogeneous, as 15
observations arise from a different pattern and are, for that reason, outliers. Dotto
et al. (2017) applied rtclust to the Swiss bank notes dataset, fixing αL = 0.001.

In Fig. 1a, we plot on the x-axis values for the parameter αL , while, on the y-
axis, the final estimated proportion of outliers (namely πK+1). It is straightforward
to see that the estimated contamination level slowly decreases (roughly from 0.17 to
0.10) as αL varies within the range [0.02–0.005). On the contrary, as we move within
the range [0.005–0.001) an even slower decline is seen. Finally, for αL ≤ 0.001 the
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estimated contamination level suddenly drops towards 0. This clearly suggests that
(i) there is contamination, (ii) there might be two or even three separated groups of
outliers, with one group of approximately 0.12 (y value with αL = 0.005) − 0.1 (y
value with αL = 0.001) percent being soft outliers, and the remaining 20 being more
clearly placed far from the bulk of the data. Note that, as rtclust (and reweighting
procedures in general) are not direct outlier detection devices, we shall not make any
claim as to outlyingness of the discarded observations; but only claim that the resulting
estimates are robust.

In Fig. 1b, we monitored the Mahalanobis distance of each observation to the
assigned/closest centroid as a function of αL . In blue bullets there are observations
flagged as clean, while, with red crosses we show observations discarded from the
estimation set. This plot is a more detailed, but equally clear, account of what we have
seen discussing Fig. 1a of the same figure. There are two gross outliers, a group of
clearly separated outliers, and a third group whose Mahalanobis distances are large
but not clearly separated from the bulk of the data. Note that as soon as αL is decreased
too much, the estimates become unstable (which is a clear sign of contamination).

3 Monitoring and high-dimensional clustering: snipping

Farcomeni (2014a, b) developed snipping, a technique for parsimoniously trimming
sparse entries of a data matrix, rather than entire rows, while clustering. This is done
in the spirit of dealing with entry-wise outliers, based on the seminal paper of Alqal-
laf et al. (2009), and is particularly useful for moderately to high dimensional data.
Snipped k-means and sclust (which is the model-based version) require the user to
specify in advance the number of groups k and a trimming level α. A fraction npα of
entries, where n is the sample size and p the number of variables, will be discarded;
and each of the n rows (without exceptions, unless all pmeasurements for one or more
subjects are discarded) will be assigned to one of the k groups.

R functions to implement the methods, also for the case of robust location and
scatter estimation (k = 1), are available in the package snipEM.

We here revisit an example based on a data set of n = 380 daily measurements
of p = 38 indicators, taken at a urban waste water treatment plant. These include
levels of Zinc, pH, chemical and biological demand of oxygen, suspended and volatile
solids, and sediments; taken at each of four different locations (input, first settler,
second settler, output). As in previous analyses we fix k = 3 and monitor the outcome
of sclust as a function of the removal of npα entries of the data matrix, for several
values of α.

In order to work with snipping procedures we might simply define monitored mea-
sures at entry level. Hence, k-th Mahalanobis distance of entry Xi j will correspond to
the univariate distance |Xi j −mkj |/sk j , wheremkj is the j-th entry of the k-th centroid
and sk j the j-th standard deviation for the k-th centroid. In Fig. 2 we report, as a func-
tion of α, the unweighted standard deviation of the estimated centroids (separation,
left upper panel), the average silhouette width (silhouette, right upper panel), the
minimal Mahalanobis distance of trimmed entries from their closest centroid (minD,
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Fig. 2 Water treatment data: monitoring of separation, average silhouette width, minimal and maximal
Mahalanobis distance as obtained through sclust

left lower panel) and the maximal Mahalanobis distance of untrimmed entries from
their assigned centroid (maxD, right lower panel).

It can be seen fromFig. 2 that there is a very small fraction of gross outliers (say, less
than 1%)which form a cluster if not trimmed andmakemonitored statistics explode for
α < 1%. Separation and silhouette after the drop are slightly increasing (up to about
α = 10%), indicating that about another 8–9% of the entries can be considered as mild
outliers and/or bridge points. Note that the silhouette decreases again for α > 16%,
a clearly too large snipping level. Interestingly enough, as reported by Farcomeni
(2014b), for 5% ≤ α ≤ 15% estimates are fairly stable. Mahalanobis distances in
the lower panels are a little more unstable. The maximal Mahalanobis distances are
in substantial agreement with our previous discussion, showing a very steep drop for
α < 1%, a quick but less steep decrease for 1% ≤ α < 10%, and a slower decrease
for larger values. The sudden drop for α ∼= 17.5%might indicate that for larger values
of α groups are re-arranged, that is, some observations after removal of appropriate
entries are moved from one group to another.
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4 Monitoring two tuning parameters: the case of robust double
clustering

Farcomeni (2009) developed trimmed double k-means. Double clustering aims at
simultaneously grouping rows and columns of a data matrix. The robust approach
of Farcomeni (2009) is based on separate impartial trimming of rows and columns.
This was then extended to the case of snipping in Farcomeni and Greco (2015), which
describes snipped double k-means.

R functions to implement the methods are freely available as web based supple-
mentary material of Farcomeni and Greco (2015), on the publisher’s website.

Robust double clustering gives a clear motivation for simultaneous monitoring of
more than one tuning parameter, as both the number of trimmed rows and columns
can change. Monitoring shall proceed through 3-D plots, 2-D contour plots (as in our
example), or by appropriately tabulating results.

We here monitor the analysis of a microarray data matrix for n = 200 genes mea-
sured under p = 20 conditions. Data are freely available in R package biclust.
We fix k1 = 3 row groups and k2 = 2 column groups, and different row trim-
ming levels α1 = 0, 1/200, 2/200, . . . , 40/200 and column trimming levels α2 =
0, 1/20, 2/20, 3/20, 4/20. For each combination of α1 and α2 we run the trimmed
double k-means algorithm, and compute the separation as above (corresponding to
the standard deviation of the estimated centroid matrix), the within sum of square
(withinSS) which is the sum of the squared distances of each untrimmed entry with
respect to its assigned centroid, and as usual the minimal and maximal Euclidean dis-
tances (minD and maxD). In double clustering the minimal and maximal Euclidean
distances shall be defined entry-wise, as for instance different columns of the same
row can belong to different clusters. Letmrc denote the estimated centroid for an entry
in row cluster r and column cluster c. Suppose the i-th row is assigned to cluster ri
and the j-th row to cluster c j , with ri = 0, . . . , k1 and c j = 0, . . . , k2; where ri = 0
(c j = 0) indicates a trimmed row (column). Then, the minimal Euclidean distance
shall be defined as

min
i j : c j=0 |ri=0

min
r=1,...,k1

min
c=1,...,k2

|Xi j − mrc|

and the maximal Euclidean distance as

max
i j : c j �=0&ri �=0

|Xi j − mri c j |.

In Fig. 3 we report, as a function of nα1 and pα2, the separation (right lower panel), the
within sum of squares (left lower panel), the minimal Euclidean distance of trimmed
entries from their closest centroid (left upper panel) and the maximal Euclidean dis-
tance of untrimmed entries from their assigned centroid (right upper panel).

It can be seen from the figure that the minimal Euclidean distance (which is not
defined for α1 = α2 = 0) rapidly increases, with minimal values for α2 = 1/20.
About 8 row outliers are clearly identified when α2 = 0, while removal of one or
more entire columns makes row trimming less important. This is a clear indication
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Fig. 3 E. Coli data: monitoring of minimal and maximal Euclidean distance (minD, maxD)), within sum
of squares (withinSS) and standard deviation of the centroids (separation)

that the 8 gross outliers are probably generated by a single condition (that is, during
one of the p = 20 experiments). The maximal Mahalanobis distance is much more
difficult to interpret, and this is probably an obvious limitation of monitoring which
does not necessarily give interpretable information. The within sum of squares and
separation are well in agreement with the minimal Mahalanobis distances, even if the
information is less apparent.

5 Monitoring three tuning parameters: the case of robust fuzzy
regression models

Dotto et al. (2016) introduce a robust fuzzy regression clustering model based on
trimming. Linear clustering models are based on identifying k groups of units, each
forming a separate linear structure. Each unit is assigned to the group minimizing
the regression error (i.e. its squared residuals from the estimated regression line). The
methodology proposed in the aforementioned paper aims at maximizing the objective
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function given by
n∑

i=1

k∑

j=1

umi j log
(
f (yi ; x′

i b j + b0j , s
2
j )

)
(1)

where f (·;μ, σ 2) is the p.d.f of a normal distribution with mean μ and standard
deviation σ , and m is a fuzzification parameter. In fuzzy clustering each observation
can potentially be a member, with varying degrees of memberships, of each cluster.
This is controlled by the parameter m, and measured by ui j ∈ [0, 1]. The latter is a
membership value of the observation i to the cluster j . The parameter m values in
the range [1,+∞). Letting m → ∞ implies equal membership values ui j = 1/k
regardless of the data; while when m = 1 crispy weights {0, 1} are always obtained
and all (untrimmed) observations are hard-assigned to one and only one cluster. The
weights ui j satisfy the following equalities:

k∑

j=1

ui j = 1 if i ∈ I and
k∑

j=1

ui j = 0 if i /∈ I,

for a subset I ⊂ {1, 2, . . . , n} whose cardinality is n(1 − α). The nα observations
which are not included in the subset I are the ones flagged as outlying and, as a
consequence, receive ui j = 0 membership for each j = 1, 2, . . . , k. Equation (1)
contains two tuning parameters: m and α. Additionally, the number of clusters k can
be seen as a tuning parameter and in our experience in fuzzy regression clustering
it is strongly dependent on m, and more dependent on α than what usually happens
in other contexts. These parameters are intertwined and a long discussion is given in
Dotto et al. (2016) on their tuning. For these reasons, we will compare simultaneous
monitoring of α and m for different values of k.

We illustratemonitoringwith the real data analyzed inGarcía-Escudero et al. (2010)
and Dotto et al. (2016). The dataset is made of 362 measurements of height and
diameter of Pinus Nigra trees located in the north of Palencia (Spain), and the aim is
to explore the linear relationship between these two quantities.

In our context we need to use a monitoring quantity which is tailored for the special
case of fuzzy clustering. We have chosen to use the Average Within-Cluster Distance
(AWCD), which is basically a weighted average of the distance of each observation
to each cluster (Campello and Hruschka 2006). We here generalize AWCD to fuzzy
linear clustering by using squared residuals as distances.

We fixed a grid of values for the parameters m and α and evaluated the results by
using a heatmap reporting the value of the AWCD for each combination. Additionally
we fixed three different candidate values for k (i.e. {2, 3, 4}) and plotted a heat map
for each candidate value.

In Fig. 4a–c, we show the AWCD when k = 2, 3, 4, respectively. It is quite clear
that reasonable values for m are within the range [1–1.3], as when m > 1.3 very large
AWCD are generally obtained (especially for small α). Whenm ∈ [1−1.3], there are
clear differences between Fig. 4a and the other two. In Fig. 4a, AWCD are generally
larger than the two other panels for any fixedm and α, indicating that the right number
of clusters is k = 3 (as there is no advantage in increasing k further). The very high
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Fig. 4 Pinus Nigra data: monitoring the AWCD with respect to m, α and k. In a AWCD for different
combinations of m and α when k = 2, b k = 3, c k = 4. In d AWCD as a function of α for k = 2, 3, 4
when m = 1.3

AWCD values obtained form > 1.3 make it hard to distinguish further. We could here
restrict to m ∈ [1− 1.3] and repeat monitoring, but we prefer simply monitoring with
respecto to α for fixed m = 1.3 and k = 2, 3, 4. This is done in Fig. 4d. Figure 4d
clearly shows how very low values of the AWCD index are reached as the proportion
of trimmed observations is ≥ 0.04, and that basically there are no differences in
performance when comparing k = 3 with k = 4. It shall be noted that Fig. 4d is
very similar to classification trimmed likelihood curves (García-Escudero et al. 2011),
even if a different quantity than the likelihood at convergence is monitored. As a final
consideration point out that there is substantial agreement between themonitoring used
for tuning parameter choice in Dotto et al. (2016) and the (hierarchical) monitoring
adopted here, even if this different quantities are monitored.

6 Conclusions

In this paper we applied the philosophy of monitoring, presented in Cerioli et al.
(2018), to four recent methodological contributions related to robust cluster analysis.
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We mostly focused on monitoring the trimming level. Even though different trimming
principles were adopted, in all cases the trimming level is directly related to both
breakdown point and efficiency.
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