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Abstract We consider the problem of recovering a distribution function on the real
line from observations additively contaminated with errors following the standard
Laplace distribution. Assuming that the latent distribution is completely unknown
leads to a nonparametric deconvolution problem. We begin by studying the rates of
convergence relative to the L2-norm and the Hellinger metric for the direct problem of
estimating the sampling density,which is amixture of Laplace densitieswith a possibly
unbounded set of locations: the rate of convergence for the Bayes’ density estimator
corresponding to a Dirichlet process prior over the space of all mixing distributions
on the real line matches, up to a logarithmic factor, with the n−3/8 log1/8 n rate for the
maximum likelihood estimator. Then, appealing to an inversion inequality translating
the L2-norm and the Hellinger distance between general kernel mixtures, with a kernel
density having polynomially decaying Fourier transform, into any L p-Wasserstein dis-
tance, p ≥ 1, between the corresponding mixing distributions, provided their Laplace
transforms are finite in some neighborhood of zero, we derive the rates of convergence
in the L1-Wasserstein metric for the Bayes’ andmaximum likelihood estimators of the
mixing distribution. Merging in the L1-Wasserstein distance between Bayes and max-
imum likelihood follows as a by-product, along with an assessment on the stochastic
order of the discrepancy between the two estimation procedures.
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1 Introduction

The problem of recovering a distribution function from observations additively con-
taminated with measurement errors is the object of study in this note. Assuming data
are sampled from a convolution kernel mixture, the interest is in “estimating” the
mixing or latent distribution from contaminated observations. The statement of the
problem is as follows. Let X be a random variable (r.v.) with probability measure P0
on the Borel-measurable space (R, B(R)), with Lebesgue density p0 := dP0/dλ.
Suppose that

X = Y + Z ,

where Y and Z are independent, unobservable random variables, Z having Lebesgue
density f . We examine the case where the error has the standard Laplace distribution
with density

f (z) = 1

2
e−|z|, z ∈ R.

The r.v. Y has unknown distribution G0 on some measurable space (Y , B(Y )), with
Y ⊆ R andB(Y ) the Borel σ -field on Y . The density p0 is then the convolution of
G0 and f ,

p0(x) = (G0 ∗ f )(x) =
∫
Y

f (x − y) dG0(y), x ∈ R.

In what follows, we also write p0 ≡ pG0 to stress the dependence of p0 on G0. Letting
G be the set of all probability measures G on (Y , B(Y )), the parameter space

P :=
{

pG(·) :=
∫
Y

f (· − y) dG(y), G ∈ G

}

is the collection of all convolution Laplace mixtures and the model is nonparametric.
Supposeweobserven independent copies X1, . . . , Xn of X . The r.v.’s X1, . . . , Xn

are independent and identically distributed (i.i.d.) according to the density p0 ≡ pG0

on the real line. The interest is in recovering the mixing distribution G0 ∈ G from
indirect observations. Deconvolution problemsmay arise in a wide variety of contexts,
the error distribution being typically modelled as a Gaussian, even if also the Laplace
has relevant applications. Full density deconvolution, together with the related many
normal means problem, has drawn attention in the literature since the late 1950’s and
different deconvolution methods have been proposed and developed since then taking
the frequentist approach, the most popular being based on nonparametric maximum
likelihood and kernel methods. Rates of convergence have been mostly investigated
for density deconvolution: Fan (1991a, b) showed that deconvolution kernel density
estimators achieve global optimal rates for weighted L p-risks, p ≥ 1, when the
smoothness of the density to be recovered is measured in terms of the number of
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its derivatives. Hall and Lahiri (2008) considered estimation of the distribution func-
tion using the cumulative distribution function corresponding to the deconvolution
kernel density estimator and showed that it attains minimax-optimal pointwise and
global rates for the integrated mean-squared error over different functional classes
for the error and latent distributions, smoothness being described through the tail
behaviour of their Fourier transforms. For a comprehensive account on the topic, the
reader may refer to the monograph of Meister (2009). In this note, we do not assume
that the probability measure G0 possesses Lebesgue density. Wasserstein metrics are
then particularly well-suited as global loss functions: convergence in L p-Wasserstein
metrics for discrete mixing distributions has, in fact, a natural interpretation in terms
of convergence of the single supporting atoms of the probability measures involved.
Dedecker and Michel (2015) have obtained a lower bound on the rate of convergence
for the L p-Wasserstein risk, p ≥ 1, when no smoothness assumption, except for a
moment condition, is imposed on the latent distribution and the error distribution is
ordinary smooth, the Laplace being a special case.

Deconvolution problems have only recently begun to be studied from a Bayesian
perspective: the typical scheme considers the mixing distribution as a draw from a
Dirichlet process prior. Posterior contraction rates for recovering the mixing distribu-
tion in L p-Wasserstein metrics have been investigated in Nguyen (2013) and Gao and
van der Vaart (2016), even though the upper bounds in these articles do not match with
the lower bound in Dedecker and Michel (2015). Minimax-optimal adaptive recovery
rates for mixing densities belonging to Sobolev spaces have been instead obtained by
Donnet et al. (2018) in a fully Bayes as well as in an empirical Bayes approach to
inference, the latter accounting for a data-driven choice of the prior hyperparameters
of the Dirichlet process baseline measure.

In this note, we study nonparametric Bayes and maximum likelihood estimation
of the mixing distribution G0, when no smoothness assumption is imposed on it. The
analysis begins with the estimation of the sampling density p0: estimating the mixed
density p0 can, in effect, be the first step for recovering the mixing distribution G0.
Taking a Bayesian approach, if the random density pG is modelled as a Dirichlet–
Laplace mixture, then p0 can be consistently estimated at a rate n−3/8, up to a (log n)-
factor, if G0 has tails matching with those of the baseline measure of the Dirichlet
process, which essentially requires G0 to be in the weak support of the process, see
Proposition 1 and Proposition 2. This requirement allows to extend to a possibly
unbounded set of locations the results of Gao and van der Vaart (2016), which take
into account only the case of compactly supported mixing distributions. Taking a
frequentist approach, p0 can be estimated by the maximum likelihood still at a rate
n−3/8, up to a logarithmic factor. As far as we are aware, the result on the rate of
convergence in the Hellinger metric for the maximum likelihood estimator (MLE) of
a Laplace convolution mixture is new and is obtained taking the approach proposed
by Van de Geer (1996), according to which it is the “dimension” of the class of kernels
and the behaviour of p0 near zero that determine the rate of convergence for the MLE.
As previously mentioned, results on the estimation of p0 are interesting in view of
the fact that, appealing to an inversion inequality translating the Hellinger or the L2-
distance between kernel mixtures, with Fourier transform of the kernel density having
polynomially decaying tails, into any L p-Wasserstein distance, p ≥ 1, between the
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correspondingmixing distributions, rates of convergence in the L1-Wassersteinmetric
for the MLE and the Bayes’ estimator of the mixing distribution can be assessed.
Merging in the L1-Wasserstein metric between Bayes and maximum likelihood for
deconvolving Laplace mixtures follows as a by-product.
Organization. The note is organized as follows. Convergence rates in the Hellinger
metric for Bayes and maximum likelihood density estimation of Laplace convolution
mixtures are preliminarily studied in Sect. 2 and in Sect. 3, respectively, in view
of their subsequent instrumental use for assessing the L1-Wasserstein accuracy of
the two estimation procedures in recovering the mixing distribution of the sampling
density. Merging between Bayes and maximum likelihood follows, as shown in Sect.
4. Remarks and suggestions for possible refinements and extensions of the exposed
results are presented in Sect. 5. Auxiliary lemmas, along with the proofs of the main
results, are deferred to Appendices A–D.
Notation. We fix the notation and recall some definitions used throughout.

Calculus

– The symbols “�” and “�” indicate inequalities valid up to a constant multiple that
is universal or fixed within the context, but anyway inessential for our purposes.

– For sequences of real numbers (an)n∈N and (bn)n∈N, the notation an ∼ bn means
that (an/bn) → 1 as n → +∞. Analogously, for real-valued functions f and g,
the notation f ∼ g means that f/g → 1 in an asymptotic regime that is clear
from the context.

Covering and entropy numbers

– Let (T, d) be a (subset of a) semi-metric space. For every ε > 0, the ε-covering
number of (T, d), denoted by N (ε, T, d), is defined as the minimum number
of d-balls of radius ε needed to cover T . Take N (ε, T, d) = +∞ if no finite
covering by d-balls of radius ε exists. The logarithm of the ε-covering number,
log N (ε, T, d), is called the ε-entropy.

– Let (T, d) be a (subset of a) semi-metric space. For every ε > 0, the ε-packing
number of (T, d), denoted by D(ε, T, d), is defined as the maximum number of
points in T such that the distance between each pair is at least ε. Take D(ε, T, d) =
+∞ if no such finite ε-packing exists. The logarithm of the ε-packing number,
log D(ε, T, d), is called the ε-entropy.

Covering and packing numbers are related by the inequalities

N (ε, T, d) ≤ D(ε, T, d) ≤ N (ε/2, T, d).

Function spaces and probability

– For real number 1 ≤ p < +∞, let L p(R) := { f | f : R → C, f is Borel
measurable,

∫ | f |p dλ < +∞}. For f ∈ L p(R), the L p-norm of f is defined
as || f ||p := (

∫ | f |p dλ)1/p. The supremum norm of a function f is defined as
|| f ||∞ := supx∈R | f (x)|.

– For f ∈ L1(R), the complex-valued function f̂ (t) := ∫ +∞
−∞ eitx f (x) dx , t ∈ R,

is called the Fourier transform of f .
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– All probability density functions aremeant to be with respect to Lebesguemeasure
λ on R or on some subset thereof.

– The same symbol, G (say), is used to denote a probability measure on a Borel-
measurable space (Y , B(Y )) and the corresponding cumulative distribution
function (c.d.f.).

– The degenerate probability distribution putting mass one at a point θ ∈ R is
denoted by δθ .

– The notation P f abbreviates the expected value
∫

f dP , where the integral is
understood to extend over the entire natural domain when, here and elsewhere, the
domain of integration is omitted.

– Given a r.v. Y with distribution G, the moment generating function of Y or the
Laplace transform of the probability measure G is defined as

MG(s) := E[esY ] =
∫
Y

esy dG(y) for all s for which the integral is finite.

Metrics and divergences

– TheHellinger distance between any pair of probability density functions q1 and q2
onR is defined as h(q1, q2) := {∫ (q1/2

1 −q1/2
2 )2 dλ}1/2, the L2-distance between

the square-root densities. The following inequalities, due to LeCam (1973), p. 40,
relating the L1-norm and the Hellinger distance hold:

h2(q1, q2) ≤ ||q1 − q2||1 (1)

and

||q1 − q2||1 ≤ 2h(q1, q2). (2)

– For ease of notation, the same symbol d is used throughout to denote the L1-norm,
the L2-norm or the Hellinger metric, the intended meaning being declared at each
occurrence.

– For any probability measure Q on (R, B(R)) with density q, let

KL(P0‖Q) :=
⎧⎨
⎩

∫
log

dP0

dQ
dP0 =

∫
p0q>0

p0 log
p0
q

dλ, if P0 � Q,

+∞, otherwise,

be the Kullback–Leibler divergence of Q from P0 and, for k ≥ 2, let

Vk(P0‖Q) :=
⎧⎨
⎩

∫ ∣∣∣∣ log dP0

dQ

∣∣∣∣
k

dP0 =
∫

p0q>0
p0

∣∣∣∣ log p0
q

∣∣∣∣
k

dλ, if P0 � Q,

+∞, otherwise,
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be the kth absolute moment of log(dP0/dQ). For any ε > 0 and a given k ≥ 2,
define a Kullback–Leibler type neighborhood of P0 as

BKL(P0; εk) :=
{

Q : KL(P0‖Q) ≤ ε2, Vk(P0‖Q) ≤ εk
}

.

– For any real number p ≥ 1 and any pair of probability measures G1, G2 ∈ G
with finite pth absolute moments, the L p-Wasserstein distance between G1 and
G2 is defined as

Wp(G1, G2) :=
(

inf
γ∈�(G1, G2)

∫
Y ×Y

|y1 − y2|p γ (dy1, dy2)

)1/p

,

where �(G1, G2) is the set of all joint probability measures on (Y × Y ) ⊆ R
2,

with marginals G1 and G2 on the first and second arguments, respectively.

Stochastic order symbols
Let (Zn)n∈N be a sequence of real-valued random variables, possibly defined on

entirely different probability spaces (	n, Fn, Pn)n∈N. Suppressing n in P causes no
confusion if it is understood that P refers to whatever probability space Zn is defined
on. Let (kn)n∈N be a sequence of positive real numbers. We write

– Zn = OP(kn) if limT →+∞ lim supn→+∞ P(|Zn| > T kn) = 0. Then, Zn/kn =
OP(1),

– Zn = oP(kn) if, for every ε > 0, limn→+∞ P(|Zn| > εkn) = 0. Then, Zn/kn =
oP(1).

Unless otherwise specified, in all stochastic order symbols used throughout, the prob-
ability measure P is understood to be Pn

0 , the joint law of the first n coordinate
projections of the infinite product probability measure PN

0 .

2 Rates of convergence for L1-Wasserstein deconvolution of
Dirichlet–Laplace mixtures

In this section, we present some results on the Bayesian recovery of a distribution
function from data contaminated with an additive random error following the stan-
dard Laplace distribution: we derive rates of convergence for the L1-Wasserstein
deconvolution of Dirichlet–Laplace mixture densities. The density is modeled as a
Dirichlet–Laplace mixture

pG(·) ≡ (G ∗ f )(·) =
∫
Y

f (· − y) dG(y),

with the kernel density f being the standard Laplace and the mixing distribution G
being any probability measure on (Y , B(Y )), with Y ⊆ R. As a prior for G, we
consider a Dirichlet process with base measure α on (Y , B(Y )), denoted by Dα .
We recall that a Dirichlet process on a measurable space (Y , B(Y )), with finite
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and positive base measure α on (Y , B(Y )), is a random probability measure G̃
on (Y , B(Y )) such that, for every finite partition (B1, . . . , Bk) of Y , k ≥ 1, the
vector of random probabilities (G̃(B1), . . . , G̃(Bk)) has Dirichlet distribution with
parameters (α(B1), . . . , α(Bk)). ADirichlet process mixture of Laplace densities can
be structurally described as follows:

– G̃ ∼ Dα ,
– given G̃ = G, the r.v.’s Y1, . . . , Yn are i.i.d. according to G,
– given (G, Y1, . . . , Yn), the r.v.’s Z1, . . . , Zn are i.i.d. according to f ,
– sampled values from pG are defined as Xi := Yi + Zi for i = 1, . . . , n.

Let the sampling density p0 be itself a Laplace mixture with mixing distribution
G0, that is, p0 ≡ pG0 = G0 ∗ f . In order to assess the rate of convergence in the
L1-Wasserstein metric for the Bayes’ estimator of the true mixing distribution G0,
we appeal to an inversion inequality relating the L2-norm or the Hellinger distance
between Laplace mixed densities to any L p-Wasserstein distance, p ≥ 1, between
the corresponding mixing distributions, see Lemma 4 in Appendix D. Therefore, we
first derive rates of contraction in the L2-norm and the Hellinger metric for the pos-
terior distribution of a Dirichlet–Laplace mixture prior: convergence of the posterior
distribution at a rate εn , in fact, implies the existence of Bayes’ point estimators that
converge at least as fast as εn in the frequentist sense. The same indirect approach has
been taken by Gao and van der Vaart (2016), who deal with the case of compactly
supported mixing distributions, while we extend the results to mixing distributions
possibly supported on the whole real line or on some unbounded subset thereof. We
present two results on posterior contraction rates for aDirichlet–Laplacemixture prior.
The first one, as stated in Proposition 1, is relative to the L1-norm or the Hellinger
metric; the second one, as stated in Proposition 2, is relative to the L2-metric. Proofs
are deferred to Appendix C.

Proposition 1 Let X1, . . . , Xn be i.i.d. observations from a density p0 ≡ pG0 =
G0∗ f , with the kernel density f being the standard Laplace and the mixing distribution
G0 such that, for some decreasing function A0 : (0, +∞) → [0, 1] and a constant
0 < c0 < +∞,

G0([−T, T ]c) ≤ A0(T ) � exp (−c0T ) for large T > 0. (3)

If the baseline measure α of the Dirichlet process is symmetric around zero and
possesses density α′ such that, for some constants 0 < b < +∞ and 0 < τ ≤ 1,

α′(y) ∝ exp (−b|y|τ ), y ∈ R, (4)

then there exists a sufficiently large constant M > 0 such that

�(d(pG , p0) ≥ Mn−3/8 log5/8 n | X (n)) = oP(1),

where �(· | X (n)) denotes the posterior distribution corresponding to a Dirichlet–
Laplace process mixture prior after n observations and d can be either the Hellinger
or the L1-metric.
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Remark 1 In virtue of the following inequality,

∀ G, G ′ ∈ G , ||pG − pG ′ ||22 ≤ 4|| f ||∞h2(pG, pG ′),

where || f ||∞ = 1/2 for the standard Laplace kernel density, see (28) in Lemma 3,
the L2-metric posterior contraction rate for a Dirichlet–Laplace mixture prior could,
in principle, be derived from Proposition 1, which relies on Theorem 2.1 of Ghosal
et al. (2000), p. 503, or Theorem 2.1 of Ghosal and van der Vaart (2001), p. 1239,
but this would impose slightly stronger conditions on the density α′ of the baseline
measure than those required in Proposition 2 below, which is based on Theorem 3
of Giné and Nickl (2011), p. 2892, that is tailored for assessing posterior contraction
rates in Lr -metrics, 1 < r < +∞, taking an approach that can only be used if one
has sufficiently fine control of the approximation properties of the prior support in the
Lr -metric considered.

Proposition 2 Let X1, . . . , Xn be i.i.d. observations from a density p0 ≡ pG0 =
G0∗ f , with the kernel density f being the standard Laplace and the mixing distribution
G0 such that condition (3) holds as in Proposition 1. If the baseline measure α of the
Dirichlet process possesses continuous and positive density α′ such that, for some
constants 0 < b < +∞ and 0 < τ ≤ 1,

α′(y) � exp (−b|y|τ ) for large |y|, (5)

then there exists a sufficiently large constant M > 0 such that

�(||pG − p0||2 ≥ Mn−3/8 log5/8 n | X (n)) = oP(1), (6)

where �(· | X (n)) denotes the posterior distribution corresponding to a Dirichlet–
Laplace process mixture prior after n observations.

As previously mentioned, convergence of the posterior distribution at a rate εn

implies the existence of point estimators that converge at least as fast as εn in the
frequentist sense, see, for instance, Theorem 2.5 in Ghosal et al. (2000), p. 506, for the
construction of a point estimator that applies to general statistical models and posterior
distributions. The posterior expectation of the density pG , which we refer to as the
Bayes’ density estimator,

p̂Bn (·) :=
∫
G

pG(·)�(dG | X (n)),

has a similar property when jointly considered with bounded semi-metrics that are
convex or whose square is convex in one argument. When the random mixing distri-
bution G̃ is distributed according to a Dirichlet process, the expression of the Bayes’
density estimator p̂Bn is given by formula (2.6) of Lo (1984), p. 353, replacing K (·, u)

with 1
2 exp {−| · −u|} at each occurrence.
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Corollary 1 Suppose that condition (3) holds for some decreasing function A0 :
(0, +∞) → [0, 1] and a finite constant c0 > (1/e) such that

G0([−T, T ]c) ≤ A0(T ) � exp (−ec0T ) for large T > 0 (7)

and condition (4) holds as in Proposition 1. Then,

d( p̂Bn , p0) = OP(n−3/8 log1/2 n),

for d being either the Hellinger or the L1-metric.

Proof In virtue of the inequality in (2), it suffices to prove the assertion for theHellinger
metric. The proof follows standard arguments as, for instance, in Ghosal et al. (2000),
pp. 506–507. By convexity of h2 in each argument and Jensen’s inequality, for εn :=
max{ε̄n, ε̃n} = n−3/8(log n)(3∨4)/8 = n−3/8 log1/2 n and a sufficiently large constant
M > 0,

h2( p̂Bn , p0) ≤
∫
G

h2(pG, p0)�(dG | X (n))

=
(∫

h(pG , p0)<Mεn

+
∫

h(pG , p0)≥Mεn

)
h2(pG, p0)�(dG | X (n))

� M2ε2n + 2�(h(pG, p0) ≥ Mεn | X (n)).

It follows that

Pn
0 h2( p̂Bn , p0) � M2ε2n + 2Pn

0 �(h(pG, p0) ≥ Mεn | X (n)) � ε2n + o(ε2n)

because we can apply the almost sure version of Theorem 7 in Scricciolo (2007), p.
636 (see also Theorem A.1 in Scricciolo (2006), p. 2918), which, under the prior mass
condition

�(h2(pG, p0)‖p0/pG‖∞ ≤ ε̃2n) � exp (−Bnε̃2n), (8)

with ε̃n := n−3/8 log1/2 n and a constant 0 < B < +∞, yields exponentially fast
convergence of the posterior distribution since Pn

0 �(h(pG, p0) ≥ Mεn | X (n)) �
exp (−B1nε̃2n) for a suitable constant 0 < B1 < +∞. To verify that condition (8)
is satisfied, we can proceed as in the proof of Proposition 2: for any G satisfying
(27), not only is h(pG, p0) � ε, but, under assumption (7) which guarantees that
MG0(−1) < +∞ and MG0(1) < +∞, it also is

||p0/pG ||∞ ≤ eaε [MG0(−1) + MG0(1)] � log(1/ε),

for aε := A−1
0 (ε2) � log log(1/ε).

Then,

log�(h2(pG, p0)‖p0/pG‖∞ ≤ ε2 log(1/ε)) � −ε−2/3 log(1/ε).
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Condition (8) is thus verified for ε̃n := ε log1/2(1/ε) = n−3/8 log1/2 n. Conclude that
h( p̂Bn , p0) = OP(εn). ��
Remark 2 Admittedly, condition (7) imposes a stringent constraint on the tail decay
rate of G0. An alternative sufficient condition for concluding that

Pn
0 �(d(pG , p0) ≥ Mεn | X (n)) = o(ε2n), for d = h or d = ‖ · ‖1, (9)

is a prior mass condition involving the kth absolute moment of log(p0/pG) for a
suitable value of k, in place of the sup-norm ‖p0/pG‖∞, which can possibly induce a
lighter condition on G0. For ε̃n := n−3/8 logω n, withω > 0, let εn := max{ε̄n, ε̃n} =
n−3/8(log n)(3/8)∨ω. It is known from Lemma 10 of Ghosal and van der Vaart (2007b),
p. 220, that if

�(BKL(P0; ε̃k
n)) � exp (−Bnε̃2n), k ≥ 2, (10)

then

Pn
0 �(d(pG, p0) ≥ Mεn | X (n)) � (nε̃2n)−k/2. (11)

Thus, if condition (10) holds for some k ≥ 6 so that (nε̃2n)−k/2 = o(ε2n), the value
k = 6 would suffice for the purpose, then condition (9) is satisfied.

We now state a result on the rate of convergence for theBayes’ estimator, denoted by
ĜB

n , of the mixing distribution G0 for the L1-Wasserstein deconvolution of Dirichlet–
Laplace mixtures. The Bayes’ estimator is the posterior expectation of the random
probability measure G̃, that is, ĜB

n (·) := E[G̃(·) | X (n)] and its expression can be
derived from the expression of the posterior distribution, cf. Ghosh and Ramamoorthi
(2003), pp. 144–146. In order to state the result, let MĜB

n
(s) := ∫ +∞

−∞ esy dĜB
n (y),

s ∈ R, whose expression can be obtained from formula (2.6) of Lo (1984), p. 353,
replacing K (x, u) with esu at all occurrences (s playing the role of x).

Proposition 3 Suppose that the assumptions of Corollary 1 hold. If, in addition, ᾱ :=
α/α(R) has finite moment generating function on some interval (−s0, s0), with 0 <

s0 < 1, and

∀ 0 < s < s0, lim sup
n→+∞

Pn
0 MĜB

n
(−s) ≤ MG0(−s)

and lim sup
n→+∞

Pn
0 MĜB

n
(s) ≤ MG0(s), (12)

then

W1(Ĝ
B
n , G0) = OP(n−1/8(log n)2/3). (13)
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Proof Let ρn := n−1/8(log n)2/3 and, for a suitable finite constant c1 > 0, Mn =
c1(log n). Fix numbers s and u such that 0 < u < s < s0 < 1. For sufficiently large
constants 0 < T, T ′, T ′′ < +∞, reasoning as in Lemma 4,

Pn
0 (W1(Ĝ

B
n , G0) > Tρn) ≤ Pn

0 (h( p̂Bn , p0) > T ′ρ3
n(log n)−3/2)

+Pn
0 (MĜB

n
(−s) + MĜB

n
(s) > T ′′euMn ρn) =: P1 + P2.

By Corollary 1, h( p̂Bn , p0) = OP(n−3/8 log1/2 n). Hence, P1 → 0 as n → +∞. By
Markov’s inequality, for some real ν > 0,

P2 � e−uMn ρ−1
n [Pn

0 MĜB
n
(−s) + Pn

0 MĜB
n
(s)]

� 1

nν
[Pn

0 MĜB
n
(−s) + Pn

0 MĜB
n
(s)] → 0 as n → +∞

by assumption (12). Thus, P2 → 0 as n → +∞. The assertion follows. ��

Some remarks are in order. There are two main reasons why we focus on deconvo-
lution in the L1-Wasserstein metric. The first one is related to the inversion inequality
in (30), where the upper bound on the L p-Wasserstein metric, as a function of the
order p ≥ 1, increases as p gets larger, thus making it advisable to begin the analysis
from the smallest value of p. The second reason is related to the interpretation of the
assertion in (13): the L1-Wasserstein distance between any two probability measures
G1 and G2 on some Borel-measurable space (Y , B(Y )), Y ⊆ R, with finite first
absolute moments, is by itself an interesting distance because it metrizes weak conver-
gence plus convergence of the first absolute moments, but it is even more interesting
in view of the fact that, letting G−1

1 (·) and G−1
2 (·) denote the left-continuous inverse

or quantile functions, G−1
i (u) := inf{y ∈ Y : Gi (y) ≥ u}, u ∈ (0, 1), i = 1, 2, it

can be written as the L1-distance between the quantile functions or, equivalently, as
the L1-distance between the cumulative distribution functions,

W1(G1, G2) =
∫ 1

0
|G−1

1 (u) − G−1
2 (u)| du

=
∫
Y

|G1(y) − G2(y)| dy = ||G1 − G2||1, (14)

see, e.g., Shorack and Wellner (1986), pp. 64–66. The representation in (14) was
obtained by Dall’Aglio (1956). Thus, by rewriting W1(ĜB

n , G0) as the L1-distance
between the c.d.f.’s ĜB

n and G0, the assertion of Proposition 3,
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W1(Ĝ
B
n , G0) = ||ĜB

n − G0||1 = OP(n−1/8(log n)2/3),

becomes more transparent and meaningful.

3 Rates of convergence for ML estimation and L1-Wasserstein
deconvolution of Laplace mixtures

In this section, we first study the rate of convergence in the Hellinger metric for the
MLE p̂n of a Laplace mixture density p0 ≡ pG0 = G0 ∗ f , with unknown mixing
distribution G0 ∈ G . We then derive the rate of convergence in the L1-Wasserstein
metric for the MLE Ĝn of the mixing distribution G0, which corresponds to the
MLE p̂n of the mixed density p0, by appealing to an inversion inequality relating the
Hellinger distance between Laplace mixture densities to any L p-Wasserstein distance,
p ≥ 1, between the corresponding mixing distributions (see Lemma 4 in Appendix
D).

A MLE p̂n of p0 is a measurable function of the observations taking values in
P := {pG : G ∈ G } such that

p̂n ∈ argmax
pG∈P

1

n

n∑
i=1

log pG(Xi ) = argmax
pG∈P

∫
(log pG) dPn,

where Pn := n−1 ∑n
i=1 δXi is the empirical measure associated with the random

sample X1, . . . , Xn , namely, the discrete uniform distribution on the sample values
that putsmass 1/n on each one of the observations.We assume that theMLE exists, but
do not require it to be unique, see Lindsay (1995), Theorem 18, p. 112, for sufficient
conditions ensuring uniqueness.

Results on rates of convergence in the Hellinger metric for the MLE of a density
can be found in Birgé and Massart (1993), Van de Geer (1993) and Wong and Shen
(1995); it can, however, be difficult to calculate the L2-metric entropy with bracketing
of the square-root densities that is employed in these articles. Taking instead into
account that a mixture model {∫Y K (·, y) dG(y) : G ∈ G } is the closure of the
convex hull of the collection of kernels {K (·, y) : y ∈ Y ⊆ R}, which is typically
a much smaller class, a bound on a form of metric entropy without bracketing of the
class of mixtures can be derived from a covering number of the class of kernels (a
result on metric entropy without bracketing of convex hulls that is deducible from Ball
and Pajor 1990), so that a relatively simple “recipe” can be given to obtain (an upper
bound on) the rate of convergence in the Hellinger metric for the MLE of a density in
terms of the “dimension” of the class of kernels and the behaviour of p0 near zero, cf.
Corollary 2.3 of Van de Geer (1996), p. 298.

Proposition 4 Let the sampling density p0 ≡ pG0 = G0 ∗ f , with the kernel density
f being the standard Laplace and the mixing distribution G0 ∈ G . Suppose that, for
a sequence of non-negative real numbers σn = O(n−3/8 log1/8 n), we have
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(a)
∫

p0≤σn
p0 dλ � σ 2

n ,

(b)
∫

p0>σn
(1/p0) dλ � log(1/σn).

Then,
h( p̂n, p0) = OP(n−3/8 log1/8 n).

Proof We begin by spelling out the remark mentioned in the introduction concerning
the fact that a mixture model is the closure of the convex hull of the collection of
kernels. Recall that the convex hull of a class K of functions, denoted by conv(K ),
is defined as the set of all finite convex combinations of functions inK ,

conv(K ) :=
{ r∑

j=1

θ j K j : θ j ≥ 0, K j ∈ K , j = 1, . . . , r,
r∑

j=1

θ j = 1, r ∈ N

}
.

In our case,

K := { f (· − y) : y ∈ Y ⊆ R}

is the collection of kernels with f the standard Laplace density. The classP := {pG :
G ∈ G } of all Laplace convolution mixtures pG = G ∗ f is the closure of the convex
hull of K ,

P = conv(K ).

Clearly,P is itself a convex class. This remark enables us to apply Theorem 2.2 and
Corollary 2.3 of Van de Geer (1996), pp. 297–298 and 310, or, equivalently, Theorem
7.7 of Van de Geer (2000), pp. 104–105, whose conditions are hereafter shown to be
satisfied. To the aim, we define the class

K /p0 :=
{

f (· − y)

p0(·) 1{p0 > σn} : y ∈ Y

}

and the envelope function

K̄ (·) := sup
y∈Y

f (· − y)

p0(·) 1{p0 > σn},

where we have suppressed the subscript n inK /p0 and K̄ (·) stressing possible depen-
dence on σn when σn > 0. Since, by assumption (a),

∫
p0≤σn

dP0 =
∫

p0≤σn

p0 dλ � σ 2
n

and, by assumption (b), together with the fact that ‖ f ‖∞ = 1/2,

∫
K̄ 2 dP0 �

∫
p0>σn

1

p0
dλ � log(1/σn), (15)
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we can take the sequence δ2n ∝ σ 2
n in condition (7.21) of Theorem 7.7 of Van de Geer

(2000), p. 104. Because the (standard) Laplace kernel density f is Lipschitz,

∀ y1, y2 ∈ Y , | f (· − y1) − f (· − y2)| ≤ 1

2
|y1 − y2|,

see, e.g., Lemma A.1 in Scricciolo (2011), pp. 299–300, on the set

∫
K̄ 2 dPn ≤ T 2 log(1/δn), (16)

where T > 0 is a finite constant, we find that, for dQn := dPn/(T 2 log(1/δn)),

N (δ, K /p0, || · ||2,Qn ) � δ−1 for δ > 0,

where || · ||2,Qn denotes the L2(Qn)-norm, that is, ||g||2,Qn := (
∫ |g|2 dQn)1/2. So, in

view of the result of Ball and Pajor (1990), reported as Theorem 1.1 in Van de Geer
(1996), p. 295, on the same set as in (16), we have

log N (δ, conv(K /p0), || · ||2,Qn ) � δ−2/3,

hence

log N (δ, conv(K /p0), || · ||2,Pn ) �
(

T log1/2(1/δn)

δ

)2/3

.

Next, defined the class

P(conv)
σn

:=
{

2pG

pG + p0
1{p0 > σn} : pG ∈ P

}

considered in condition (7.20) of Theorem 7.7 in Van de Geer (2000), p. 104, since

log N (2δ, P(conv)
σn

, || · ||2,Pn ) ≤ log N (δ, conv(K /p0), || · ||2,Pn ),

in view of (15), we have

sup
δ>0

log N (δ, P(conv)
σn , || · ||2,Pn )

H(δ)
= OP(1)

for the non-increasing function of δ

H(δ) := δ−2/3 log1/3(1/δn), δ > 0.

123



Bayes and maximum likelihood for L1-Wasserstein… 347

Taken �(δ) := c1δ2/3 log1/6(1/δn) with a suitable finite constant c1 > 0, we have

∀ δ ∈ (0, 1), �(δ) ≥
(∫ δ

δ2/c
H1/2(u) du

)
∨ δ

and, for some ε > 0, �(δ)/δ2−ε is non-increasing. Then, for δn such that
√

nδ2n ≥
�(δn), cf. condition (7.22) of Theorem 7.7 in Van de Geer (2000), p. 104, which
implies that, consistently with the initial choice, we can take δn ∝ n−3/8 log1/8 n, we
have h( p̂n, p0) = OP(δn) and the proof is complete. ��
Remark 3 If p0 > 0 and Y is a compact interval [−a, a], with a > 0, then
h( p̂n, p0) = OP(n−3/8). In fact, the sequence σn ≡ 0, ||K̄ ||∞ ≤ e2a and

∫
K̄ 2 dP0 ≤

e4a so that, on the set {∫ K̄ 2 dPn ≤ T }, the entropy log N (δ, conv(K /p0), || ·
||2,Pn ) � δ−2/3 and, reasoning as in Proposition 4, we find the rate n−3/8.

We now derive a consequence of Proposition 4 on the rate of convergence in the L1-
Wassersteinmetric for theMLE of G0. AMLE p̂n of themixed density p0 corresponds
to a MLE Ĝn of the mixing distribution G0, that is, p̂n ≡ pĜn

, such that

Ĝn ∈ argmax
G∈G

1

n

n∑
i=1

log pG(Xi ) = argmax
G∈G

∫
(log pG) dPn .

Clearly, Ĝn is a discrete distribution, butwe do not know the number of its components:
Lindsay (1995) showed that theMLE Ĝn is a discrete distribution supported on at most
k ≤ n support points, k being the number of distinct observed values or data points.

Corollary 2 Suppose that the assumptions of Proposition 4 hold. If, in addition,
the mixing distribution G0 has finite moment generating function in some interval
(−s0, s0), with 0 < s0 < 1, and

∀ 0 < s < s0, lim supn→+∞ Pn
0 MĜn

(−s) ≤ MG0(−s) and

lim supn→+∞ Pn
0 MĜn

(s) ≤ MG0(s), (17)

where MĜn
(s) := ∫

Y esy dĜn(y), s ∈ R, then

W1(Ĝn, G0) = OP(n−1/8(log n)13/24).

Proof Let kn := n−1/8(log n)13/24 and, for a suitable finite constant c2 > 0, Mn =
c2(log n). Fix numbers s and u such that 0 < u < s < s0 < 1. For sufficiently large
constants 0 < T, T ′, T ′′ < +∞, reasoning as in Lemma 4, we have

Pn
0 (W1(Ĝn, G0) > T kn)

≤ Pn
0 (h( p̂n, p0) > T ′k3n(log n)−3/2)

+ Pn
0 (MĜn

(−s) + MĜn
(s) > T ′′kneuMn ) =: P1 + P2.
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The term P1 can be made arbitrarily small because h( p̂n, p0) = OP(n−3/8 log1/8 n)

byProposition 4. The term P2 goes to zero as n → +∞: in fact, byMarkov’s inequality
and assumption (17), for some real 0 < l < +∞,

P2 � e−uMn k−1
n [Pn

0 MĜn
(−s) + Pn

0 MĜn
(s)]

� 1

nl
[Pn

0 MĜn
(−s) + Pn

0 MĜn
(s)] → 0 as n → +∞

and the assertion follows. ��
Remark 4 Assumption (17) essentially requires that MĜn

is an asymptotically unbi-
ased estimator of MG0 in some neighborhood of zero (−s0, s0), with 0 < s0 < 1. An
analysis of the asymptotic behaviour of certain linear functionals of the MLE Ĝn is
presented in Van de Geer (1995), wherein sufficient conditions are provided so that
they are

√
n-consistent, asymptotically normal and efficient.

4 Merging of Bayes and ML for L1-Wasserstein deconvolution of
Laplace mixtures

In this section, we show that the Bayes’ estimator and the MLE of G0 merge in the
L1-Wasserstein metric, their discrepancy vanishing, at worst, at rate n−1/8(log n)2/3

because they both consistently estimate G0 at a speed which is within a (log n)-factor
of n−1/8, cf. Proposition 3 and Corollary 2.

Proposition 5 Under the assumptions of Proposition 3 and Corollary 2, we have

W1(Ĝ
B
n , Ĝn) = OP(n−1/8(log n)2/3). (18)

Proof By the triangle inequality,

W1(Ĝ
B
n , Ĝn) ≤ W1(Ĝ

B
n , G0) + W1(G0, Ĝn),

where W1(ĜB
n , G0) = OP(n−1/8(log n)2/3) and W1(G0, Ĝn) = OP(n−1/8

(log n)13/24) by Proposition 3 and Corollary 2, respectively. Relationship (18) fol-
lows. ��

Proposition 5 states that the Bayes’ estimator and the MLE of G0 will eventu-
ally be indistinguishable and (an upper bound on) the speed of convergence for their
L1-Wasserstein discrepancy is determined by the stochastic orders of their errors in
recovering G0. The crucial question that remains open is whether the Bayes’ esti-
mator and the MLE are rate-optimal. Concerning this issue, we note that, on the one
hand, other deconvolution estimators for the distribution function attain the rate n−1/8

when the error distribution is the standard Laplace, with the proviso, however, that
the L1-Wasserstein metric is not linked to the integrated quadratic risk between the
c.d.f.’s used in the result we are going to mention, so that the rates are not compa-
rable. For instance, the estimator G K

n (hn)(y) := ∫ y
−∞ pK

n (hn)(u) du, y ∈ R, of the
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c.d.f. G0 based on the standard deconvolution kernel density estimator is such that
{∫ +∞

−∞ E[G K
n (hn)(y) − G0(y)]2 dy}1/2 = O(n−1/8) when no assumptions on G0 are

postulated, except for the existence of the first absolute moment, see (3.12) in Corol-
lary 3.3 of Hall and Lahiri (2008), p. 2117. On the other hand, a recent lower bound
result, due to Dedecker and Michel (2015), Theorem 4.1, pp. 246–248, suggests that
better rates are possible. For M > 0 and r ≥ 1, let D(M, r) be the class of all proba-
bility measures G on (R, B(R)) such that

∫ +∞
−∞ |y|r dG(y) ≤ M . Let f be the error

density. Assume that there exist β > 0 and c > 0 such that, for every � ∈ {0, 1, 2},
it holds | f̂ (�)(t)| ≤ c(1 + |t |)−β , t ∈ R. Then, there exists a finite constant C > 0
such that, for any estimator Ĝn (we warn the reader of the clash of notation with the
symbol Ĝn previously used to denote the MLE of G0),

lim inf
n→+∞ n p/(2β+1) sup

G∈D(M, r)

EW p
p (Ĝn, G) > C.

For p = 1 and the (standard) Laplace error distribution, this renders the lower bound
n−1/5, which is better than the leading term n−1/8 of the upper bounds we have found,
even if it is not said that either the Bayes’ estimator or the MLE attains it.

Finally, a remark on the use of the term “merging”. Even if this term is herein
declined with a different meaning from that considered in Barron (1988), where merg-
ing is intended as the convergence to one of the ratio of the marginal likelihood to
the joint density of the first n observations, or from that in Diaconis and Freedman
(1986),wheremerging refers to the “intersubjective agreement”, asmore andmoredata
become available, between twoBayesianswith different prior opinions, the underlying
idea is, in a broad sense, the same: different inferential procedures become essentially
indistinguishable for large sample sizes.

5 Final remarks

In this note, we have studied rates of convergence for Bayes and maximum likelihood
estimation of Laplace mixtures and for their L1-Wasserstein deconvolution. The result
on the convergence rate in the Hellinger metric for the MLE of Laplace mixtures
is achieved taking a different approach from that adopted in Ghosal and van der
Vaart (2001), which is based on the L1-metric entropy with bracketing of the set of
densities under consideration and is difficult to apply in the present context, due to
the non-analyticity of the Laplace density. Posterior contraction rates for Dirichlet–
Laplace mixtures have been previously studied by Gao and van der Vaart (2016) in
the case of compactly supported mixing distributions and have been here extended to
mixing distributionswith a possibly unbounded set of locations, this accounting for the
derivation ofmore general entropy estimates, cf. Appendix B. An interesting extension
to pursue would be that of considering general kernel densities with polynomially
decaying Fourier transforms in the sense of Definition 1: indeed, in the proof of
Proposition 2, which gives an assessement of the posterior contraction rate in the L2-
metric for Dirichlet–Laplace mixtures, all conditions, except for the Kullback–Leibler
prior mass requirement, hold for any kernel density as in Definition 1, provided that
β > 1. The missing piece is an extension of Lemma 2 in Gao and van der Vaart
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(2016), pp. 615–616, which is preliminary for checking the Kullback–Leibler prior
mass condition and guarantees that a Laplace mixture, with mixing distribution that
is the re-normalized restriction of G0 to a compact interval, can be approximated in
the Hellinger metric by a Laplace mixture with a discrete mixing distribution having
a sufficiently restricted number of support points. We believe that, as for the Laplace
kernel, the number of support points of the approximating mixing distribution will
ultimately depend only on the decay rate of the Fourier transform of the kernel density,
even though, in a general proof, the explicit expression of the kernel density cannot
be exploited as in the Laplace case. Extending the result on posterior contraction rates
to general kernel mixtures would be of interest in itself and for extending the L1-
Wasserstein deconvolution result, even though this would pose in more general terms
the rate-optimality question, as it happens for the n−1/8-rate in the Laplace case, see
the remarks at the end of Sect. 4. We hope to report on these issues in a follow-up
contribution.
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Appendix A: Auxiliary results

In this section, a sufficient condition on a convolution kernel K ∈ L1(R) is stated
in terms of its Fourier transform K̂ so that the exact order of the L2-norm error for
approximating any probability density f , with polynomially decaying characteristic
function f̂ of degree β > 1/2 (see Definition 1 below) by its convolution with Kh :=
h−1K (·/h), that is, by f ∗ Kh , is assessed in terms of the bandwidth h. The result
is instrumental to the proof of Proposition 2 to show that any mixture density pG =
G ∗ f , irrespective of the mixing distribution G ∈ G , verifies the bias condition
||pG ∗ Kh − pG ||2 = O(hβ−1/2), which is involved in the definition of the sieve set
in (15) of Theorem 2 in Giné and Nickl (2011), p. 2891. We refer to the difference
(pG ∗ Kh − pG) as the bias because it is indeed the bias of the kernel density estimator
pK

n (h) := Pn ∗ Kh , when the observations are sampled from pG : in fact, the bias
b[pK

n (h)] := E[pK
n (h)] − pG = pG ∗ Kh − pG . The condition in (20) below, which

traces back to Watson and Leadbetter (1963), see the first Theorem of Sect. 3B, pp.
486–487, is verified for any kernel K of order r greater than or equal to β, as later on
spelled out in Remark 5.

Definition 1 Let f be a probability density function onR. The Fourier transform of f
or the characteristic function of the corresponding probability measure on (R, B(R)),
denoted by f̂ , is said to decrease algebraically of degreeβ > 0 if there exists a constant
0 < B f < +∞ such that

lim|t |→+∞ |t |β | f̂ (t)| = B f . (19)
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Relationship (19) describes the tail behaviour of | f̂ | by stating that it decays polynomi-
ally as |t |−β . The class of probability measures on (R, B(R)) that have characteristic
functions satisfying condition (19) includes

– any gamma distribution with shape and scale parameters ν > 0 and λ > 0,
respectively, whose characteristic function has expression (1 + i t/λ)−ν , the role
of β in (19) being played by ν;

– any distribution with characteristic function (1 + |t |α)−1, t ∈ R, for 0 < α ≤ 2,
which is called an α-Laplace distribution or Linnik’s distribution, cf. Devroye
(1990); the case α = 2 renders the characteristic function of a standard Laplace
distribution. The role of β in (19) is played by α;

– any distribution with characteristic function (1 + |t |α)−1/β , which, for β = 1,
reduces to that of an α-Laplace distribution. The exponent α/β plays the role of
the polynomial’s degree β in (19). Devroye (1990) observes that, if Sα is any
symmetric stable r.v. with characteristic function e−|t |α , 0 < α ≤ 2, and Vβ is an

independent r.v. with density e−vβ
/�(1 + 1/β), v > 0, then the r.v. SαV β/α

β has

characteristic function (1 + |t |α)−1/β .

Lemma 1 Let f ∈ L2(R) be a probability density function with Fourier transform
f̂ satisfying condition (19) for some β > 1/2 and a constant 0 < B f < +∞. If
K ∈ L1(R) has Fourier transform K̂ such that K̂ (0) = 1 and

I 2β [K̂ ] :=
∫

{t �=0}
|1 − K̂ (t)|2

|t |2β dt < +∞, (20)

then

h−2(β−1/2)‖ f − f ∗ Kh‖22 → 1

2π
× B2

f × I 2β [K̂ ] as h → 0.

Proof Since it is assumed that f ∈ L1(R) ∩ L2(R), then f̂ ∈ L2(R) and necessarily
β > 1/2. Also, as K ∈ L1(R), then ‖ f ∗ Kh‖p ≤ ‖ f ‖p‖Kh‖1 < +∞ for p = 1, 2.
Thus, ( f − f ∗ Kh) ∈ L1(R)∩L2(R) and, by Plancherel’s Theorem, ‖ f − f ∗ Kh‖22 =
(2π)−1‖ f̂ − f̂ × K̂h‖22. By the change of variable z = ht ,

‖ f − f ∗ Kh‖22 = 1

2π

∫ +∞

−∞
| f̂ (t)|2|1 − K̂ (ht)|2 dt

= 1

2π
h2(β−1/2)

{
B2

f × I 2β [K̂ ] +
∫

{z �=0}
|1 − K̂ (z)|2

|z|2β
[
|z/h|2β | f̂ (z/h)|2 − B2

f

]
dz

}
,

where, for every sequence of positive real numbers hn → 0, the integral on the right-
hand side of the last display tends to zero by the dominated convergence theorem due
to assumption (20). The assertion follows. ��

In the following remark, which is essentially due to Davis (1977), cf. Sect. 3,
pp. 532–533, sufficient conditions on a kernel K ∈ L1(R) are given so that K̂ (0) = 1
and the requirement in (20) is satisfied. The conditions in (21) below require that K is
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a kernel of order r ≥ β > 1/2, the order of a kernel being the first non-zero “moment”
of the kernel, cf. Definition 1.3 in Tsybakov (2004), p. 5.

Remark 5 For K ∈ L1(R), the Fourier transform K̂ is continuous and bounded so that
the integral

∫ +∞
−∞ |t |−2β |1− K̂ (t)|21[1,+∞)(|t |) dt < +∞ for β > 1/2. The problem

with condition (20) is therefore the integrability of the function t �→ |t |−2β |1− K̂ (t)|2
for |t | ∈ (0, 1). Suppose that

∫ +∞

−∞
K (x) dx = 1,

∃ r ∈ N, r ≥ β > 1
2 :

∫ +∞

−∞
x j K (x) dx = 0 for j = 1, . . . , r − 1 only if r ≥ 2,

and
∫ +∞

−∞
xr K (x) dx �= 0 (21)

and

∫ +∞

−∞
|x |r |K (x)| dx < +∞, (22)

(the value r being called the characteristic exponent of K̂ , see Parzen (1962), pp.
1072–1073), then

K̂ (0) = 1 and
∫ +∞

−∞
|t |−2β |1 − K̂ (t)|21(0, 1)(|t |) dt < +∞.

In fact, K̂ (0) = ∫ +∞
−∞ K (x) dx = 1. Also, for every real number t �= 0,

1 − K̂ (t)

tr
= − K̂ (t) − 1

tr
= − 1

tr

∫ +∞

−∞
(eitx − 1)K (x) dx

= − 1

tr

∫ +∞

−∞

[
eitx −

r−1∑
j=0

(i t x) j

j !
]

K (x) dx

= − ir

(r − 1)!
∫ +∞

−∞
xr K (x)

∫ 1

0
(1 − u)r−1eitux du dx .

By the dominated convergence theorem, condition (22) implies that

1 − K̂ (t)

tr
→ − ir

r !
∫ +∞

−∞
xr K (x) dx as t → 0,

where the limit is non-zero in virtue of the last condition on the right-hand side
of (21). It is seen by comparison that, since r ≥ β, the integral

∫ +∞
−∞ |t |−2β |1 −

K̂ (t)|21(0, 1)(|t |) dt < +∞ and condition (20) is satisfied. If, for instance, 1/2 <
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β ≤ 2, then any symmetric probability density K on R, with finite, non-zero second
moment μ2 := ∫ +∞

−∞ x2K (x) dx �= 0 is such that I 2β [K̂ ] < +∞.

Appendix B: Entropy estimates

In this section,Hellinger and L1-metric entropy estimates for a class ofLaplacemixture
densities, with mixing distributions having tails dominated by a given decreasing
function, are provided. The result of Lemma 2 extends, along the lines of Theorem 7
in Ghosal and van der Vaart (2007a), pp. 708–709, Proposition 2 of Gao and van der
Vaart (2016), p. 617, which deals with Laplace mixtures having compactly supported
mixing distributions. Lemma 2 is invoked in the proof of Proposition 1, reported in
Appendix C, to verify that the entropy condition is satisfied.

Lemma 2 For a given decreasing function A : (0, +∞) → [0, 1], with inverse A−1,
define the class of Laplace mixture densities

PA := {pG : G([−a, a]c) ≤ A(a) for all a > 0}.

Then, for every 0 < ε < 1,

– taking a ≡ aε := A−1(ε) in the definition of PA, we have

log N (3ε, PA, || · ||1) � ε−2/3 log
A−1(ε)

ε2
, (23)

– taking a ≡ aε2 := A−1(ε2) in the definition of PA, we have

log N ((
√
2 + 1)ε, PA, h) � ε−2/3 log

A−1(ε2)

ε2
. (24)

Proof Concerning the L1-metric entropy in (23), since a ≡ aε := A−1(ε) satisfies
G([−aε, aε]c) ≤ A(aε) = ε for all G as in the definition of PA, Lemma A.3 of
Ghosal and van der Vaart (2001), p. 1261, implies that the L1-distance between any
density pG ∈ PA and the corresponding density pG∗ , with mixing distribution G∗
defined as the re-normalized restriction of G to [−aε, aε], is bounded above by 2ε.
Then, in virtue of the inequality in (2), a Hellinger (ε/2)-net over the class of densities
Paε := {pG : G([−aε, aε]) = 1} is an L1-metric 3ε-net over PA, where

log N
(
ε/2, Paε , h

)
� ε−2/3 log

aε

ε2

by Proposition 2 of Gao and van der Vaart (2016), p. 617. The inequality in (23)
follows.

Concerning the Hellinger-metric entropy in (24), by taking a ≡ aε2 := A−1(ε2),
for every pG ∈ PA and the corresponding pG∗ , with mixing distribution G∗ defined
as the re-normalized restriction of G to [−aε2 , aε2 ], by the inequality in (1), we
have h2(pG , pG∗) ≤ ||pG − pG∗ ||1 ≤ 2G([−aε2 , aε2 ]c) ≤ 2ε2, which implies that
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h(pG, pG∗) ≤ √
2ε. Thus, a Hellinger ε-net over Pa

ε2
:= {pG : G([−aε2 , aε2 ]) =

1} is a (
√
2 + 1)ε-net over PA, where

log N
(
ε, Pa

ε2
, h

)
� ε−2/3 log

aε2

ε2

again by Proposition 2 of Gao and van der Vaart (2016), p. 617. The inequality in (24)
follows. ��

Appendix C: Posterior contraction rates in Lr -metrics, 1 ≤ r ≤ 2, for
Dirichlet–Laplace mixtures

In this section, we prove Proposition 1 and Proposition 2 of Sect. 2 on contraction rates
in the L1 and L2-metrics, respectively, for the posterior distribution corresponding to
a Dirichlet process mixture of Laplace densities.
Proof of Proposition 1 In order to derive the Hellinger or the L1-metric posterior
contraction rate, we can appeal to Theorem 2.1 of Ghosal et al. (2000), p. 503, or
Theorem 2.1 of Ghosal and van der Vaart (2001), p. 1239. We define a sieve set for
which conditions (2.2) or (2.8) and (2.3) or (2.9), postulated in the aforementioned
theorems, are satisfied. To the aim, once recalled that α(R) < +∞, let ᾱ := α/α(R)

be the probability measure corresponding to the baseline measure α of the Dirichlet
process. Consistentlywith the notation adopted throughout, ᾱ is also used to denote the
corresponding cumulative distribution function. By a result of Doss and Sellke (1982),
p. 1304, which concerns the tails of probabilitymeasures chosen from aDirichlet prior,
we have that, for almost every sample distribution G, if a > 0 is large enough so that
ᾱ(−a) = 1 − ᾱ(a) is sufficiently small, then

G([−a, a]c) ≤ G(−a) + 1 − G(a)

≤ exp

{
− 1

ᾱ(−a)| log ᾱ(−a)|2
}

+ exp

{
− 1

[1 − ᾱ(a)]| log[1 − ᾱ(a)]|2
}

= 2 exp

{
− 1

ᾱ(−a) | log ᾱ(−a)|2
}

< Aη(a),

having set the position Aη(a) := 2 exp {−[ᾱ(−a)]−η} for some fixed 0 < η < 1.
The inverse function A−1

η : (0, 1) → (0, +∞) is defined as A−1
η : u �→

−ᾱ−1(log−1/η(2/u)), where the function ᾱ−1(·) is the left-continuous inverse of ᾱ(·),
that is, ᾱ−1(u) := inf{y ∈ R : ᾱ(y) ≥ u}, u ∈ (0, 1). Considered the class of densi-
tiesPAη := {pG : G([−a, a]c) ≤ Aη(a) for all a > 0}, we have �(PAη ) = 1. For
any sequence of positive real numbers ε̄n ↓ 0, set the position a ≡ aε̄n := A−1

η (ε̄n)

and defined the sieve setPn := {pG : G([−aε̄n , aε̄n ]c) ≤ Aη(aε̄n ) = ε̄n}, we have
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�(P \ Pn) = 0

and condition (2.3) or (2.9) is satisfied. As for condition (2.2) or (2.8), taking ε̄n =
n−3/8 log3/8 n, by Lemma 2, we have

log D(ε̄n, Pn, || · ||1) ≤ log N (ε̄n/2, Pn, || · ||1)
� (ε̄n)−2/3 log

A−1
η (ε̄n/6)

ε̄2n

� nε̄2n . (25)

The same bound as in (25) also holds for the Hellinger metric entropy. The Kullback-
Leibler prior mass condition (2.4) of Theorem 2.1 of Ghosal et al. (2000), p. 503, or,
equivalently, condition (2.10) of Theorem 2.1 of Ghosal and van der Vaart (2001), p.
1239, can be seen to be satisfied for ε̃n := n−3/8 log5/8 n. For the verification of this
condition, we refer the reader to condition (2) of Proposition 2 below, whose require-
ment (5) is satisfied under assumption (4) of Proposition 1. The proof is completed
by taking εn := max{ε̄n, ε̃n} = n−3/8 log5/8 n. For the sake of clarity, we remark that
the role of ε̃n is played by εn in the proof of Proposition 2.

We now prove Proposition 2 on the posterior contraction rate in the L2-metric. The
result relies on Theorem 3 of Giné and Nickl (2011), p. 2892, which gives sufficient
conditions for deriving posterior contraction rates in Lr -metrics, 1 < r < +∞. All
assumptions of Theorem 3, except for condition (2), are shown to be satisfied for any
kernel density f as in Definition 1 with β > 1. This includes the (standard) Laplace
kernel density as a special case when β = 2. Condition (2), which requires the prior
mass in Kullback–Leibler type neighborhoods of the sampling density p0 ≡ pG0 =
G0 ∗ f to be not exponentially small, relies on a preliminary approximation result of
the density pG∗

0
= G∗

0 ∗ f , with mixing distribution G∗
0 obtained as the re-normalized

restriction of G0 to a compact interval, by a mixture density that has a discrete mixing
distributionwith a sufficiently restricted number of support points. This result is known
to hold for the Laplace kernel density in virtue of Lemma 2 of Gao and van der Vaart
(2016), pp. 615–616.
Proof of Proposition 2 We apply Theorem 3 of Giné and Nickl (2011), p. 2892, with
r = 2. We refer to the conditions of this theorem using the same letters/numbers as in
the original article. Let γn ≡ 1 and δn ≡ εn := n−3/8 log5/8 n, n ∈ N.

– Verification of condition (b) Condition (b), which requires that ε2n = O(n−1/2), is
satisfied in the general case for εn = n−(β−1/2)/2β logκ n, with some κ > 0 and
β > 1.

– Verification of condition (1) Condition (1) requires that the prior probability of
the complement of a sieve set Pn is exponentially small. We show that, in the
present setting, the prior probability of a sieve set Pn , chosen as prescribed by
(15) in Theorem 2 of Giné and Nickl (2011), p. 2891, is equal to zero. Let Jn

be any sequence of positive real numbers satisfying 2Jn ≤ cnε2n for some fixed
constant 0 < c < +∞. Let K be a convolution kernel such that it is of bounded p-
variation for some finite real number p ≥ 1, right (or left) continuous and satisfies
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||K ||∞ < +∞,
∫ +∞
−∞ (1 + |z|)w|K (z)| dz < +∞ for some w > 2, K̂ (0) = 1 and

I 2β [K̂ ] < +∞, cf. condition (20) in Lemma 1. Defined the sieve set

Pn := {
pG ∈ P : ||pG ∗ K2−Jn − pG ||2 ≤ Cδn

}
,

where K2−Jn (·) := 2Jn K (·2Jn ) and C > 0 is a finite constant depending only on
K and f , we have

�(P \ Pn) = 0 for all n ∈ N.

In fact, for every G ∈ G , by Plancherel’s Theorem, ||pG ∗ K2−Jn − pG ||22 =
||pG − pG ∗K2−Jn ||22 = (2π)−1|| p̂G − p̂G × K̂2−Jn ||22 ≤ (2π)−1|| f̂ − f̂ × K̂2−Jn ||22
and, by Lemma 1, || f̂ − f̂ × K̂2−Jn ||22 ∼ (2−Jn )2β−1 × B2

f × I 2β [K̂ ], where, for
β = 2, we have (2−Jn )2β−1 = (2−Jn )3 = O(δ2n). Thus,

∀ G ∈ G , ||pG ∗ K2−Jn − pG ||2 = O(δn) (26)

and condition (1) is verified. Relationship (26) holds, in particular, for p0 ≡
pG0 = G0 ∗ f . Furthermore, p0 ∈ L2(R) if f ∈ L2(R), which is the case
for the (standard) Laplace kernel density, because ||p0||22 = (2π)−1|| p̂0||22 ≤
(2π)−1|| f̂ ||22 = || f ||22 < +∞.

– Verification of condition (2)
Condition (2) requires that, for somefinite constantC1 > 0, the prior probability of
Kullback–Leibler type neighborhoods of P0 of radius ε2n is at least exp (−C1nε2n),
that is, �(BKL(P0; ε2n)) � exp (−C1nε2n). Fix 0 < ε ≤ (1 − e−1)/

√
2 and let

aε := A−1
0 (ε2), where A−1

0 is the inverse of the function A0 in condition (3). Define
G∗

0 as the re-normalized restriction of G0 to [−aε, aε]. By Lemma A.3 of Ghosal
and van der Vaart (2001), p. 1261, and assumption (3), we have ||pG0 − pG∗

0
||1 ≤

2G0([−aε, aε]c) � ε2. From the inequality in (1), h2(pG0 , pG∗
0
) ≤ ||pG0 −

pG∗
0
||1 � ε2, whence h(pG0 , pG∗

0
) � ε. It is known from Lemma 2 of Gao and

van der Vaart (2016), pp. 615–616, that there exists a discrete distribution G ′
0 such

that h(pG ′
0
, pG∗

0
) � ε. The distribution G ′

0 has at most N � ε−2/3 support points

y1, . . . , yN in [−aε, aε], whichwemay assume to be at least 2ε2-separated. If not,
we can take a maximal 2ε2-separated set in the support points of G ′

0 and replace
G ′

0 with the discrete distribution G ′′
0 obtained by relocating the masses of G ′

0 to the
nearest points of the 2ε2-net. Then, h2(pG ′

0
, pG ′′

0
) � max1≤ j≤N |y′

j − y′′
j | � ε2,

as shown in Proposition 2 of Gao and van der Vaart (2016), p. 617. Let G ′
0 =∑N

j=1 p jδy j , with |y j − yk | ≥ 2ε2 for all 1 ≤ j �= k ≤ N . For any distribution G
such that

N∑
j=1

|G([y j − ε2, y j + ε2]) − p j | ≤ ε2, (27)

we have ||pG − pG ′
0
||1 � ε2 by Lemma 5 of Gao and van der Vaart (2016), p. 620.

Thus,
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h2(pG , pG0) � h2(pG , pG ′
0
) + h2(pG ′

0
, pG∗

0
) + h2(pG∗

0
, pG0)

� ||pG − pG ′
0
||1 + ε2 + ||pG∗

0
− pG0 ||1 � ε2.

We can now invoke Lemma A.10 in Scricciolo (2011), p. 305, taking into account
Remark A.3 of the same article. To this aim, note that, if G satisfies (27), then
G([−(aε + 1), (aε + 1)]) > 1/2. The reader may also refer to Scricciolo (2014),
p. 305. For any G ∈ G , let PG stand for the probability measure with density
pG ∈ P . The inclusion

{
PG :

N∑
j=1

|G([y j − ε2, y j + ε2]) − p j | ≤ ε2
}

⊆ BKL
(
P0; ε2 log2(1/ε)

)

holds. To apply Lemma A.2 of Ghosal and van der Vaart (2001), p. 1260, note
that, for every y j , 1 ≤ j ≤ N , we have α([y j − ε2, y j + ε2]) � εb′

for some
finite constant b′ > 0. Thus,

log�(BKL(P0; ε2 log2(1/ε))) � −N log(1/ε) � −ε−2/3 log(1/ε).

Taking εn := ε log(1/ε), we have �(BKL(P0; ε2n)) � exp (−C1nε2n) and condi-
tion (2) is satisfied.

– Verification of condition (3)
Condition (3) requires that there exists a finite constant B > 0 such that
�(||pG ||∞ > B | X (n)) = oP(1). If || f ||∞ < +∞, then ||pG ||∞ ≤ || f ||∞ <

+∞ for all G ∈ G , see Lemma 3. In particular, ||p0||∞ = ||pG0 ||∞ ≤ || f ||∞ <

+∞. Taking B := || f ||∞, we have

∀ n ∈ N, �(||pG ||∞ > B | X (n)) = 0 Pn
0 -almost surely,

and condition (3) is satisfied. For the (standard) Laplace kernel density, || f ||∞ =
1/2.

The proof is thus complete and assertion (6) follows. ��

Appendix D: Inversion inequalities

In this section, we state a result relating, for every real number p ≥ 1, the L p-
Wasserstein distance between any pair of mixing distributions G, G ′ ∈ G to the
L2-distance between the correspondingmixed densities pG = G∗ f and pG ′ = G ′∗ f ,
with a kernel density f that is ordinary smooth in the sense of condition (29) stated
below. Lemma 4 extends Lemma 7 of Gao and van der Vaart (2016), pp. 621–622,
beyond the case of compactly supported mixing distributions to mixing distributions
with finite moment generating functions on some neighborhood of zero (−s0, s0),
with 0 < s0 < 1. If, furthermore, the kernel density is bounded, || f ||∞ < +∞, then
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the inversion inequality in (30) below also holds for the Hellinger metric in virtue of
the following known result, which is reported for the reader’s convenience.

Lemma 3 For a given kernel density f , let pG = G∗ f , with G ∈ G . If || f ||∞ < +∞,
then

∀ G ∈ G , pG(x) ≤ || f ||∞ for all x ∈ R,

and

∀ G, G ′ ∈ G , ||pG − pG ′ ||22 ≤ 4|| f ||∞h2(pG, pG ′). (28)

We now state and prove an inequality translating the L2-norm and the Hellinger
distance between mixed densities into any L p-Wasserstein distance, p ≥ 1, between
the corresponding mixing distributions.

Lemma 4 Let G and G ′ be probability measures on some Borel-measurable space
(Y , B(Y )), Y ⊆ R, such that the associated moment generating functions MG(s)
and MG ′(s) are finite for all |s| < s0, with 0 < s0 < 1. Let f be a probability density
function on R, with Fourier transform f̂ satisfying, for some real number β > 0, the
condition

inf
t∈R(1 + |t |β)| f̂ (t)| > 0. (29)

Let d stand for the L2-distance between the mixed densities pG = G ∗ f and pG ′ =
G ′ ∗ f . Then, for any real number p ≥ 1,

Wp(G, G ′) � d1/(p+β)

(
log

1

d

)(p+1/2)/(p+β)

for d = ||pG − pG ′ ||2 small enough. (30)

If, in addition, || f ||∞ < +∞, then the upper bound in (30) also holds for d being the
Hellinger distance, d = h(pG, pG ′).

Proof For any real number h > 0, by the triangle inequality, we have

W p
p (G, G ′) ≤ W p

p (G, G ∗ �h) + W p
p (G ∗ �h, G ′ ∗ �h) + W p

p (G ′ ∗ �h, G ′),
(31)

where �h stands for a zero-mean Gaussian probability measure with variance h2,
whose density is denoted by φh(·) := h−1φ(·/h), for φ the density of a standard
normal r.v. W . The first and third terms on the right-hand side of (31) can be bounded
above as follows. By standard arguments, see, for instance, the proof of Theorem 2 in
Nguyen (2013), pp. 389–391,

max{W p
p (G, G ∗ �h), W p

p (G ′ ∗ �h, G ′)} ≤ E[|hW |p] � h p (32)
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because E[|W |p] < +∞ for every real number p > 0, hence, a fortiori, for every
real p ≥ 1. Concerning the second term on the right-hand side of (31), reasoning as in
Lemma 7 of Gao and van der Vaart (2016), pp. 621–622, for any real number M > 0,

W p
p (G ∗ �h, G ′ ∗ �h)�

(∫
|x |≤M

+
∫

|x |>M

)
|x |p|(G − G ′) ∗ φh(x)| dx =:T1+T2,

where, for every 0 < h ≤ 1,

T1 � M p+1/2||(G − G ′) ∗ φh ||2 � M p+1/2h−β ||pG − pG ′ ||2 (33)

because supt∈R |φ̂(ht)|/| f̂ (t)| � h−β in virtue of assumption (29). To see it, note
that assumption (29) implies the existence of a finite constant L f > 0 such that
(1 + |t |β)| f̂ (t)| ≥ L f for all t ∈ R. Therefore, if 0 < h ≤ 1,

sup
t∈R

|φ̂(ht)|
| f̂ (t)| ≤ 1

L f
sup
t∈R

[(1 + |ht |β)|φ̂(ht)|] × sup
t∈R

(
1 + |t |β
1 + |ht |β

)
� h−β.

If || f ||∞ < +∞, then the L2-distance between pG and pG ′ in (33) can be replaced
with the Hellinger distance (see Lemma 3), so that

T1 � M p+1/2h−βh(pG, pG ′).

We now deal with the term T2. We preliminarily derive an instrumental inequality. For
every x ∈ R and real numbers p, u > 0,

p

u
eu|x |/p = p

u

+∞∑
j=0

(u|x |/p) j

j ! ≥ |x |,

whence

|x |p ≤ (p/u)peu|x | < (p/u)p(e−ux + eux ). (34)

Now fix any number 0 < u < s0 < 1. Applying the inequalities in (34) and taking
into account the expression of the moment generating function of a standard Gaussian
distribution M�(s) = es2/2, s ∈ R, we get

∫ +∞

−∞
max{1, |x |p}eu|x |φh(x) dx ≤

∫ +∞

−∞
max

{
eu|x |, (p/u)pe2u|x |} φh(x) dx

< 2max
{

e(uh)2/2, (p/u)pe2(uh)2
}

< 2max
{

es20/2, (p/u)pe2s20
}

,
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namely, for fixed u, the above integral can be bounded above by a constant that is fixed
throughout and can therefore be neglected when bounding T2. Hence,

T2 � e−uM
∫

|x |>M
|x |peu|x |[(G + G ′) ∗ φh(x)] dx

� e−uM
∫
Y

(1 + |y|p)eu|y|
(∫ +∞

−∞
max{1, |x |p}eu|x |φh(x) dx

)
d(G + G ′)(y)

� e−uM
∫
Y

(1 + |y|p)eu|y| d(G + G ′)(y) � e−uM

because

∫
Y

eu|y| d(G + G ′)(y) <

∫
Y

(e−uy + euy) d(G + G ′)(y)

= (MG + MG ′)(−u) + (MG + MG ′)(u) < +∞

and, for any fixed real number 0 < ξ < 1 such that 0 < s := (ξ + u) < s0, by the
inequalities in (34),

∫
Y

|y|peu|y| d(G + G ′)(y) < (p/ξ)p
∫
Y

e(ξ+u)|y| d(G + G ′)(y)

= (p/ξ)p
∫
Y

es|y| d(G + G ′)(y)

< (p/ξ)p
∫
Y

(e−sy + esy) d(G + G ′)(y)

= (p/ξ)p[(MG + MG ′)(−s) + (MG + MG ′)(s)] < +∞

by the assumption that both G and G ′ have finite moment generating functions on
(−s0, s0), for 0 < s0 < 1. Thus,

T2 � e−uM . (35)

Combining partial results in (32), (33) and (35), we get

W p
p (G, G ′) � h p + M p+1/2h−βd + e−uM (36)

and the conclusion follows by minimizing the expression in (36) with respect to h and
M , which, for sufficiently small d, implies taking M = O(log(1/d)) and h p+β =
O(d logp+1/2(1/d)). ��

Remark 6 The standard Laplace kernel density is bounded, with || f ||∞ = 1/2, and
satisfies condition (29) for β = 2.
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