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1 Introduction

We are delighted to have the opportunity to discuss this paper. We are long time
believers in the BNP approach to modeling statistical data. The authors have a an
extensive and distinguished record of accomplishments in this area and it is fitting that
they would feature some of their work that displays the utility and outright advantage
of the BNP method in a variety of complex clinically relevant settings, as they have
done masterfully in the work displayed in this article.

We take this opportunity to augment the discussion of the authors’work bymention-
ing some of our own; part of which also includes the authors of this article. The authors
discussed novel applications to survival analysis. We mention the work of De Iorio
et al. (2009), that uses a DP mixture of log normal distributions in order to provide a
semi-parametric survival model that allows survival curves to cross, thus avoiding the
assumption of proportional hazards. The papers Hanson and Johnson (2002, 2004),
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Hanson et al. (2009, 2011) constitute a body of work that embeds parametric survival
families of distributions into broader non-parametric families usingMixtures of Finite
Polya Trees (MFPT). The models discussed in these papers allow for considerable
flexibility compared with their parametric counterparts. An additional theme involves
consideration of several alternative semi-parametric families, for example, they model
baseline survival distributions usingMFPTs for proportional hazards, accelerated fail-
ure time, proportional odds and Cox and Oakes models. Some of the work focusses on
fixed time dependent covariates, and other work develops joint models for survival and
longitudinal processes that are related to survival. Competing models are compared
using the LPML statistic (Geisser and Eddy 1979) in order to select the one with the
greatest predictive ability.

Another related theme that may be of interest involves the development of BNP
methodology for receiver operating characteristic (ROC) curve estimation. Branscum
et al. (2008, 2015) used MFPTs to model biomarker distributions for individuals
known to have a specified condition/disease, and for individuals known to not have
the condition. They also developed identifiable semi-parametric regression models
that are similar to the survival models discussed above with the purpose of gener-
alizing parametric methods to semi-parametric methods for assessing the quality of
biomarkers. We discuss another biomarker assessment problem in more detail below.
We also note that the workmentioned above andmore is discussed in the survey article
by Johnson and de Carvalho (2015).

Bayesian Nonparametric methods have been also employed in large-scale multiple
hypotheses testing, and for selecting relevant predictors in a regression. We review
some recent contributions, namely spike-and-lab DP processes for variable selection,
mixtures of DP processes for large-scale screening of differential genes, and discovery
test statistics which approximate optimal decision rules.

The authors provide an extensive illustration of the Bayesian Nonparametric liter-
ature in the analysis of spatial data. Spatio-temporal data arising from brain imaging
studies have received increased interest recently. These data are particularly challeng-
ing, since they are high-dimensional, highly noisy and heterogeneous across subjects.
We discuss some application of Bayesian Nonparametric methods to this type of data.

Finally, the authors point out that in many Bayesian Nonparametric models the
main target of inference is a partition of the n samples intomore homogeneous subsets.
Typically, such random partitions are exchangeable. However, natural dependencies
in the data may go against the exchangeability assumption. We review a recent class
of models that defines non-exchangeable partitions, and its application to the analysis
of array comparative genomic hybridization (CGH) data and the detection of copy
number aberrations.

2 Factors affecting and clustering of hormone curves for women in
menopause

Quintana et al. (2016) developed a novel statistical model that generalizes standard
mixed models for longitudinal data and which allows for flexible mean functions
in addition to combined compound symmetry (CS) and autoregressive (AR) covari-
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ance structures. AR structure was specified using a Gaussian process (GP) with and
exponential covariance function. This structure was extended to a Dirichlet Process
Mixture (DPM) over the covariance parameters of the GP, which allows the possibility
to estimate a variety of covariance structures. They illustrated that models that fail to
incorporate CS or AR structure can result in very poor estimation of a covariance or
correlation matrix.

Quintana et al. (2016) analyzed a subset of patients from the Study of Women’s
Health Across the Nation (SWAN) with 9 yearly responses during the menopausal
transition on 162 women. They focused on the hormone follicle stimulating hormone
(FSH) serum concentration profiles with the goal of assessing the effect of Age at
entry (≤46,>46) and Ethnicity (African American, Caucasion, Chinese, Japanese)
on profile shape. Time 0 corresponds to the final menstrual period.

Sample profiles are shown in Quintana et al. (2016) and they display considerable
variability with no regular profile shape by individual. However, empirical data and
biology suggest that, on average, these profiles start out relatively flat, then increase
to a new level, an then flatten.

The Quintana et al. (2016) model generalizes the Zeger and Diggle (1994) model,
which is itself a generalization of the Laird and Ware (1982) linear mixed model
(LMM). The Zeger and Diggle (1994) model is:

yi (t) = μ(t) + fi (t) + xi (t)β + zi (t)vi + wi (t) + εi (t), (1)

with wi (t) representing an Ornstein–Uhlenbeck (Gaussian) process (OUP). There are
many variations of Model (1) e.g. using various basis functions for the overall mean
function μ(t) and the random deviations from it fi (t), modeling the distribution of
the random effects vector vi using a DP or DPM (see Li et al. 2010) and/or using
a variety of covariance structures for the OUP. Quintana et al. (2016) extended this
model by taking a DPM of OUPs in order to generalize the correlation structure from
AR to Toeplitz. The primary goal of suchmodels is to account for heterogeneity across
individuals, account for longitudinal correlation structure and extend mixed models
to allow for a more flexible correlation structure.

Since it was believed that sigmoid structure for the means was appropriate, the
authors considered a 5 parameter generalization of sigmoid functions. Figure 1 shows
predictive curves for the SWANdata using 4models, with the solid curves correspond-
ing to the Quintana et al. (2016) mixture of OUPmodels. The LPML statistic was used
to select among 6 candidate models, which included a parametric version with simple
random effects and no OUP, a DDP mixture on the vs with no OUP, and other variants
of Model (1). Results from the Quintana et al. (2016) analysis are displayed in Fig. 1,
where it can be seen that the basic shapes of the curves are sigmoidal and increasing
until the end of the time window when they decline. Some of the curves are noticeably
different from one another; in fact, statistically different. For example, the posterior
probability that the maximum curve value achieved for younger Japanese women is
greater than the maximum for Chinese women in the same age category is 0.9994. In
addition, posterior probabilities that the timing of the maximum for younger Chinese
women would be greater than that for African Americans, Caucasians and Japanese
are 0.987, 0.9998 and 0.999, respectively. The estimate for Chinese women is on the
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Fig. 1 Predictive FSH profiles using DPM of OUP model, and other models

Fig. 2 Clustering of log(E2) curves using DPM of orthogonal polynomials

order of 2 years greater. Moreover, the estimated correlations between responses for
women that are 1–8 years apart were: (0.43, 0.27, 0.21, 0.17, 0.15, 0.14, 0.14, 0.13),
indicating a clear departure from AR structure.

A different subset of SWAN hormone data was performed by He (2014). He mod-
eled log Estadial (E2) profiles for 11 years of data on 928 women. Using a DPM of
orthogonal (Legendre) polynomials (levels ≤4). The purpose of this analysis was to
find clusters of womenwho had different shaped profiles. Figure 2 shows three clusters
with distinct shapes.

3 Estimating the quality of a biomarker for Johnes disease in cattle

Diagnostic testing involves an assessment of whether or not a particular condition
is present. A typical goal is to assess the quality of one or more biomarkers for the
condition. With a single continuous biomarker, a cutoff is set so that outcomes larger
than the cutoff are classified as having the condition, and values below are classified
as free of it. The cutoff is selected to strike a balance between the false positive and
false negative rates.
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Fig. 3 Fecal culture and Serology profiles for four cows

Let D+ denote that the condition of interest is present and let T+ denote that
the outcome of a diagnostic test is positive in the sense that a continuous biomarker
exceeded a selected cutoff, or a categorical outcome indicated that the condition was
present. Similarly define D− and T−. Denote the sensitivity of the test to be Se =
Pr(T+ | D+), which is one minus the false positive rate or the true positive rate,
and the specificity of the test to be Sp = Pr(T− | D−), which is the true negative
rate. Acceptable diagnostic tests have Se+ Sp > 1. HIV tests for example are highly
accurate with Se and Sp greater than 0.99. In animal testing, it is often the case that
the Se is some what low, while the Sp is quite high, near one, thus leading to many
false negatives but few false positives.

The sensitivity of a diagnostic test generally depends on how long the individual
being tested has had the condition. For example, it is impossible to detect HIV imme-
diately after the infection has occurred; testing is not performed until there has been
sufficient time for a detectable antibody response. Since most statistical assessments
of the test accuracy are performed based on cross-sectional data, the estimated Se
and Sp are necessarily dependent on the distribution of times of acquisition of the
condition in the population sampled.

This brings us to the current study involving Johnes Disease (JD) in cattle. JD is
caused by infection with bacterium Mycobacterium avium subspp. paratuberculosis
(Map), the agent of associationwith biomarkers designed to react to its presence.Norris
et al. (2014) analyzed a longitudinal data set consisting of two diagnostic outcomes
on 365 cows. Cows were tested on average every 6 months over several years for the
presence of MAP using a continuous serologic (antibody detection) outcome, and a
dichotomous (organism detection) outcome. The two biomarkers are serology (S) and
Fecal Culture (FC).

Data on several cows are depicted in Fig. 3. The FC test appears to detect the organ-
ism in cow 182 around age 15.5 years, while the serologic response to the infection is
delayed for about a year. The FC test appears to detect the organism in cow 82 around
age 6, but that test is followed by a possible false negative and then another positive.
The serologic response appears after a delay of more than one year from the initial
FC+ outcome. The third and fourth plots indicate animals that are not infected over
the time frame considered, but with one probably false FC+ outcome.
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The statisticalmodel for the data involves conditionally independentBernoulli(θ(t))
outcomes for FCwhere for all t less than the time of infection, θ(t) = 1−Sp, and after
infection, θ(t) = Se. Serology is modeled in three parts involving times: (i) before
infection, (ii) after infection if infection occurred within the lag time just before the
last observation on that cow (in which case there is no time for a serologic response),
and (iii) after infection if infection occurred before the last time of observation minus
an unknown lag time (in which case there is time for there to be a serologic response).
The model for S before infection is a simple mixed effects model that allows for corre-
lation between repeated observations on the same cow. The model for S in the second
situation is the same as the first, and the model for S in the third situation involves
modeling an unknown change point when the cow became infected, and adding a pos-
itive random slope in time for each cow, after the infection plus lag time. The Norris
et al. (2014) analysis implemented reversible jump methodology due to the differing
model dimensions of these cases.

The parametric version of themodel anticipates that cowswill have differing slopes.
However, biology suggests that there may be two or more groups of cows, each with
similar rates of serologic response. Consequently, Norris et al. (2014) modeled the
random slopes with a DPM of log-normal distributions. Figure 4 (Upper left) shows
a plot of a number of iterates of the slope distribution from the Norris et al. (2014)
analysis, where we see two different types of slope iterate: one that is bimodal with a
steeper slopemode and amore gradual slopemode, and the other that is unimodal. The
posterior probability of 1 mode for the slope distribution was 0.62, and for 2 modes
was 0.30, indicating a moderately strong case for the possibility of two or more groups
of cows that we might care to distinguish.

Figure 4 (Upper right) shows a plot of the primary inference of interest, the posterior
estimates and 95% pointwise probability intervals for Se(t), the sensitivity of a test as
a function of time based on S using a cutoff of −1.29 (data are on log scale). Figure 4
(Lower left) shows estimated Se(t) for two clusters identified with rapid and slower
serologic responses. Figure 4 (Lower right) shows estimated ROC curves for the two
clusters categorized by times 1.5, 1.8 and 2.1 years after the lag. Obviously it is much
easier to detect MAP for the group that has the more rapid serologic response and after
longer times since infection plus lag.

4 Multiple hypothesis testing and variable selection

Kim et al. (2009) have proposed a Bayesian method for multiple hypothesis testing
based on the use of spiked distributions for Bayesian variable selection. We exemplify
their proposal with reference to a single population, although their framework applies
more generally to a collection of populations. Let us consider the linearmodelY = Xβ,
with β a p × 1 parameter vector. In variable selection, we consider a sequence of
hypotheses H0i : βi = 0, i = 1, . . . , p. Kim et al. (2009) propose to model the
regression coefficients as:

β1, . . . , βp|G ∼ G, G ∼ DP(αβ,G�
β)
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with

G�
β(·) = π δ0(·) + (1 − π)G0(·),

where π is a mixing weight with prior π ∼ p(π).The mixture G�
β(·) is a “spiked”

mixture of a point mass at 0 (the “spike”) and a continuous distribution with large
support,G0(·). These spiked centering priors accommodate sharp null hypotheses and
allow for the estimation of the posterior probabilities of each hypothesis. Increased
power is obtained by borrowing information across hypotheses through the use of
Dirichlet process mixture models.

Do et al. (2005) have discussed a nonparametric Bayesian model for multiple
hypotheses testing and applied it to the screening of differential genes. Here, the
reference framework is the two groups model developed by Efron (2004). For sim-
plicity, we assume that test statistics zi are used to assess if gene i is differentially
expressed or not, i = 1, . . . , n. More precisely, the zi ’s are assumed as independent
samples from a mixture of two distributions

zi ∼ π f0 + (1 − π) f1,

where f0 is the unknown distribution for the non-differentially expressed genes and
f1 is the unknown distribution of the differentially expressed genes. The unknown
distributions f j , j = 0, 1 are then characterized as DPM models. Guindani et al.
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(2014) extend this framework to compare DPMmodels from samples collected across
different conditions, in the analysis of T-cell sequence abundances with a Poisson
likelihood.

Shahbaba and Johnson (2013) similarly propose a latent random partition model
based on Dirichlet process mixtures (DPM) as an exploratory tool for data analysis in
large scale inference problems. Variables of interest (say, genes) are ranked according
to the magnitude of posterior cluster variances, with a threshold to divide genes into
relevant and not relevant groups. The method can be viewed in the context of variable
selection where a very large number of covariates could be potentially included in the
model, but where there is a belief in sparsity, which translates to parsimony.

Assuming a Bayesian decision theoretic framework, the multiple comparison prob-
lem can also be characterized by a set of actions (decisions) and a loss function for all
possible outcomes of an experiment. Let di ∈ {0, 1} denote the decision for the i-th
hypothesis, with di = 1 indicating a decision against H0i , and let d = (d1, . . . , dn).
The optimal rule d�

i (z) is defined by minimizing the loss function L(d, θ)with respect
to the posterior p(θ | z). Müller et al. (2004) and Müller et al. (2007) discuss the opti-
mal decision rule corresponding to loss functions defined as linear combinations of
the false negatives and false positive counts, say L = FN + λ FP , for some constant
λ > 0. The optimal rule is a threshold on the marginal posterior probability of the
alternative hypothesis, vi = P(H1i |z), i.e. d�

i = I (vi > t).
Guindani et al. (2009) consider a Dirichlet Process Mixture of normals model and

describe a Bayesian discovery procedure for large scale multiple testing of hypotheses
on the means μi ’s, H0i : μi ∈ A vs H1i : μi ∈ Ac. The Bayesian testing procedure is
obtained by approximating themarginal posterior probabilities, vi , using the properties
of the conditional posterior distribution p(G | z). More specifically, for large n, the
posterior p(G | μ, z) can be approximated by a degenerate distribution at Fn =
1
n

∑
δμ̂i , where the μ̂i ’s are centroids of clusters estimated when fitting the Bayesian

nonparametric model. Hence, vi can be approximated by

vi ≈
∫
Ac f (z; μ) dFm(μ)
∫

f (z; μ) dFm(μ)
=

∑
μ̂ j∈Ac f (zi ; μ̂ j )

∑m
j=i f (zi ; μ̂ j )

. (2)

The Bayesian Nonparametric model borrows strength across comparisons by means
of the multiple shrinkage induced by the DP clustering, thus improving the power of
the testing procedure.

Multiple testing issues arise also in the context of spatial data. For example, in
geostatistical applications, onemay be interested in isolating regionswhere the process
has values above a given threshold. Guindani et al. (2009) describe how the spatial DP
model ofGelfand et al. (2005) could be used togetherwith a loss function that penalizes
isolated discoveries. However, properties of Bayesian nonparametric models in spatial
testing have not been thoroughly explored, especially for clusterwise inference, and in a
compound decision theoretic framework to control the proportion of false discoveries.
See Sun et al. (2015) for a discussion of the latter set up.
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5 Applications to brain imaging data

Bayesian nonparametric techniques have beenwidely employed to capture heterogene-
ity in brain structures as well as brain functions. Jbabdi et al. (2009) use a hierarchical
mixture of DPs to segment brain regions based on tractography data in multiple-
subjects. More recently, Durante et al. (2016) proposed a Bayesian nonparametric
approach for the estimation of the distribution of brain connectivity structures from
white matter tractography data in a population of subjects.

Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging
method that provides an indirect measure of neuronal activity by detecting blood flow
changes over the course of an experiment. fMRI data provide an accurate spatial
mapping of brain responses. Furthermore, the sequence of whole-brain scans, which
has been acquired over the duration of the experiment, enables to explore the temporal
dynamics of brain functioning. In an fMRI experiment, it is often of interest to study
the patterns of activation in response to a stimulus and the interactions between brain
regions, bothwithin a single subject and across groups of subjects (say, healthy controls
and cases). Zhang et al. (2014) describe an analytical framework that allows detection
of regions of the brain in response to a stimulus by using variable selection spike-
and-slab mixture priors and a Markov random field (MRF) prior to account for the
complex spatial correlation structure of the brain. In order to infer association of
the voxel time courses, they assume temporally-correlated long memory errors and
achieve clustering of the voxels by imposing a DP prior on the parameters of the long
memory process. The clustering of fMRI time series captures the so-called functional
connectivity among the brain regions (Friston 2011).

In a multi-subject approach, Zhang et al. (2016) employ a hierarchical DP prior to
induce clustering among voxels within and across subjects in the analysis of fMRI time
series. The hierarchical DP captures spatial correlation among potential activations
of distant voxels, within a subject, while simultaneously borrowing strength in the
estimation of the parameters from subjects with similar activation patterns. Since
a single fMRI experiment can yield hundreds of thousands of high frequency time
series for each subject, there is a need to devise efficient computational algorithms for
posterior inference. Zhang et al. (2016) show that a variational Bayes implementation
of the BNP model achieves robust estimation results at reduced computational cost.

As a further example of the potential role of BNP in the analysis of imaging data, Li
et al. (2015) discuss a scalar-on-image regression to identify imaging biomarkers for
predicting individual biological or behavioral traits. More specifically, they propose a
joint Ising and DP prior for selecting brain voxels. The Ising component incorporates
existing structural spatial information of brain region contiguities, whereas the DP
component clusters the regression coefficients to reduce the computational burden of
posterior sampling.

In their review, Müller, Quintana and Page have provided a comprehensive dis-
cussion of flexible BNP models for the analysis of spatial data. The application of
those methods to the analysis of brain imaging data can open new avenues of applied
research in the field. For example, product partition models dependent on covariates
could be used to determine patterns of the brain activations varying across group of
individuals. However, the main challenge will be to develop fast computational algo-
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rithms in order to ensure the scalability of the methods to the dimensions typical of
voxel-based brain data.

6 Non-exchangeable partitions

Airoldi et al. (2014) consider array CGH data, which involve copy number gains
or losses over several genomic regions. Genomic abnormalities are more likely to
occur and persist over neighboring regions. Thus, for detecting regions of the DNA
with copy number amplifications and deletions, one needs to take into account the
spatial dependency of genomic aberrations. Du et al. (2010) have proposed a sticky
Hierarchical DP-HMM (Fox et al. 2011; Teh et al. 2006) to infer the number of
states in an HMM, while also imposing state persistence to capture the persistence of
aberrations. Airoldi et al. (2014) follow a different approach, by explicitly considering
non-exchangeable random partition models. The starting point is the representation
of the Pólya urn prior (eq (9) in the paper), pDP (s|α), as a species sampling prior. In
this representation, the DPM model is characterized as:

yi |μi ∼ N (μi , σ
2), i = 1, . . . , n,

with

μi+1|μ1, μ2, . . . , μi ∼
i∑

j=1

qi, jδμi (·) + qi,i+1 G
�, (3)

where δx (·) denotes a point mass at x , and qn,i = 1
α+i qi,i+1 = α

α+i . The sequence (3)
implicitly defines the (exchangeable) random partition {s1, . . . , sn} associated to the
DP prior, with si = k if and only ifμi = μ�

k . The predictive rule (3) can be generalized
to take into account more complex types of dependence in the data, by defining the
weights in terms of a sequence of independent (not necessarily identically distributed)
latent random variables. In particular, Bassetti et al. (2010) have introduced a class of
generalized species sampling sequences, which are not exchangeable, but only con-
ditionally identically distributed (CID, Berti et al. 2004). That is, μi+1, μi+2, . . . are
identically distributed conditionally on the values of the process before observation i
(i.e., givenμi , μi−1, . . . , μ1, for all i = 1, . . . , n). Theμi ’s are marginally identically
distributed, μi ∼ G�, similarly as for the exchangeable DPM model. For the analysis
of array CGH data, Airoldi et al. (2014) consider a CID process where the weights of
the species sampling sequence (3) are obtained as the product of independent latent
variables, Wj ∼ Beta(α j , β j ),

qi, j = (1 − Wj )

j∏

r=1

Wr , and qi,i+1 =
i∏

r=1

Wr .

The choice of Beta latent variables allows for a flexible specification of the species
sampling weights, while still retaining simplicity and interpretability of the sequence
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Fig. 5 Model fit overview: Array CGH gains and losses on chromosome 8 for two samples of breast tumors
in the dataset in Chin et al. (2006). Points with different shapes denote different clusters

allocation scheme. Figure 5 shows the fit to array CGH data for a single chromosome
for two samples of breast tumors (Chin et al. 2006). Note how contiguous clones tend
to be clustered together, in a pattern typical of these chromosomal aberrations.

Non-exchangeable partitions provide a flexible way to take into account complex
dependencies in the data. Fortini et al. (2016) have recently introduced a notion of par-
tially conditionally identically distributed sequences. PartialCIDsequences generalize
the notion of partial exchangeability, which characterize the use of hierarchical models
in Bayesian statistics to borrow information across related experiments. Dependent
random partitions could then be defined through interacting reinforced-urn processes.
Muliere et al. (2006), Hu and Zhang (2004) are among thosewho proposed early appli-
cations of this type of dependent random partition schemes to the design of clinical
trials. For a recent overview, see Flournoy et al. (2012).
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