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Abstract In this paper, we construct a new mixture of geometric INAR(1) process for
modeling over-dispersed count time series data, in particular data consisting of large
number of zeros and ones. For some real data sets, the existing INAR(1) processes
do not fit well, e.g., the geometric INAR(1) process overestimates the number of
zero observations and underestimates the one observations, whereas Poisson INAR(1)
process underestimates the zero observations and overestimates the one observations.
Furthermore, for heavy tails, the PINAR(1) process performs poorly in the tail part. The
existing zero-inflated Poisson INAR(1) and compound Poisson INAR(1) processes
have the same kind of limitations. In order to remove this problem of under-fitting at
one point and over-fitting at others points, we add some extra probability at one in the
geometric INAR(1) process and build a new mixture of geometric INAR(1) process.
Surprisingly, for some real data sets, it removes the problem of under and over-fitting
over all the observations up to a significant extent. We then study the stationarity
and ergodicity of the proposed process. Different methods of parameter estimation,
namely the Yule-Walker and the quasi-maximum likelihood estimation procedures are
discussed and illustrated using some simulation experiments. Furthermore, we discuss
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the future prediction along with some different forecasting accuracy measures. Two
real data sets are analyzed to illustrate the effective use of the proposed model.

Keywords Geometric INAR (1) - Mixture distribution - Strongly stationary -
Coherent forecasting - Zero-inflation - Over-dispersion

1 Introduction

Time series of count data arise in various fields of science, especially in social science,
medicine and epidemiology. For example, monthly reported cases of a particular water-
borne disease, and monthly cases of kidnapping in a city are some examples of count
time series data. If the counts are large, data can be well approximated by some
continuous distributions and hence the well-known Box-Jenkins’ ARMA model can be
used. The main justification behind this approximation is that many common discrete
distributions, e.g., binomial, Poisson and negative binomial can be well approximated
by normal distribution when the means of these distributions are large. However, in
practice, it is often observed that the counts are small. For example, for the monthly
cases of poliomyelitis data (see Zeger 1988), almost 80% of the total observations lie
between 0 and 2. Therefore, in such scenarios, it is not desirable to approximate the
data by some continuous time series models. Furthermore, it is very important to use
a model that preserves the count property of the data.

In this regard, the most well-known model is the integer-valued auto-regressive
process of first order (or INAR(1)) based on binomial thinning operator introduced by
McKenzie (1985). This class of models is constructed based on the binomial thinning
operator of Steutel and Van Harn (1979) defined as follows. Given a discrete random
variable X and a constant « lying between 0 and 1, the binomial thinning operator “o”
is defined aswo X = Y | B;, where B;’s are independent and identically distributed
(i.i.d.) Bernoulli(er) random variables. Given the above definition of the thinning oper-
ator, McKenzie’s class of INAR(1) process has the form ¥; = o o Y;,_| + &, where
a € (0, 1), and {¢,;} is a sequence of i.i.d. discrete random variables. It is also assumed
that ¢; is independent of the past lag values of Yy, i.e, Y;_j for k > 1. Given the above
class of INAR(1) process, it has been shown that all distributions of Y; that are discrete
self-decomposable (DSD) in the sense of Steutel and Van Harn (1979) are stationary
solutions of the above equation. For example, Poisson and geometric distributions
are stationary solutions of the above INAR(1) process. However, distributions that
are defined on a finite support space, e.g., binomial distribution, are not stationary
solutions of the above class.

Based on this idea, Al-Osh and Alzaid (1987) introduced the Poisson INAR(1) or
PINAR(1) process which was subsequently studied by Freeland and McCabe (2004,
2005), McCabe and Martin (2005), Silva et al. (2009) and many others. This model is
widely used in various scientific disciplines because of its nice closed mathematical
form. However, when data in practice are under-dispersed (variance is smaller than
mean) or over-dispersed (variance is larger than mean), such class of PINAR(1) models
does not fit the data well. In such cases, over-dispersed INAR(1) models like geomet-
ric INAR(1) (GINAR(1) in short), negative binomial INAR(1) (NBINAR(1) in short)
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process proposed by McKenzie (1986), compound Poisson INAR(1) (CPINAR(1) in
short) process proposed by Schweer and Weill (2014) are very useful. However, this
over-dispersed class of INAR(1) models also fails when data contains a large num-
ber of zeros. For example, the skin lesions data used by Jazi et al. (2012) contains a
large number zeros. In such cases, the PINAR(1), GINAR(1) and other over-dispersed
models do not fit the data well. As an alternative, Jazi et al. (2012) proposed a class of
zero-inflated Poisson INAR(1) (ZINAR(1) in short) models whose innovation distri-
bution is zero-inflated Poisson. Such models can also be used for zero-deflated data.
However, the marginal distribution of their model is very complicated and does not
have any closed form expression. Recently, Maiti et al. (2015) proposed an another
class of zero-inflated Poisson INAR(1) models based on binomial thinning operator
for which the marginal distribution of Y; is zero-inflated Poisson. Such models per-
form better than the usual over-dispersed models like GINAR(1) in capturing the large
number of zeros.

On the other hand, Latour (1998) extended the binomial thinning operator to gener-
alized thinning operator which is defined as follows. Given a discrete random variable
X and a constant « lying between 0 and 1, the generalized thinning operator “e” is
defined as @ @ X = Z,X: | Bi, where B;’s are i.i.d. non-negative random variables
with mean «. Using this operator, Risti¢ et al. (2009) proposed a new geometric
INAR(1) (or NGINAR(1)) process assuming B;’s follow i.i.d. geometric distribution
with mean « and they named it negative binomial thinning operator. Several other
thinning operators and consequent INAR processes can be found in Weif3 (2008) and
Scotto et al. (2015). In order to accommodate a large number of zeros, Barreto-Souza
(2015) proposed a zero-modified geometric INAR(1) or ZMGINAR(1) process based
on the negative binomial thinning operator. They showed that the marginal distribu-
tion of such models follows a zero-inflated geometric distribution. In addition, such
models can be used for both zero-inflation and zero-deflation. However, when a count
time series data contains a large number of zeros along with a large number of ones
which often arise in practice [e.g., poliomyelitis data used by Zeger (1988)], both
the over-dispersed [e.g., GINAR(1)] and zero-inflated Poisson INAR(1) models fail.
In such scenarios, it demands some adjustment of probability mass on zero and one
observations.

In order to fill this gap, here we propose a new class of one-modified geometric
INAR(1) (or OMGINAR(1)) process, extending the idea articulated in Maiti et al.
(2015). The applications studied in this article demand a theoretical study of the
newly proposed process. We study some structural properties of the proposed model
such as mean, variance, dispersion index, autocorrelation function, marginal and joint
distributions. We show that the proposed model is strongly stationary and ergodic.
We study the parameter estimation using Yule-Walker (YW) and quasi-maximum
likelihood estimation (QMLE) methods. We also provide a mathematical proof of
consistency of the YW estimators. Furthermore, the robustness of the proposed model
is studied in great details with respect to various forecasting measures of accuracy
using simulated data from various INAR(1) models like PINAR(1), GINAR(1) and
ZINAR(1). Finally, we illustrate the proposed model using two real data sets, namely
the monthly cases of poliomyelitis in the US and monthly cases of assault data reported
in Pittsburgh, US.
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We present the article as follows. In Sect. 2, we describe the proposed model
along with its different distributional properties like marginal distribution and auto-
correlation. Joint and conditional distributions along with its 4-step ahead forecasting
distribution are discussed in Sect. 3. In Sect. 4, we discuss two estimation methods,
namely the YW and the QMLE to estimate the model parameters. Simulation exper-
iments are presented in Sect. 5. In Sect. 6, we illustrate the methodology using two
real data sets. Sect. 7 concludes with some discussions. All the proofs and derivations
are relegated to “Appendix”.

2 The model

Let {Y;};en be a PINAR(1) process of Al-Osh and Alzaid (1987) based on binomial
thinning operator and can be writtenas Yy =« o Y;_1 +¢&, t=0,1,..., where Y;
has the Poisson marginal distribution with mean A. Let { X;};<n be a sequence of i.i.d.
random variables with P(X; = 1) = p = 1 — P(X; = 0). Then the ZIPINAR(1)
process of Maiti et al. (2015), {Z;};cn, based on the idea of allocating extra weight
at 0 in PINAR(1) process, can be written as Z, = X,Y;. Using the similar idea,
here we propose a new OMGINAR(1) process. We allocate an extra weight at 1 in
the GINAR(1) process of McKenzie (1986). Our proposed process can be defined as
follows.

Let {Y;};en be a GINAR(1) process as defined in McKenzie (1986) where Y; has
the geometric marginal distribution in the form P(Y; = i) = (1 —9)6”, i=0,1,...;
and let {X,} be a sequence of i.i.d. Bernoulli random variables defined above. Then,
the proposed process OMGINAR(1) can be written as follows

7 Y; with probability p )
"7 )1 with probability 1 — p.
Assuming that YtO = 1 when Y; = 0, we can write the above process (1) as
zZ, =YX, )

Unlike ZMGINAR(1) process of Barreto-Souza (2015) which is based on negative
binomial thinning operator defined by Risti¢ et al. (2009), our proposed process is
based on binomial thinning operator of Steutel and Van Harn (1979). Under the above
setup, we can obtain the following result.

Proposition 1 The marginal distribution of {Z;} can be written as

. I —p+po—0), or i=1

Pz =iy= | =P PO o 3)
p(l1 —6)6, for 1=0,2,3,....

Proof Proof is given in Appendix A. O
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Corollary 1 Using the above result, the marginal mean and marginal variance of
{Z:} can be obtained as E(Z;) = 1 — p + p0* and Var(Z;) = 1 — p + po*(1 +
20%) — (1 — p+ p6*)?, respectively. Hence, the dispersion-index (DI) can be computed
as

Var(Z 2po*
D]:M:p(l_g*)+p—
E(Zy) 1 —p+ po*

0
where 0% = ——.
1-6

1
Unlike the GINAR(1) process (for which DI = 1% > 1), here DI can take any

value between 0 and oo depending on the values of 8 and p. Therefore, the proposed
process can be used for both under- and over-dispersed time series data. However, in
this article, we use the process for over-dispersed time series data.

3 Joint and conditional distributional properties
3.1 Auto-correlation structure and weak stationarity

The auto-covariance function (ACVF) of the process can be routinely derived, and is
given by

p2o*(1 +6%)a", it h=1,2,...

4
1 —p+ po*(1+26%) — (1 — p + pH*)? if h=0, @

v (h) =

where y,(h) = Cov(Z;4+p, Z;). This implies that the auto-correlation function of
the process decays exponentially to 0 as 4 — oo. This phenomena can be used to
characterize the process.

From equations (3) and (4), we can see that the marginal mean of Z; and the auto-
covariance function between Z; and Z;;, do not depend on the time index ¢. Hence,
the proposed process OMGINAR(1) is at least covariance (weakly) stationary.

3.2 Strong stationarity and ergodicity

Under the above setup, it can be shown that the proposed OMGINAR(1) process is
strongly stationary. For proof, see Appendix B.

Proposition 2 The joint distribution of Z,+j, and Z, for the proposed process can be
derived as
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(1= p)>+2ppod + p*00 Py, v, (ilj)., if i=j=1
pOIO{p+ pPy, v, (1)} if i=1j#1
Pz, ...z, J)= = - . . )
ppoo + p*00 Py, 1y, (il )) if i#ELj=1
p2007 Py, 1y, (il ) if ij#1l
&)
where
Py, 1y, (i1))
i .
i—j J\ hk hnpvj—k
1—ah —0)0i—J 1 — oMoy
(1 —a)(1—0) kz_jo(k)a {1 — oMo}
+()oh D (1 — oy i=0,1,...,j
(1—aM(1 - 00"~ {a" + (1 —aM)e}, i=j+Lj+2,....
(6)
Proof Derivation of the above result is given in Appendix C. O

The joint probability generating function (pgf) of Z, 11 and Z; can be derived as

, 1-6 1-6
2.2, (u, v) = (1= p)Tuv + p(l = p) | { 0 +p(l—p)
5 AA 4+ au)
P A4+ +oau+v—auv)’

+

which is not symmetric in # and v. Hence the process is not time-reversible. This is
also because the hidden process {Y;} is not time-reversible.

Using the joint distribution result of Z;1, and Z; in (5), we can prove that the
proposed OMGINAR(1) process is ergodic. See Appendix D for the proof.

3.3 Conditional distribution

Even though the latent process {Y;} is a Markov Chain of order one, i.e., given
(Yz, ..., Y1), Yry1 depends only on the most present observation Y;, the observed
process {Z;} may not be a Markov chain of order one. In fact, the order of the process
{Z,} cannot be assured. For example, suppose Z; # 1, then the conditional distribu-

tion of Z;y1 given (Z;, Z;—1, ..., Z1) is equivalent to the conditional distribution of
Z;41 given Z;. However, if Z; = 1 and Z;_ # 1, then the conditional distribution of
Z:41 given (Zy, Zs—1, ..., Z1) is equal to the conditional distribution of Z;; given

(Zi, Z;—1). Ingeneral,if Z, = 1, ..., Z;_j4+1 = 1 but Z,_; # 1, then the conditional
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distribution of Z;;| given (Z;, Z;_1, ...) is equal to the conditional distribution of
Ziyy given (Zy, Zi—1, ..., Zi—k).

Again the above result can be generalized to Z;;; from Z;;, i.e., for any
given integer & > 1, the conditional distribution of Z,4, given (Z, = 1,Z,_1 =
1,....Zi—k+1 = 1,Z;—y # 1,...) is equal to the conditional distribution of Z,
given (Z; =1,Zi—1=1,...,Zi—jpyr1=1,Z; #1).

Since the process is not a Markov Chain, the conditional distribution of Z; given past
observations does not have any closed form expression. Thus the run distribution of
zeros and ones, and expected length of those runs do not have any closed mathematical
formula. Therefore, results related to expected length of runs of zeros and ones for the
proposed process are difficult to compute.

4 Parameter estimation
4.1 Yule-Walker estimation

Given adataset {Z1, Z3, ..., Z,} of size n, we can write the following three moment
equations to obtain the YW estimates of «, 6 and p:

fy=1—p+po* ®)
fty = po*(1 +20%) + (1 — p) ©
(1) = p*0* (1 + 0)ax (10)
where /1| = Zzt, ZZ,,and p.(1) = Z(zt A(Ziy = ).
=2

After solvmg the first two equatlons we can obtain the YW estimates of p from
the following quadratic equation

2p% + (5i3) — ph —Hp +2(i) — D* =0. (1)
Suppose Py, be the YW estimate of p, then from the first equation (8) we can get

A* /’L/l -1+ [ayw
0w = ~
. Pyw
which implies
é _ /fL/l -1+ zﬁ}'w (12)
w — ;. o~ A -
Y = 14 2Py

From the third moment Eq. (10), we get
. y=(1)

Oyy = —/—F————F~—. (13)
yw Az % (1+9;w)

yw yw
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Proposition 3 Under the above setup, the YW estimators of o, 6 and p are consistent,
ie.,

A

~ 14 P ~ P
Qyy — «, Oyy — 0, Pyw — P,
P !/
where © — denotes the convergence in probability.

Proof Proof is given in Appendix F. O

4.2 Quasi-maximum likelihood estimation

Suppose {Z1, Z>, ..., Z,} be set of n observations. In order to obtain the maximum
likelihood estimates of OMGINAR(1) process, we have to maximize the log likelihood
function

gn(as 97 p) = lnp(Zl’ Zzs MR} Zl’l)
=10 (p(Z)p(Z2 | Z0p(Z3 | 22,20 . p(Zy | Zuoto -, 20))

subject to the constraint 0 < «, 6, p < 1, where for the proposed process, the condi-
tional distribution of Z; given the past observations can be written as

p(Zi|Zi—1) ifZ;_1 #1
717 7z P(Zt|Zt—1: Zi—2) if Zi1=1,7Z; 7'5 1
P2 2202 ) =\ (71 Zis1, Zean Zoes) W21 =1, Zyn = 1, Zy3 # 1

In practice, beyond k = 1, p(Z:|Zi—1 = 1,Zi 2 =1, ..., Zt—jy1 = |, Zs— £ 1)

has a very cumbersome expression. For example, for k = 2, we will have 2* = 8 differ-

ent cumbersome expressions for the conditional distribution of p(Z;|Z;_1, Z;—3). To

avoid that, here we propose to use one-step QMLE where we maximize £*(«, 0, p) =
n

In p(Zy) + Z In p(Z;|Z;_1) instead of maximizing the actual likelihood function.
1=2

In the next section, using some simulated data sets we study the consistency of this

one-step QMLE method both with respect to bias and standard error.

5 Simulation study

In this section, we carried out some simulation experiments to compare the proposed
model with some other existing INAR(1) models, namely the PINAR(1), GINAR(1),
CPINAR(1) with Poisson;, and ZINAR(1) models. For model validation, we generated
samples from the proposed model, and compared the fit of the proposed model to the
data with the above five models with respect to AIC and some /-step ahead forecasting
accuracy measures, namely predicted root mean squared error or PRMSE(%), predicted
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mean absolute error or PMAE(%) and percentage of true prediction PTP(/) which can
be obtained using the following formulas:

A R .
PRMSE(h) = E ((Yueh = Fura)? | Yo =J =Y i = D) h= 120
i=l1

where l?rff'g){mn = mean(Y,1;|Y,_x1;) be the h-step ahead conditional mean of the

fitted process;

Ypii — Y h=1,2,...,

median,n+i |’

PMAE(h) = E (

. 1 &
Yoh — ‘ V)=
n+h n+h | n:l m Zl

1=
where i;rEz}?dian,n = @n(mi |Y,—n+i) be the h-step ahead conditional median
of the fitted process; and

_ _7 A1y _ S oh—
PTP(h) =E I(Yn+h = Yn+h) | Yn:l —; Z I(Yn+t = Ymodg’,H,[) x 100; h = 17 2,.. i
i=1

where ?rg;)de,n = n%?e(YH,- |Y,,—n+i) be the h-step ahead conditional mode of the
fitted process, and Y,.1 = (Y, Y1, ..., Y1). To study the robustness of the proposed

model, we generated samples from the PINAR(1), GINAR(1), CPINAR(1) with with
Poisson,, and ZINAR(1) models.

To begin with, we generated samples from the OMGINAR(1) process. We set the
parameter values « = 0.3,0.6, 6 = 0.6, and p = 0.5,0.7,0.9 and sample sizes
n = 100, 500, 1000, 5000. Note that «, the first order ACF of the hidden process
GINAR(1), can take any value between 0 and 1. Therefore, we set « = 0.3 for the
class of lower ACF values and @ = 0.6 for the class of higher ACF values. Here 6 = 0.6
was chosen based on some real data examples. However, the mixture parameter p that
plays the main role in differentiating the proposed model from the GINAR(1) process
was varied between 0.5 and 1. Here p close to 1 implies the process almost equals to
the GINAR(1) process and close to O implies that the resulting process coincides with
a degenerate process at 1. So we decided to set p not very close to 0. Besides, samples
of size 100 were used to study the small-sample properties, samples of size 5000 were
used to get an idea about the large-sample properties, and samples of sizes 500 and
1000 were used for moderate-sample properties. For a fixed sample size and fixed set
of parameter values, we generated the samples 500 times and obtained the average
estimates of parameters along with their biases and standard errors. The estimated
parameters with their biases and standard errors are presented in Table 1. As we can
see, there is very little effect on the biases of the QMLE estimates whereas standard
errors converge to zero, as the sample size increases.

For model validation, first we performed a comparison between our proposed model
and other competing models mentioned earlier with respect to AIC. We repeated
the above simulation experiment and computed the AIC for all the models under
comparison. Based on 500 Monte Carlo replications, we reported the percentage of
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Table 2 Selection percentages of various models under study through AIC where the data are generated
from the OMGINAR(1) process with various sets of parameter values

Sample size (n) PINAR(1) GINAR(1) CPINAR(1) ZINAR(1) OMGINAR(1)

a=03,0=0.6,p=0.5
100 0 0 0 0 100.0
500 0 0 0 0 100.0
1000 0 0 0 0 100.0
5000 0 0 0 0 100.0
a=03,0=0.6,p=0.7
100 0.2 0 0.2 0 99.6
500 0 0 0 0 100.0
1000 0 0 0 0 100.0
5000 0 0 0 0 100.0
a=0.3,0=0.6,p=09
100 0.2 32.7 6.9 1.2 59.0
500 0.0 0.4 0.0 0.0 99.6
1000 0.0 0.0 0.0 0.0 100.0
5000 0.0 0.0 0.0 0.0 100.0
a=0.6,0 =0.6,p=0.5
100 0 0 0 0 100.0
500 0 0 0 0 100.0
1000 0 0 0 0 100.0
5000 0 0 0 0 100.0
a=0.6,0=0.6,p=0.7
100 0.5 0.5 0 0 99.0
500 0 0 0 0 100.0
1000 0 0 0 0 100.0
5000 0 0 0 0 100.0
a=0.6,06=06,p=09
100 0 275 7.5 2.5 62.5
500 0 0.0 0.0 0.0 100.0
1000 0 0.0 0.0 0.0 100.0
5000 0 0.0 0.0 0.0 100.0

times AIC selects a particular model among the set of six models in Table 2. It turns
out that as the sample size increases, AIC selects the OMGINAR(1) model almost all
the time. In other words, the proposed model is consistent with respect to AIC.

We also performed a similar study with respect to point forecasting accuracy mea-
sures, namely PRMSE(%), PMAE(h) and PTP(h). In this case, we fixed the sample size
n = 400 and repeated the above simulation experiment for all the above set of parame-
ter values. To compute the accuracy measures, we divided each sample into two parts.
The first part consisting of 300 (training set) observations were used to fit the models
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under comparison and the remaining 100 observations (validation set) were used to
calculate the above three accuracy measures for 2z = 1, 2, 3, 4, 5. Based on 500 Monte
Carlo replications, we computed the average values of these measures and reported
them in Tables 3, 4 and 5. As we can see, our proposed model performs better than
the competing models considered in this study, as the mixture parameter decreases. In
other words, as the mixture parameter decreases, the proposed model deviates from
the GINAR(1) model, resulting in higher forecasting accuracy than the GINAR(1)
and other four competing models. Furthermore, it is observed that as « increases, the
forecasting accuracy also increases across all the models. This is because the mean
and variance of the innovation process &; of the hidden process GINAR(1) decreases
to zero as « increases to one (i.e., the innovation process converges to a degenerate
process degenerated at 0). On the other hand, as we can see from Tables 3,4 and 5, the
forecasting accuracy decreases across all the models as & increases; this finding is in
conformity with our intuitive expectation that as one goes far ahead from the present,
chances of making an accurate forecast will decrease.

To study the robustness of the OMGINAR(1) model, we simulated data from dif-
ferent models, viz, PINAR(1), GINAR(1), CPINAR(1) with Poisson,, ZINAR(1) and
ZMGINAR models, and computed the percentage of times the model is selected
by AIC and how it performs with respect to the above forecasting accuracy mea-
sures. However, we could not include the ZMGINAR(1) model in the simulation

study because for some simulated data sets, the estimated value of « for the ZMGI-

NAR(1) model was out of the parametric space (max{0, H—M}, L). However,

l+7p 14+p
for the Poliomyelitis and assault data analyses in Sect. 6, the estimated parameter o

for the ZMGINAR(1) model lies in the above restricted interval. So, we included this
important model in the data analysis section but not here. For all the data generat-
ing models, we set « = 0.3, 0.6 for all the models. Individually, we set A = 1, 1.5
for the PINAR(1) and CPINAR(1) models, 8 = 0.5, 0.6 for the GINAR(1) model,
and A = 1.5, p = 0.1,0.3, 0.5 for the ZINAR(1) model. For each data generating
process (DGP), we repeated the above procedure to compute the i-step ahead fore-
casting accuracy measures. We only reported the results based on DGP PINAR(1) in
Tables 6, 7 and 8; and on DGP GINAR(1) in Tables 9, 10 and 11. For other DGPs,
similar kind of observations are observed. So we skipped those results here. As we
can see from all those results, our model performs at least as good as (often better
than) the GINAR(1) process in terms of the forecasting accuracy measures. Irrespec-
tive of whether the data were generated from PINAR(1) or GINAR(1) or CPINAR(1)
or ZINAR(1), our proposed model always has lower forecasting errors compared to
the GINAR(1) process. This is because the proposed process is a more generalized
version of the GINAR(1) process; more specifically, when the mixing parameter p is
1, the proposed process reduces to the GINAR(1) process. While we are considering a
more complicated process compared to the GINAR(1) process by introducing an extra
parameter p, the added complexity of our proposed process is offset by the improved
fitting and forecasting accuracy measures. In addition, note that, here our objective is
to improve the fitting of the data, not the inference of the model parameters. In that
respect, our approach is quite successful.
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6 Data analysis
6.1 Poliomyelitis data

We consider the monthly cases of poliomyelitis data in the US for a period of 14 years
from 1970 to 1983. This data set was first analyzed by Zeger (1988). In particular, it has
168 observations; out of which 64 (38%) observations are zero, 55 (32%) observations
are one, and remaining 49 (30%) observations have monthly cases more than one. The
marginal mean and marginal variance are computed as 1.33 and 3.50, and hence the
dispersion index which is defined as the ratio of variance and mean is given as 2.63. It
indicates that the data is over-dispersed. The raw data along with its ACF and PACF
are plotted in Fig. 1 to see the characteristic of the data.

Since first lag of PACF plot in Fig. 1 is significant, we fitted most of the existing
INAR(1) models, namely Poisson INAR(1), over-dispersed models like GINAR(1)
and CPINAR(1), zero-inflated models like ZINAR(1) and ZMGINAR(1), and our
proposed OMGINAR(1) model to the data to facilitate model comparison. Based on
these fitted models, we computed the respective expected frequencies and plotted
them in Fig. 2 with the observed frequencies. As we can see, while the PINAR(1)
process underestimates the zero cases, the GINAR(1) process overestimates the zero
observations and underestimates the one observations. This kind of limitations is seen

Monthly poliomyelitis data
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Fig. 1 Monthly cases of poliomyelitis in US during 1970 to 1983, and its ACF and PACF plots
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Observed vs PINAR(1)

Observed vs ZINAR(1)
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Fig. 2 Observed vs expected frequency distribution for the monthly poliomyelitis data

with the other existing models under consideration. However, as we can see from
Fig. 2 and x2-goodness of fit statistic from Table 12, our proposed OMGINAR(1)
model outperforms the other models with respect to the observed-expected frequency
distributions comparison.

Furthermore, we examined the effectiveness of the proposed model over other
existing INAR(1) models mentioned above with respect to some forecasting accuracy
measures. To compute the forecasting accuracy measures, we divided the data set
into two parts, the first part consisting of the first 148 observations (training set)
were used to fit the models under comparison and the remaining 20 observations
(validation set) were used to compute all the three forecasting accuracy measures. We
presented the results based on the forecasting accuracy measures and AIC in Table 12.
The results show that except PINAR(1) model, other models have same forecasting
accuracy measures. However, our proposed model has the lowest AIC value which
indicates that it fits the data best among all the existing models considered in this
study.

6.2 Aggravated assault data
In our second application, we analyzed a monthly aggravated assault data set that

gives the monthly cases of aggravated assault reported in the 34th police car beat in
Pittsburgh, US. The data was first analyzed by Barreto-Souza (2015) using a zero-
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Monthly assault data
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Fig. 3 Monthly cases of aggravated assault data reported in Pittsburgh, and its ACF and PACF plots

mixture of geometric INAR(1) process. The marginal mean and variance for the data
set are 0.845 and 0.997, and hence the dispersion index was computed as 1.179. The
data set contains 144 observations from January 1990 to December 2000. We presented
the data along with its ACF and PACF in Fig. 3.

We fitted all the six models mentioned above and reported their respective estimated
parameter values along with AIC, PRMSE, PMAE and PTP. As we can see, the ZMGI-
NAR(1) model has the lowest AIC value, however our newly proposed model has the
second lowest AIC value. Also to see the difference more closely, we used pairwise
bar plot for all the models against the observed data; these plots are displayed in Fig. 4.
As like the poliomyelitis data, here also PINAR(1) process underestimates zero, and
overestimates one, whereas both CPINAR(1) and GINAR(1) processes overestimate
zero and underestimate one. However, ZINAR(1) and ZMGINAR(1) processes esti-
mate zeros and ones better than the other existing processes but poorly perform on
the other observations. In contrast, our proposed model fits all the observations better
than its competitors. This is also clear from the x2-goodness of fit statistic given in
Table 13.

To compute the forecasting accuracy measures, we divided the data set into two
parts, the first part consisting of the first 124 observations (training set) were used to
fit the models under comparison and the remaining 20 observations (validation set)
were used to compute all the three forecasting accuracy measures. From Table 13, we
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Fig. 4 Observed vs expected frequency distribution for the monthly assault data

see that there is not much difference among these models in terms of the forecasting
measures except the ZMGINAR(1) model. The ZMGINAR(1) model has the highest
forecasting accuracy in terms of the PTP measure but it has the lowest forecasting
accuracy with respect to both PRMSE and PMAE measures. On the other hand, our
proposed model along with PINAR(1) and ZINAR(1) models jointly perform better
than the others in terms of the PRMSE and PMAE measures. Therefore, the proposed
model can be an alternative choice in this case as well.

7 Discussion

In this paper, we proposed a new mixture of geometric INAR(1) process for modeling
under and over-dispersed count time series data. We studied the stochastic properties,
such as stationarity and ergodicity of the proposed process. We also discussed the &-
step ahead coherent forecasting for the proposed model. Some simulated experiments
and two real data analyses showed that the proposed model performs at least as good
as (and often better than) the GINAR(1) and some other existing over-dispersed and
zero-inflated processes.

In particular, we studied two different methods of parameter estimation, namely
YW and QMLE for the proposed model. Mathematically we proved the consistency
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Table 13 Estimated parameters, AIC, xz—goodness of fit, and different /-step ahead forecasting accuracy
measures for the monthly aggravated assault data set where 7 = 1

Model Estimated values AIC Xz-goodness of fit PRMSE PMAE PTP

PINAR(1) Gl = 0.148 37774 1791 1.378 1.100 25.00
Amie = 0.904

GINAR(1) @mie = 0.055 38259  0.88 1.378 1.600 25.00
Omie = 0.470

CPINAR(1) Qi = 0.197 39345  1.09 1.378 1.600 25.00
Amie = 0.549

ZINAR(1) Gl = 0.145 377.64 594 1.378 1.100 25.00
Amie = 0.940
bmie = 0.175

ZMGINAR(1) @5 = 0.226 35427  1.89 1.50 1.700 30.00
fers = 0.623
Fels = —0.425

OMGINAR(1)  Gigmse = 0.095 376.90  0.84 1.378 1.100 25.00
Bgmie = 0.465

Pymie = 0.861

of the YW estimators. While the consistency of the QMLE estimators are not proved
theoretically, we empirically illustrated their consistency via extensive simulation
experiments.

Although, our study is restricted to the allocating of weight (or probability mass)
at one point, the proposed method can easily be extended for more than one points
depending on the nature of the data. Here, we made our weight distribution using
an i.i.d. Bernoulli process, however a data-driven structure can also be employed
by replacing the i.i.d. Bernoulli process with a two-state Markov chain on {0, 1} to
potentially improve the forecasting performance even better. Since we wanted to keep
things relatively simple, we did not pursue this in this current article. However, we
recognize this as a promising future research direction.
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