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Abstract Müller et al. (Stat Methods Appl, 2017) provide an excellent review of
several classes of Bayesian nonparametricmodelswhich have foundwidespread appli-
cation in a variety of contexts, successfully highlighting their flexibility in comparison
with parametric families. Particular attention in the paper is dedicated to modelling
spatial dependence. Herewe contribute by concisely discussing general computational
challenges which arise with posterior inference with Bayesian nonparametric models
and certain aspects of modelling temporal dependence.
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1 Computational challenges in Bayesian nonparametric models

One of the most successful strategies of the Bayesian nonparametric approach to
statistical inference has arguably been semiparametric mixture modelling, which has
proved to be extremely flexible and widely applicable. Semiparametric modelling
assumes the observations are generated by parametric densities conditionally on the
value of a set of parameters, which in turn are assigned a nonparametric distribution.
More formally, we have the hierarchical representation

Yi |θi ind∼ ϕ(yi |θi ), θi |G iid∼ G, G ∼ q(G∗, ζ ). (1)
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Here Y1, . . . ,Yn are the observations, θ1, . . . , θn are a set of latent variables that
parametrise the densities ϕ(yi |θi ), and G is a nonparametric distribution with prior q.
The latter is in turn parametrised by a baseline distribution G∗ on the parameter space
� ⊂ R

d and by a vector of reals ζ .
Upon observation of a dataset, posterior inference requires evaluating the condi-

tional distribution of the parameters given the data. As is typically the case in absence
of a fully conjugate model, i.e. such that the family of distributions assigned to the
parameters is closed upon conditioning to the data, one needs to resort toMarkov chain
Monte Carlo methods to sample from the posterior. Early contributions dealing with
this problem date back to Escobar and West (1995), MacEachern and Müller (1998)
and Neal (2000), and the large use of computer-aided inference has since boosted the
investigation of new and efficient algorithms to deal with posterior analysis under a
variety of modelling assumptions, generating a very lively literature. A brief intro-
duction to such methods can focus on models as in (1) under the assumption that the
mixing distribution G is almost surely a discrete probability measurewith representa-
tion G := ∑

h≥1 whδθ∗
h
, where {wh} are random weights that sum up to one and {θ∗

h }
are iid random points, taken independent of the weights, from the baseline distribution
G∗. When the weights are obtained by normalising the increments of a time-changed
subordinator, or more generally of a completely random measure (Kingman 1967),
this specification coincides with the relevant class of random probability measures
given by (homogeneous) normalised random measures with independent increments
(Regazzini et al. 2003), which have recently been object of intense research and in
turn include the celebrated Dirichlet process (Ferguson 1973). See Lijoi and Prünster
(2010) for a recent review.

A broad classification of algorithms which enable to perform posterior inference
under the above specifications divides them into marginal and conditional Gibbs
sampling methods. Marginal Gibbs samplers are so called because they integrate out
of (1) the random probability measure G. This entails sampling from

L(dθ1, . . . , dθn |y) ∝
n∏

i=1

ϕ(yi |θi )L(dθ1, . . . , dθn) (2)

where L(dθ1, . . . , dθn) is the prior marginal distribution of a sample from G and y =
(y1, . . . , yn) are the data. This marginal distribution can typically be characterised in
terms of the predictive lawsL(θi |θ1, . . . , θi−1, θi+1, . . . , θn), which gives rise to Pólya
urn schemes, in the case of the Dirichlet process (Blackwell and MacQueen 1973), or
generalisations thereof. Accordingly, Gibbs samplers with invariant distribution (2)
are often called generalised Pólya urns Gibbs samplers.

Since G is discrete, the θi ’s will induce a partition ρ = {C1, . . . ,Ck} of {1, . . . , n}
with C j = {i : θi = θ∗

j }, where j = 1, . . . , k and θ∗
1 , . . . , θ∗

k ’s are the distinct values
in θ1, . . . , θn . Given that θ∗

h are iid and independent of {wh} inG, the lawL(θ1, . . . , θn)

is equivalent to

L(C1, . . . ,Ck, dθ∗
1 , . . . , dθ∗

k ) = p(n1, . . . , nk)
k∏

j=1

G∗(dθ∗
j ),
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where ni = card(Ci ). The function p is called exchangeable partition probability
function (EPPF), and represents the law of the random partition ρ. Marginalising over
θ∗
1 , . . . , θ∗

k allows to express (2) as

L(C1, . . . ,Cn|y) ∝
k∏

j=1

m(yC j )p(n1, . . . , nk) (3)

wherem(yC j ) := ∫
�

∏
i∈C j

ϕ(yi |θ)dθ is the marginal distribution of the data in group
C j . The computation now relies on the availability of efficient strategies for sampling
from the EPPF, which are model-specific. Efficient solutions have been found based
on the so called Chinese restaurant process (Pitman 2006) and its generalisations.
Furthermore, expression (3) is the starting point for setting up inference under product
partition modelswith regression on covariates, a class of models introduced in Müller
et al. (2011) and extended to the spatial setting by Page and Quintana (2016) (cf. also
Section 5.3 of Müller et al. 2017).

The above, briefly described, marginal sampling methods are extremely useful
since they allow to reduce an infinite-dimensional computation to a finite number
of operations, entailed by integrating out the random probability measure. However,
a downside is that inference is limited to point estimation of linear functionals of
the population such as, e.g., predictive distributions, without allowing to quantify the
associated uncertainty.

Alternative strategies retain the random probability measureG as part of the model,
to be updated within the Gibbs sampling routine, and are therefore called conditional
methods. Given the series representation of G, this strategies then shift the problem
to that of simulating G, conditional on the data, with small or no approximation error.
Truncation methods are the most intuitive option, and entail finding an appropriate N

in GN :=
N∑

h=1
whδθ∗

h
which guarantees certain desired minimal requirements. Several

ways to achieve these have been proposed, among others, in Muliere and Tardella
(1998), Ishwaran and James (2001), Barrios et al. (2013), Argiento et al. (2016a, b),
Arbel and Prünster (2017). These truncation methods are generally fairly easy to
implement, but need to fix a priori, implicitly or explicitly, some notion of distance
between the approximating and the target measure.

Other, very successful, stochastic truncation methods allow to perform exact sam-
pling from the randomprobabilitymeasure andhave proven to be reliable and relatively
easy to implement. These include the slice sampler (Walker 2007; Kalli et al. 2011)
and the retrospective sampler (Papaspiliopoulos and Roberts, 2008) together with
their adaptations and generalisations. The slice sampler requires introducing appro-
priate latent [0,1]-valued variables ui so that

L(dui , dθi |G) =
∞∑

h=1

1(0,wh)(dui )δθ∗
h
(dθi ),
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whereby integrating u out of the previous recovers L(dθi |G) = G(dθi ). Define now

L(θi |ui ,G) = Gui (dθi ) :=
∑

h∈A(ui )

δθ∗
h
(dθi )

where A(ui ) := {h : wh > u} is a finite set. From the latter it is clear that sampling G,
conditional on u1, . . . , un, θ1, . . . , θn and the data, entails updating only finitely-many
of its components, namely the pairs (wh, θ

∗
h ) for h ∈ ∪n

i=1A(ui ).
The retrospective sampler instead is based on the idea of exchanging the intuitive

order of simulation for sampling from G. This would lead to sampling the infinite
sequences {wh}, {θ∗

h }, then draw vi uniformly distributed in (0, 1) and set θi = θ∗
l if

∑l−1
j=1 wl < vi <

∑l−1
j=1 wl , The retrospective sampler instead first samples vi and

then draws as many wh, θ
∗
h as are needed to meet the above inequalities.

Gibbs sampling procedures described so far are very appealing strategies but still
computationally intensivemethods. This makes the use ofmixtures such as (1) infeasi-
ble when dealing with large datasets, or when the computational resources are limited.
Recently, variational Bayes methods have been proposed as an alternative (Blei and
Jordan 2006). Acting essentially as optimisation algorithms, under these methods the
posterior distribution of G is approximated by a distribution q̃ , called variational dis-
tribution, of a finite dimensional process. The goal is then to adjust the parameters of
q̃ in order to minimise the Kullback–Leibler divergence between q̃ and the posterior.
Robustness of variational Bayes methods is currently one of the open problems in the
Bayesian nonparametric literature, as it is known they can underestimate the model
uncertainty.

2 Temporal dependence in Bayesian nonparametric models

An important line of research in Bayesian nonparametrics on the so called dependent
processes has developed from the ideas introduced in MacEachern (1999), where
collections of dependent random probability measures {Gz, z ∈ Z} are considered,
and Gz encodes the current state of the problem in correspondence of the covariate
value z. Cf. Müller et al. (2017, Section 3.2.1). Computational methods for dependent
models are very often problem-specific extensions of those summarised in Sect. 1.
Providing a general overviewof these computational strategieswould be a difficult task
far beyond the scope and possibilities of this discussion. Since Section 5 ofMüller et al.
(2017) presents some applications of dependent models for spatial data, we choose
here to briefly discuss some issues related to models with temporal dependence, with
particular emphasis on the role of conjugacy.

A common setting for Bayesian inference with temporal dependence is that of
partial exchangeability, whereby the available data are of the form yti ,1, . . . , yti ,ni ,
where the indices ti are discrete data-collection times, ni ≥ 1 for all i , and the data
yti , j are such that, as j varies,

yti , j | Gti ∼i id Gti .
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Hence the data are exchangeable across the ti -sections, but not overall. Froma temporal
modelling perspective, one ideally wants the correlation between pairs of random
measures Gt and Gs to increase as the indices t and s get closer, and decay to zero as
t and s grow farther apart.

A non exhaustive list of contributions, along this line of investigation, based on
Dirichlet mixture models includes, among others, Dunson (2006), Caron et al. (2008),
Griffin and Steel (2010), Caron et al. (2007), Rodriguez and Horst (2008), Taddy
and Kottas (2009), Mena and Ruggiero (2016). Other contributions have explored
models which go beyond the structure of the Dirichlet process or closely related
constructions, aiming at modelling, for example: marginal measures of the dependent
process of geometric stick-breaking type (Mena et al. 2011), of Pitman–Yor type
(Caron et al. 2017), of GEM type (Gutierrez et al. 2016), or of gamma type (Caron
and Teh 2012); evolving binary matrices for relational network structures (Durante
and Dunson 2014), or for dynamic feature allocation (Perrone et al. 2017); monotonic
functional time series (Canale and Ruggiero 2016); emission distributions for hidden
Markov models (Yau et al. 2011; Linderman et al. 2016).

Here we are interested in highlighting two roles conjugacy can play in these
approaches to inference. One is with the aim of constructing stationary temporal
models with a built-in simulation scheme available, as done in Pitt andWalker (2005),
Walker et al. (2007), Mena and Walker (2009). The kernel of the idea is to consider
joint distributions, for some fixed n ≥ 1,

L(dθ1, . . . , dθn, dG) = L(dG)

n∏

i=1

L(dθi | G)

where q is the nonparametric prior on G, and to construct transition functions through
latent variables by writing

P(G, dH) =
∫

L(dH | θ1, . . . , θn)

n∏

i=1

L(dθi | G) (4)

where L(dH | θ1, . . . , θn) is the posterior of H given θ1, . . . , θn . For example, if
p := G(A) ∈ [0, 1] for some fixed set A, the law of G(A) is a beta distribution and
L(dθi | G(A)) isBernoulliwith parameter p, then the above reduces to a beta-binomial
transition

P(p, dp′) = beta(dp′ | a + θ, b + n − θ)Binom(θ | n, p)

where (a, b) are prior beta hyperparameters. Note that this is in fact the transition func-
tion of the marginal state of a two-dimensional Gibbs sampler on the augmented space
of (p, θ), which is stationary with respect to a beta. In a nonparametric framework, if
L(dG) = �(dG | α) for some finite parameter measure α, and � is conjugate in the
sense that G ∼ � and X | G ∼ G jointly imply � | X ∼ �(· | f (α, X)) for some
function f of the data and the prior parameter, then (4) yields
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P(G, dH) =
∫

�(dH | f (α, θ1, . . . , θn))

n∏

i=1

G(dθi ). (5)

Here� can be shown to be the reversiblemeasure of the process, so this strategy allows
to construct stationary nonparametric processes. Lijoi et al. (2016) discuss along these
lines the Bayesian interpretation of the dynamics of two families of continuous-time
Dirichlet and gamma dependent models for Bayesian nonparametrics, the latter used
for example in Caron and Teh (2012). See also Ruggiero and Walker (2009). The
transition functions of such models can be obtained by randomising n in (4) and by
introducing appropriate coefficients which make P(G, dH) satisfy the Chapman–
Kolmogorov conditions in continuous time. For example, for these two families one
has

Pt (G, dH) =
∑

n≥0

P(Nt = n)

∫

�(dH | f (α, θ1, . . . , θn))

n∏

i=1

G(dθi ), (6)

where Nt is an appropriate Z+-valued continuous-time process which determines
the size of the latent sample (θ1, . . . , θn) and complies with the requirements on
the correlation mentioned at the beginning of the section. This approach has been
followed explicitly in Walker et al. (2007). The resulting transitions are therefore
infinite mixtures. Simulation of these transition functions can in principle be done
by resorting to one of the methods outlined in the previous section, e.g. by using a
slice sampler twice on themixture (6) and on the infinite-dimensional randommeasure
which is the state of process, as done for example inMena et al. (2011).Model-specific
hurdles however may make call for additional steps, e.g. Jenkins and Spanò (2017)
develop an exact simulation scheme for (6) in some finite and infinite-dimensional
Dirichlet cases, which deals efficiently with the non trivial expression for P(Nt = n),
which has itself a series representation.

Alternatively, conjugacy can be deliberately sought in order to reduce the over-
all Monte Carlo error and predictive uncertainty within a broader computation.
Papaspiliopoulos et al. (2016) for example extend classical posterior characterisa-
tions for Dirichlet and gamma random measures to the two above-mentioned families
of dependent processes, conditional on discretely collected data. In particular, suffi-
cient conditions are identified for these models (cf. Papaspiliopoulos and Ruggiero
2014) that allow to write (6), conditional on y1, . . . , ym collected possibly at different
times, as

Pt (G, dH | y1, . . . , ym) =
m∑

i=0

wi (t)�(dH | f (α, y1, . . . , yi )).

This reduces (6), upon conditioning to the observed data, to a finite mixture of distri-
butions in the same conjugate family. Note that the mixture components only consider
y1, . . . , yi and not the entire sample. The wi (t)’s are appropriate time-dependent
weights which regulate how the posterior mass is reassigned at different times to the
mixture components.
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