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Abstract Andrea Cerioli, Marco Riani, Anthony Atkinson, Aldo Corbellini (CRAC
hereafter) have presented a powerful methodology aimed at improving robust fitting
and related diagnostic tools. Monitoring is a very flexible approach that allows to tune
the selected robust technique by looking at a whole movie of the available data. We
contribute to the discussion ofCRAC’s paper by applying the principle ofmonitoring to
multivariate weighted likelihood estimation. The reliability of themethod is illustrated
through the analysis of the datasets taken from CRAC’ s paper.

Keywords Monitoring · Outliers · Pearson residuals · Robust distances · Weighted
likelihood

1 Introduction

Wewould like to sincerely congratulate the authors for this interesting and stimulating
work, inwhich they pursue a powerful approach for robust estimation and the detection
of anomalous values. Robust fitting and outlier detection are strictly connected tasks.
The main goal of a robust analysis is to lead to reliable inferences that are not badly
affected by the occurrence of outliers, at the cost of a negligible efficiency loss under
the postulated model. On the other hand, the detection of such data inadequacies may
be of interest itself, since they may unveil unexpected features in the sample at hand.
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Actually, the data may have been contaminated by gross errors in the data collection
process, the overlapping of several unexpected random mechanisms, sampling from
a non homogenous population composed by some unknown and eventually rare sub-
groups.

One obstacle to the diffusion of robust techniques in the statistical practice is that
they depend on several choices to be made, whose effects on the results may be
not really easy to evaluate or understand. A dangerous practice consists in using
default settings, such as 50% breakdown point or 95% efficiency, whose employ
may be not consistent with the sample at hand, leading to a worthless efficiency
loss or to non robust solutions, respectively. The CRAC’s paper has the unques-
tionable merit to warn researchers against an automatic use of robust methods with
default settings and to lead them toward a conscious use of robust tools, instead.
The authors suggest that the main features of a robust technique should be inferred
by the data, in an adaptive fashion. Their monitoring approach may really give a
new impulse to the use of robust methods in data analysis. The advantages of mon-
itoring in multivariate estimation have been also addressed in Farcomeni and Greco
(2016).

Here, we contribute to the discussion about the power of monitoring by apply-
ing this technique to weighted likelihood estimation of multivariate location and
covariance. Weighted likelihood is a robust method falling in the category of soft-
trimming, since robustness is achieved by attaching a weight in [0, 1] to each
observation, aiming at down-weighting outliers, as well as in M-type estimation.
The monitoring of weighted likelihood analyses lead to two main achievements.
From the one hand it is proved that monitoring is a valuable tool in order to tune
the method, from the other hand monitoring shows that weighted likelihood high-
lights features that are not shared by other soft-trimming procedures such as S- and
MM-estimation, whose behavior has been investigated in CRAC’s paper. On the
contrary, the monitoring unveils that weighted likelihood is able to deliver robust
solutions that are in close agreement with those stemming from hard-trimming
methods based on crispy weights {0, 1}, such as the Forward Search (FS) and the
MCD.

2 Preliminaries

Let y = (y1, . . . , yn)
�

be a random sample from a random variable Y with
unknown distribution function M(y; θ) and corresponding probability (density) func-
tion m(y; θ), θ ∈ � ⊂ R

p, with p ≥ 1 and let M̂n be the empirical distribution
function. A weighted likelihood estimate (WLE) is defined as the root of the weighted
likelihood estimating equation (WLEE) (Markatou et al. 1998)

n∑

i=1

w(yi ; θ, M̂n) s(yi ; θ) = 0,

where s(yi ; θ)denotes the i th contribution to the score function and theweight function
is defined as
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w(y; θ, M̂n) =
[
A(δ(y; θ, M̂n)) + 1

]+

δ(y; θ, M̂n) + 1
, (1)

where [·]+ denotes the positive part. The function δ(y; θ, M̂n) is the Pearson residual
function

δ(y; θ, M̂n) = m̂n(y)

m∗(y; θ)
− 1

where

m̂n(y) =
∫

k(y; t, h)dM̂n(t)

is a kernel density estimate of m(y; θ) with kernel k(·; t, h) and smoothing parameter
h, and

m∗(y; θ) =
∫

k(y; t, h)dM(t; θ)

is a smoothed model density (Basu and Lindsay 1994), with δ ∈ [−1,+∞). The
Pearson residual function measures the agreement between the data and the assumed
model.Hence, outliers are expected to show large residuals. Pearson residuals aremade
large when m̂n(y) presents bumps not shared by the model but also when the expected
density m∗(y; θ) is close to zero. This feature enhances the meaning of outliers as
values that are unlikely to occur under the assumed model rather than values that
are distant from the bulk of the data. The methodology has been extended to the
regression framework, as well (Agostinelli and Markatou 1998; Agostinelli 2002;
Alqallaf and Agostinelli 2016). In this case the construction of Pearson residuals is
different even if conceptually equivalent, i.e. the kernel density estimate is evaluated
over the (standardized) residuals that depend on the coefficients vector θ , whereas
the assumed model might depends on nuisance parameters only. A similar argument
has been also applied in the multivariate framework in Agostinelli and Greco (2017).
More insights on this approach will be given in the next subsection.

The function A(·) is the Residual Adjustment Function (RAF) that plays the role
to bound the effect of large Pearson residuals. This function is related to minimum
disparity estimation problems (Lindsay 1994; Park et al. 2002).

Weighted likelihood estimation leads to consistent and asymptotically fully efficient
estimators at the postulated model but also characterized by a high breakdown point
under contamination. Full efficiency at the assumed model stems from the fact that the
weight function converges uniformly to one for non contaminated samples (Agostinelli
and Greco 2013).

The smoothing parameter h, indexing the kernel function k(·; ·, h), does not play
any role in controlling asymptotic efficiency and it has a limited impact on the asymp-
totic robust behavior of the method. On the contrary, in finite samples it controls the
robustness/efficiency trade-off of the weighted likelihood methodology. Small values
of h are a reasonable choice in order to obtain a non parametric model density estimate
that is sensitive to outlying observations. On the contrary, large values of h lead to
smooth density estimates that are expected to be close to the assumed model when the
data are not prone to contamination. The selection of the smoothing parameter h may
be troublesome.Actually, it is not an easy task to relate its choice to efficiency or break-
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down arguments, in a fashion similar to M-type estimation. In Markatou et al. (1998),
the authors suggested that: “the sum of the final fitted weights is a useful diagnostic
statistic for the comparison of solutions to the WLEE”. In other words the authors’
advice is to monitor the sum of the fitted weights by varying h. Then, the quantity
1− w̄, where w̄ denotes the average of the weights evaluated at the WLE, can be used
as a rough measure of the rate of contamination in the sample at hand. We refer to
1 − w̄ as the empirical downweighting level. The same approach has been pursued
in Greco (2016). As it is shown in Markatou et al. (1998), the mean downweighting
under the correct model for finite samples can be approximated by

Λ = −w′′(0)
2

[∫ ∫
k2(y; t, h)dM(t; θ)

(m∗(t; θ))2
dM(t; θ) − 1

]
,

wherew′′(0) is the second derivative of the weight function with respect to δ at 0 and it
is equal to 2−τ for theGeneralizedKullback–Leibler (GKL) residual adjustment func-
tion. Themean downweighting parameterΛ gives on average the rate of contamination
at the assumed model and represents “a simple measure of the interplay of the various
parameters in the degree of downweighting that will occur when the model is correct”.

2.1 Multivariate weighted likelihood

In a multivariate setting, the weighting scheme based on the computation of a mul-
tivariate density estimate becomes troublesome for large dimensions, because of the
curse of dimensionality (Huber 1985; Scott and Wand 1991). With growing dimen-
sions the data are more sparse and kernel density estimation may become unfeasible.
One can get round this hindrance by following the approach proposed in Agostinelli
and Greco (2017), in the standard framework of robust fitting of a multivariate normal
distribution Np(μ,Σ). The authors suggested to compute Pearson residuals based
on Mahalanobis distances rather than on multivariate data. Then, by paralleling what
happens in regression problems, Pearson residuals are obtained by comparing a uni-
variate (unbiased at the boundary) kernel density estimate evaluated over the squared
distances d2(yi ;μ,Σ) and their underlying χ2

p distribution.

3 Monitoring the smoothing parameter h

In this section, we apply the monitoring to obtain some guidance in the selection of the
smoothing parameter h in weighted likelihood estimation of multivariate location and
scatter. The same four example discussed in CRAC’s paper are considered. The exam-
ples all show that monitoring the smoothing parameter h in the weighted likelihood
analyses provides useful information. First of all, monitoring is always able to detect a
value beyond whom the analysis becomes non robust. Furthermore, monitoring allows
us to highlight the peculiar and satisfactory features of weighted likelihood estimation
with respect to the other robust methods that have been compared in CRAC’s paper.
In all the example that follows, we used the Generalized Kullback–Leibler RAF
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AGKL(δ) = log(δτ + 1)

τ
, 0 ≤ τ ≤ 1

and a folded normal kernel. The results all depend on our personal choices concerning
τ = 0.9, the kernel and the grid of h values to monitor the WLE analyses. Another
setting may lead to different solutions, but the general features of the procedure will be
very similar. Pointwise thresholds to detect outliers have been set by approximating the
distribution of squared robust distances by a scaled Beta distribution, as conjectured
in Agostinelli and Greco (2017), but the asymptotic χ2

p could have been used as well.

3.1 Eruptions of Old Faithful

This data give the duration of the eruption and the waiting time to the start of that
eruption from the previous for the Old Faithful geyser in Yellowstone National Park,
Wyoming,USA.The sample size isn = 272. The robust analyses discussed inCRAC’s
paper all highlight the presence of two groups. Monitoring leads to select the tun-
ing parameters characterizing S-, MM- and MCD estimation before the fit abruptly
changes and becomes non robust and no more able to distinguish the two sub-groups.

Here, in a similar fashion we use monitoring to determine a value of h leading to
an efficient but reasonably robust estimate. The results from monitoring are displayed
in Fig. 1. Both panels clearly show that beyond a certain value h = 0.01175, given by
the horizontal dotted line, the analysis becomes non robust, since the two sub-groups
structure is no more detected. The left-hand panel shows the trajectories of individual
robust distances as h varies on the considered grid. For small values of h several
robust distances exceed the 0.99-level pointwise threshold, hence leading to detect the
smallest sub-group as outliers. On the contrary, in the right-hand part of the plot, it
is evident that no more outliers are detected and the underlying structure of the data
is lost. In a fashion similar to CRAC’s paper, a color map has been used that goes
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Fig. 1 Eruptions of Old Faithful. Left-hand panel, robust distances from monitoring WLE, the solid red
line corresponds to 0.99 level threshold. Right-hand panel, empirical downweighting level frommonitoring
WLE, the solid red line corresponds to Λ (color figure online)
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Fig. 2 Eruptions of Old Faithful. Left-hand panel, 0.99 tolerance ellipse. Right-hand panel, 0.999 tolerance
ellipse. Outliers are plotted as filled red circles, clean data as blue + (color figure online)

from light gray to dark gray in order to highlight those trajectories corresponding to
observations that are flagged as outlying for most of the monitoring. The right-hand
plot monitors the empirical downweighting level 1− w̄. Beyond h = 0.01175, 1− w̄

abruptly decreases, meaning that the fitted model has drastically changed. It is worth
mention that one could have monitored the trajectory of each single weight by varying
h. Figure 2 displays the fitted model in the form of tolerance ellipses and shows the
bulk of the data and those data points flagged as outliers with different colors and
symbols. The WLE is able to recover the underlying structure of the data formed by
two sub-groups. By varying the pointwise threshold, a slightly different number of
outliers is detected: 108 in the left-hand panel at a 0.99-level, 99 in the right-hand
panel at a 0.999 level.

3.2 Lightly contaminated data

This a simulated data set with n = 200, p = 5. The first 30 rows are outliers. Outliers
are grouped with no evident overlap with the bulk of the data. Figure 3 displays the
monitoring for robust distances (left-hand panel) and the empirical downweighting
level (right-hand panel). For a value of h up to 0.095, weighted likelihood provides
a robust solution. Figure 4 shows the results from WLE with h = 0.095. Robust
distances are shown in the left-hand panel, whereas weights are plotted in the right-
hand panel. By using a 0.99-level pointwise threshold, 32 outliers are found, three of
which are false positives. They all receive a final weight less than 0.2. The diagnostic
analysis also lead to one false negative.

3.3 Heavily contaminated data

In this second simulated dataset, there are n = 400 observations with p = 4 features.
The last 100 rows correspond to outlying observations. There is some overlapping
between genuine and contaminated data that makes robust fitting and outlier detection
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Fig. 3 Lightly contaminated data. Left-hand panel, robust distances from monitoring WLE, the solid red
line corresponds to 0.99 level threshold. Right-hand panel, empirical downweighting level frommonitoring
WLE, the solid red line corresponds to Λ (color figure online)
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Fig. 4 Lightly contaminated data. Left-hand panel, robust distances, the solid red line corresponds to 0.99
level threshold.. Right-hand panel, final weights, the vertical dashed line separates true outliers from true
genuine data. Outliers are plotted as filled red circles, clean data as blue + (color figure online)

more challenging tasks. Monitoring of S-, MM- and MCD along with FS leads to
remark that soft-trimming fails in this example whereas hard trimming is necessary in
order to recover a reliable robust solution. In the following, the monitoring of WLE
will show that soft-trimming based on the weighted likelihood carries on a robust
solution that is well comparable with those stemming from FS and MCD. Both panels
in Fig. 5 show the signal corresponding to the abrupt change in themonitored distances
or empirical downweighting level, at h = 0.00135. A similar structure is not present
in the monitoring plot driven by S- and MM-estimation. Outlier detection based on
the 0.99-level pointwise threshold leads to flag 115 data points as outliers. The level
of swamping is 19/300, whereas masking is 4/100. Figure 6 displays a scatterplot
of the data in which genuine observations and outliers are plotted by using different
colors and symbols. The reader may appreciate the close agreement with the solution
stemming from the FS.

123



616 C. Agostinrlli, L. Greco

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

2
4

6
8

smoothing parameter

R
ob

us
t d

is
ta

nc
es

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

0.
5

0.
6

0.
7

0.
8

smoothing parameter

Em
pi

ric
al

 d
ow

nw
ei

gh
tin

g 
le

ve
l

Fig. 5 Heavily contaminated data. Left-hand panel, robust distances from monitoring WLE, the solid red
line corresponds to 0.99 level threshold. Right-hand panel, empirical downweighting level frommonitoring
WLE, the solid red line corresponds to Λ (color figure online)
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Fig. 6 Heavily contaminated data. Scatterplot of the data. Outliers are plotted as filled red circles, clean
data as blue + (color figure online)
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Fig. 7 Cowswith BovineDermatitis. Left-hand panel, robust distances frommonitoringWLE, the solid red
line corresponds to 0.99 level threshold. Right-hand panel, empirical downweighting level frommonitoring
WLE, the solid red line corresponds to Λ (color figure online)
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Fig. 8 Cows with Bovine Dermatitis. Scatterplot of the data. Outliers are plotted as filled red circles, clean
data as blue + (color figure online)
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Fig. 9 Cows with Bovine Dermatitis. Scatterplot of the data with respect to X1 and X3 with 0.99 tolerance
ellipse over-imposed. Outliers are plotted as filled red circles, clean data as blue + (color figure online)

3.4 Cows with Bovine Dermatitis

The last dataset concerns 488 cows with bovine dermatitis and four measurements
per cow. As well as in the previous example, the monitoring plots for S- and MM-
estimation are essentially smooth. Hence, they do not lead to a reasonable robust
solution. On the contrary, the FS and the MCD are able to catch the underlying struc-
ture of the data, that is characterized by two groups of similar size. The inspection
of Fig. 7 leads to state that up to h = 0.0045 the WLE is also able to provide a
robust solution. Outlier detection based on 0.99-level pointwise threshold identifies
235 outliers. Figures 8 and 9 display the groups that have been identified, that are
relatively well separated in some dimensions such as X1 and X3, but overlapping in
the other two. As well as before, the reader may appreciate the close agreement with
the solution stemming from the FS.
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