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Abstract In this paper, we prove that two multiplicative bias correction techniques
(MBC) can be applied for discrete kernels in the context of probability mass func-
tion estimation. First, some properties of the MBC discrete kernel estimators (bias,
variance and mean integrated squared error) are investigated. Second, the popular
cross-validation technique is adapted for bandwidth selection. Finally, a simulation
study and a real data application for discrete data illustrate the performance of the
MBC estimators based on dirac discrete uniform and triangular discrete kernels.

Keywords Bandwidth selection · Cross-validation · Discrete kernel · Discrete data ·
Mean integrated squared error · Multiplicative bias correction

1 Introduction

Given a random sample of observations X1, . . . , Xn with unknown probability mass
function (pmf) f , which is supported on the discrete setT (N,Z orT = {0, 1, . . . , N }),
the discrete kernel estimator f̂h(x) of f (x) = Pr(Xi = x) has been defined as follows
[see for example Kokonendji and Senga Kiessé (2011)]:
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254 L. Harfouche et al.

f̂h(x) = 1

n

n∑

i=1

Kx,h(Xi ),

where h = h(n) > 0 is a bandwidth (or smoothing parameter) and Kx,h is a discrete
kernel assumed to be a suitable pmf with support Sx not depending on h; see, e.g.,
Kokonendji et al. (2007) and Kokonendji and Senga Kiessé (2011). Naturally, the
use of the discrete kernels is more appropriate than continuous kernels for estimating
any discrete function; see again Kokonendji et al. (2007) and Kokonendji and Senga
Kiessé (2011). See also Aitchison and Aitken (1976) for categorical data and finite
discrete distributions and Wang and Ryzin (1980) for ordered discrete variables.

In view of the fact that the bias of f̂h is O(h) as h → 0, this paper considers
improvements in discrete kernel estimation that reduce the order of magnitude in
bias to O(h2), while the order of magnitude in variance is maintained. In the case
of symmetric kernels, this kind of rate improvements can be typically achieved by
employing higher-order kernels; see Jones and Foster (1993) for methods of gener-
ating higher-order kernels from a given second-order kernel. To our best knowledge,
equivalent techniques are yet to be proposed for discrete kernels. Instead, this paper
applies twoclasses ofmultiplicative bias correction (MBC) techniques in order to attain
the rate improvements. The MBC approaches were proposed and largely studied by
several authors in symmetric and asymmetric kernel density estimation (continuous
situation), see, e.g., Terrell and Scott (1980), Jones et al. (1995), Hirukawa (2010),
Hirukawa and Sakudo (2014), Hirukawa and Sakudo (2015), Zougab and Adjabi
(2015) and Funke and Kawka (2015). The first class of our considered MBC method
is concerned with the construction of a multiplicative combination of two density
estimators using different smoothing parameters. This idea is originally proposed by
Terrell and Scott (1980) as an additive bias correction to the logarithm of densities. The
second class of MBC in the spirit of Jones et al. (1995) is based on the idea of express-

ing f (x) = f̂ (x)
{
f (x)/ f̂ (x)

}
and estimating the bias-correction term f (x)/ f̂ (x)

nonparametrically. When applied to discrete kernel estimation, both MBC techniques
still yield estimators that are free of boundary bias. In addition, these estimators have
a practically appealing property. They always generate nonnegative density estimates
everywhere by construction, as f̂h does.

This paper is organized as follows. Section 2 briefly recalls discrete kernels for pmf
estimation. In Sect. 3 we first introduce the MBC discrete kernel estimators. Second,
we develop asymptotic properties like bias and variance of the newly proposed estima-
tors. Third, we adapt the unbiased-cross validation (UCV) procedure for choosing the
bandwidth. Section 4 conducts Monte Carlo simulations to compare the finite sample
performance of standard discrete kernel estimators and the proposed MBC discrete
kernel estimators. Section 5 provides an application on real data. Section 6 concludes
the paper. All proofs are given in the “Appendix”.

2 Discrete kernel estimator

Given a random sample X1, . . . , Xn with unknown probability mass function (pmf)
f , which is supported on the discrete set T (N, Z or T = {0, 1, . . . , N }), the discrete
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Table 1 Univariate discrete kernels

Kernel(L) Explicit form

DT (Kokonendji and Senga Kiessé 2011) KDT (x,h)(y) = (a+1)h−|y−x |h
P(a,h)

,

where P(a, h) = (2a + 1)(a + 1)h − 2
a∑

k=0
kh .

DDU (Aitchison and Aitken 1976) KDDU (x,h)(y) = (1 − h)Iy=x + h
m−1 Iy �=x .

WVR (Wang and Ryzin 1980) KWV R(x,h)(y) = (1 − h)Iy=x + 1
2 (1 − h)h|y−x |

I|y−x |≥1.

LR (Racine and Li 2004) KLR(x,h)(y) = Iy=x + h|y−x |
Iy �=x .

Table 2 Explicit forms of q(x, f )

Kernel(L) q(x, f )

DT

(
log(a+1)

2 S(a) − 2
a∑

k=1
k2 log(k)

)
f (2)(x)

2

DDU
(
m
2 − x − x

m−1

)
f (1)(x) +

(
m(2m−1)

6 + x2 + x2
m−1 − mx

)
f (2)(x)

2

WVR f (2)(x)
2

LR 2x f (1)(x) −
(
2x2 − 2

)
f (2)(x)

2

where S(a) = a(a+1)(2a+1)
3 and f ( j) denotes the finite difference of j-th order given by f ( j)(x) =

{ f ( j−1)(x)}(1) with f (1)(x) =
{ [ f (x + 1) − f (x − 1)]/2 if x ∈ N

∗;
f (1) − f (0) if x = 0.

kernel estimator of f (x) = Pr(Xi = x) using kernel L = DT,DDU, WVR,LR can
be expressed as

f̂L(x) = 1

n

n∑

i=1

KL(x,h)(Xi ), (1)

where x ∈ T is the target (point where the pmf is estimated) and h > 0 is a bandwidth
(or smoothing parameter) and the explicit forms of the kernels are listed in Table 1.
The asymptotic properties of the estimator (1) are studied in detail in Kokonendji and
Senga Kiessé (2011). The asymptotic bias when h → 0 is given by

bias( f̂L(x)) = q(x, f )h + o(h),

where the explicit forms of q(x, f ) for a specific-kernel L are given in Table 2.
Similarly, when n → ∞ and h → 0 the asymptotic variance is

Var( f̂L(x)) = 1

n
f (x){1 − f (x)}K 2

L(x,h)(x) + o

(
1

n

)
.
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256 L. Harfouche et al.

The mean integrated squared error (MISE) is given in Kokonendji and Senga Kiessé
(2011) and Kokonendji et al. (2007) and is expressed as

MISE( f̂L) =
∑

x∈T
bias2( f̂L(x)) +

∑

x∈T
Var( f̂L(x))

= h2
∑

x∈T
q2(x, f ) + 1

n

∑

x∈T
f (x){1 − f (x)}K 2

L(x,h)(x) + o

(
h2 + 1

n

)
.

In analogy to kernel density estimation, the choice of a suitable bandwidth is also
a crucial issue in the discrete kernel method. For this reason, several approaches have
been proposed in the literature. The common methods of continuous kernel estimators
that adopt the mean integrated squared error (MISE) as a criterion and the techniques
of cross-validation (CV) are also developed for discrete kernel estimation techniques;
see, e.g, Kokonendji et al. (2007), Kokonendji and Senga Kiessé (2011) and Chu et al.
(2015).

3 MBC for discrete kernel estimators

In this section, we adapt the mentioned MBCmethods to the estimation of probability
mass functions where the special kernels used for pmf estimation are called discrete
kernels, which have support on some discrete set including N, Z or a finite number of
integers. Our proposed approaches have the same intuition as in the continuous case,
each of the MBCmethods is shown to improve the bias convergence of univariate pmf
estimators from O(h) to O(h2) while their variance convergence remains unchanged
at o(n−1). Globally the proof strategies of eachMBCmethod in pmf estimation largely
follow those of the correspondingmethod that is originally developed for kernel density
estimation of scalar continuous random variables see, e.g., Terrell and Scott (1980),
Jones et al. (1995), Hirukawa (2010), Hirukawa and Sakudo (2014), Zougab and
Adjabi (2015) and Funke and Kawka (2015).

3.1 Estimators

Following the idea of the geometric estimator of Terrell and Scott (1980) andHirukawa
(2010) abbreviated as ”TS”. This can be readily extended to the discrete kernel L in the
context of probability mass function estimation. For a given kernel L , let f̂L ,h(x) and
f̂L ,h/c(x) are the pmf estimators using smoothing parameters h and h/c, respectively,
where c ∈ (0, 1) is some predetermined constant that does not depend on the design
point x . Then, the TS-MBC kernel pmf estimator can be adapted as follows:

f̃T S,L(x) =
{
f̂L ,h(x)

} 1
1−c

{
f̂L ,h/c(x)

}− c
1−c

. (2)

The second approach of MBC techniques for symmetric kernel density estima-
tors is attributed to Jones et al. (1995) [see also Hirukawa (2010), Hirukawa and

123
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Sakudo (2014), Zougab and Adjabi (2015) and Funke and Kawka (2015) by using
asymmetric kernels] abbreviated as ”JLN” and utilizes a single smoothing parame-
ter h. The JLN technique proposed by Jones et al. (1995) is based on the identity

f (x) = f̂L ,h(x)
{
f (x)/ f̂L ,h(x)

}
. In analogy to their estimators, using the discrete

kernel L , we denote as f̃ J LN ,L(x) the following estimator:

f̃ J LN ,L(x) = f̂L ,h(x)

{
1

n

n∑

i=1

KL(x,h)(Xi )

f̂L ,h(Xi )

}
, (3)

where KL(x,h) is the kernel L . Recognize that the term inside the brackets is a nat-
ural estimator of the bias-correction term f (x)/ f̂L ,h(x). Also, by construction, both
f̃T S,L(x) and f̃ J LN ,L(x) always generate nonnegative probability mass function esti-
mates everywhere.

3.2 Asymptotic properties

The asymptotic bias and variance of theMBC estimators are presented in the following
theorems. We assume that

A1. The derivatives of f at each point x ∈ N are replaced by the finite differences
[see Kokonendji and Senga Kiessé (2011)]

f ( j)(x) = { f ( j−1)(x)}(1),

where

f (1)(x) =
{ { f (x + 1) − f (x − 1)}/2 if x ∈ N \ {0};
f (1) − f (0) x = 0.

A2. The smoothing parameter h = h(n) satisfies h → 0 as n → ∞.

Theorem 1 Let f̃T S,L be the TS-MBC estimator using kernel L defined by (2). For a
given target x, and assuming A1 and A2, it holds:

(i) The bias of the TS-MBC discrete kernel estimator takes the following approxi-
mation

bias( f̃T S,L(x)) = 1

c

[
1

2

{
l21(x, f )

f (x)
− l2(x, f )

}]
h2 + o(h2),

where the explicit forms of l1(x, f ) and l2(x, f ) are respectively given in Tables 3
and4. (ii)The variance of the TS-MBCestimatorwith the kernel L admits the following
expansion

Var( f̃T S,L(x)) = f (x)(1 − f (x))

n(1 − c)2
(
KL ,h(x) − cKL ,h/c(x)

)2 + o

(
1

n

)
.
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258 L. Harfouche et al.

Table 3 Explicit forms of l1(x, f )

Kernel(L) l1(x, f )

DT

(
log(a + 1)S(a) − 2

a∑
k=1

k2 log(k)

)
f (2)(x)

2 +
(
log(a + 1)R(a) − 2

a∑
k=1

k4 log(k)

)
f (4)(x)
24

DDU
(
m
2 − x − x

m−1

)
f (1)(x) + 1

2

(
m(2m−1)

6 + x2 + x2
m−1 − xm

)
f (2)(x)+

1
6

(
m2(m−1)

4 − x3 − x3
m−1 + 3x2m

2 − xm(2m−1)
2

)
f (3)(x)

+ 1
24

(
m[6(m−1)3+9(m−1)2+m−2]

30 + x4 − x4
m−1 + x2m(2m − 1) − xm2(m − 1)

)
f (4)(x)

WVR 1
2 f (2)(x) + 121

24 f (4)(x)

LR 2x f (1)(x) − (x2 − 1) f (2)(x) + 1
3 x

3 f (3)(x) − ( 1
12 x

4 − 1
12 ) f (4)(x)

Table 4 Explicit forms of l2(x, f )

Kernel(L) l2(x, f )

DT

(
log2(a+1)

2 S(a) −
a∑

k=1
k2 log2(k)

)
f (2)(x)

2 +
(
log2(a+1)

2 R(a) −
a∑

k=1
k4 log2(k)

)
f (4)(x)
24

DDU 0

WVR − 3
2 f (2)(x) + 105

8 f (4)(x)

LR 2x f (1)(x) + (x2 − 4) f (2)(x) + 1
3 x

3 f (3)(x) + ( 1
12 x

4 − 4
3 ) f (4)(x)

Proof The proof is given in the “Appendix”.

Theorem 2 Let f̃ J LN ,L be the JLN-MBC estimator with kernel L defined by (3). For
a given target x, and assuming A1 and A2, it holds that:

(i) The bias of the JLN-MBC discrete kernel estimator takes the following approx-
imation

bias( f̃ J LN ,L(x)) = − f (x)l1(x, g)h
2 + o(h2),

where l1(x, g) is obtained by replacing f by g in l1(x, f ) with g = g(x, f ) =
l1(x, f )/ f (x).

(ii) The variance of the JLN-MBC discrete kernel estimator takes the following
expression

Var( f̃ J LN ,L(x)) = f (x)(1 − f (x))

n
K 2

L ,h(x) + o

(
1

n

)
.

Proof The proof is given in the “Appendix”. �	
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3.3 Global property

We use the mean integrated squared error (MISE) as a criterion for the global property
defined as

MISE( f̃MBC,L) =
∑

x∈T
bias2( f̃MBC,L(x)) +

∑

x∈T
Var( f̃MBC,L(x)),

where f̃MBC,L is the TS-L or the JLN-L kernel estimator. Themean integrated squared
error (MISE) of the TS-L kernel estimator presented in (2) is given by

MISE( f̂T S,L) = h4

c2
∑

x∈T

[
1

2

{
l21,L(x, f )

f (x)
− l2,L(x, f )

}]2

+
∑

x∈T

f (x)(1 − f (x))

n(1 − c)2
(
KL ,h(x) − cKL ,h/c(x)

)2 + o

(
h4 + 1

n

)
.

Similarly, the mean integrated squared error of the JLN-L kernel estimator presented
in (3) is expressed as

MISE( f̂ J LN ,L) = h4
∑

x∈T
f (x)2l21(x, g) + 1

n

∑

x∈T
f (x){1 − f (x)}K 2

L(x,h)(x)

+ o

(
h4 + 1

n

)
.

Remark 1 We can easily transmit the results when bias and variance have to be estab-
lished at a point x . As we have seen, the bias remains unchanged and is uniformly of
order O(h2) over the whole support. Moreover, the variance exhibits the following
order:

Var( f̃T S,L(x)) = Var( f̃ J LN ,L(x)) = Var( f̂L(x)) = o(n−1).

The two theorems demonstrate that both TS and JLN estimators are free of boundary
bias. More importantly, these two MBC estimators reduce the order of magnitude in
bias from O(h) to O(h2), while their variances are still o(n−1). The variance of JLN
estimator is first-order asymptotically equivalent to that of the corresponding classical
estimator. Besides, since the variance of TS-MBC estimators depends on c ∈ (0, 1),
the variance of these estimators tends to be larger than that of the classical estimator,
but not least importantly, see, e.g., Hirukawa (2010) and Hirukawa and Sakudo (2014)
for more details in continuous case.

3.4 Normalization

Neither f̃T S,L(x) nor f̃ J LN ,L(x) sum up to one. In general, MBC leads to lack of
normalization,Hirukawa (2010) for example, argues that this issue canbe resolved, and
propose two renormalized beta MBC kernel density estimators. Taking the structures
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of f̃T S,L(x) and f̃T S,L(x) into account. Following Hirukawa (2010), we adopt their
macro approach to obtain the renormalized of our MBC estimators.

f̃ RT S,L(x) = f̃T S,L(x)
∑

x∈T f̃T S,L(x)
,

f̃ RJ LN ,L(x) = f̃ J LN ,L(x)
∑

x∈T f̃ J LN ,L(x)
.

Since

E

(
∑

x∈T
f̃T S,L(x)

)
=

∑

x∈T

(
E( f̃T S,L(x))

)
,

= 1 + 1

c

∑

x∈T

[
1

2

{
l21(x, f )

f (x)
− l2(x, f )

}]
h2 + o(h2)

and

E

(
∑

x∈T
f̃ J LN ,L(x)

)
=

∑

x∈T

(
E( f̃ J LN ,L(x))

)
,

= 1 −
∑

x∈T
f (x)l1(x, g)h

2 + o(h2),

biases of f̃ RT S,L(x) and f̃ RJ LN ,L(x) can be approximated by

bias
(
f̃ RT S,L (x)

)
∼ 1

c

⎡

⎣1

2

{
l21(x, f )

f (x)
− l2(x, f )

}
−

∑

x∈T

1

2

{
l21(x, f )

f (x)
− l2(x, f )

}⎤

⎦ h2,

bias
(
f̃ RJ LN ,L (x)

)
∼

⎡

⎣− f (x)l1(x, g) +
∑

x∈T
f (x)l1(x, g)

⎤

⎦ h2.

3.5 Choice of smoothing parameter for discrete MBC kernel estimators

We adapt in this section the popular unbiased cross validation (UCV) method. First,
we consider the case of TS-kernel estimators based on the kernel L . The optimal
smoothing parameter hoptT S,L is given by

hoptT S,L = arg min
h

UCVT S,L(h),
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where

UCVT S,L(h) =
∑

x∈T
f̃ 2T S−L(x) − 2

(n − 1)

n∑

i=1

f̃ (−i)
T S−L(Xi )

=
∑

x∈T

{
f̂L ,h(x)

} 2
1−c

{
f̂L ,h/c(x)

}− 2c
1−c − 2

n(n − 1)

×
n∑

i=1

⎡

⎢⎣

⎧
⎨

⎩
∑

j �=i

KL(Xi ,h)(X j )

⎫
⎬

⎭

1
1−c

⎧
⎨

⎩
∑

j �=i

KL(Xi ,h/c)(X j )

⎫
⎬

⎭

− c
1−c

⎤

⎥⎦ .

In the case of JLN-kernel estimators, the expression of UCV takes the following form:

UCVJLN ,L(h) =
∑

x∈T
f̃ 2J LN ,L(x) − 2

(n − 1)

n∑

i=1

f̃ (−i)
J LN ,L(Xi )

= 1

n2
∑

x∈T
f̂ 2L ,h(x)

{
n∑

i=1

KL(x,h)(Xi )

f̂L ,h(Xi )

}2

− 2

n(n − 1)
×

n∑

i=1

∑

j �=i

KL(Xi ,h)(X j )
f̂L ,h(Xi )

f̂L ,h(X j )

and the bandwidth hoptJ LN ,L is defined as follows

hoptJ LN ,L = arg min
h

UCVJLN ,L(h).

4 Illustrations from simulated data

This section investigates the performances of TS-DDU, TS-DT, JLN-DDU and
JLN-DT kernel estimators considered in the previous section and compares their per-
formances with the standard DDU and DT kernel estimators. Note that for the DT
kernel, we used the arm a = 2, see for example Kokonendji and Senga Kiessé (2011).
We consider six probability mass functions defined as follows:

(a) F1 a Poisson distribution with parameter λ = 8:

f (x) = e−8 8
x

x ! , x ∈ N.

(b) F2 a mixture of three Poisson distributions with parameters μ1 = 3, μ2 = 12
and μ3 = 24:

f (x) = 1

3
e−3 3

x

x ! + 1

3
e−12 12

x

x ! + 1

3
e−24 24

x

x ! , x ∈ N
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262 L. Harfouche et al.

(c) F3 a Geometric distribution with parameter p = 0.1:

f (x) = 0.1 · (0.9)x−1, x ∈ N.

(d) F4 a mixture of Poisson and Geometric distributions with parameters μ = 10
and p = 0.1:

f (x) = 2

5
· e−10 10

x

x ! + 3

5
· 0.1 · (0.9)x−1, x ∈ N.

(e) F5 a negative binomial distribution with parameters n1 = 20 and p = 2/3:

f (x) = (19 + x)!
x !19!

(
2

3

)20 (
1

3

)x

x ∈ N.

(f) F6 a binomial distribution with parameters n1 = 5 and p = 0.1:

f (x) = 5!
x !(5 − x)!0.1

x · 0.95−x , x ∈ {0, 1, . . . , 5}.

Note that for these considered pmfs, 500 replications of sizes n = 20, 50, 100 and
200 are generated. The MBC-DDU (TS-DDU and JLN-DDU) and MBC-DT (TS-DT
and JLN-DT) discrete kernel estimators are applied to estimate the pmfs generated
from Poisson(λ = 8), a mixture of three Poisson with (μ1 = 3, μ2 = 12, μ3 = 24),
a Geometric(p = 0.1), mixture of Poisson(μ = 10) and Geometric(p = 0.1) dis-
tributions, a negative binomial distribution BN(n1 = 20, p = 2/3) and a binomial
distribution B(n1 = 5, p = 0.1). Note that, for our simulations the value of c which
is obtained in the sense of mean integrated squared error (MISE) see, e.g., Hirukawa
(2010) is fixed at c = 0.5.We use the standard DDU and DT kernel estimators to com-
pare their performance with the MBC-DDU and MBC-DT kernel estimators. For the
choice of the bandwidth, we use the UCV technique proposed in the previous section.
Finally, the performances of the different standard estimators andMBC estimators are
examined via the integrated squared error (ISE) and the integrated squared bias (ISB)
given respectively as follows:

ISE :=
∑

x∈T

[
f̂ (x) − f (x)

]2

and
ISB :=

∑

x∈T

[
E{ f̂ (x)} − f (x)

]2
.

We also compute the integrated variance IV given by

IV :=
∑

x∈T

[
Var{ f̂ (x)}] .

Through simulation results (Tables 5, 6, 7), we can observe immediately that:

123



Multiplicative bias correction for discrete kernels 263

Table 5 Some expected values of ISE based on 500 replications for the previous considered pmfs

f Kernel Estimator n = 20 n = 50 n = 100 n = 200

F1 DDU f̂ 0.042787 0.042609 0.042574 0.042563

f̃TS 0.033705 0.032229 0.032031 0.031361

f̃JLN 0.034777 0.034401 0.032380 0.031987

DT f̂ 0.013403 0.012382 0.007470 0.001309

f̃TS 0.002905 0.001878 0.001366 0.000366

f̃JLN 0.025200 0.004287 0.001050 0.000034

F2 DDU f̂ 0.053881 0.053495 0.053313 0.053182

f̃TS 0.022398 0.022391 0.022377 0.020300

f̃JLN 0.006122 0.005489 0.005135 0.004648

DT f̂ 0.007583 0.006054 0.005454 0.005031

f̃TS 0.016221 0.014836 0.013071 0.009145

f̃JLN 0.005181 0.004894 0.001957 0.001172

F3 DDU f̂ 0.026628 0.026608 0.026578 0.026070

f̃TS 0.014414 0.007664 0.004681 0.004666

f̃JLN 0.010331 0.006939 0.005592 0.005442

DT f̂ 0.008378 0.007500 0.007187 0.005424

f̃TS 0.008790 0.007584 0.004624 0.004080

f̃JLN 0.006373 0.005404 0.003235 0.003192

F4 DDU f̂ 0.035007 0.027178 0.027054 0.027009

f̃TS 0.038446 0.038436 0.038410 0.026179

f̃JLN 0.024550 0.024524 0.022049 0.010206

DT f̂ 0.004518 0.002838 0.002777 0.002506

f̃TS 0.008109 0.006315 0.001436 0.000200

f̃JLN 0.002297 0.001980 0.000230 0.000151

F5 DDU f̂ 0.061334 0.060788 0.055170 0.050989

f̃TS 0.031456 0.030866 0.023564 0.018992

f̃JLN 0.022082 0.019926 0.019238 0.019047

DT f̂ 0.009689 0.000810 0.000145 0.000030

f̃TS 0.005364 0.004618 0.0035203 0.001700

f̃JLN 0.000159 0.000256 0.000108 0.000009

F6 DDU f̂ 0.000014 0.000006 0.000002 0.000001

f̃TS 0.000008 0.000004 0.0000026 0.0000022

f̃JLN 0.000008 × 10−1 0.000005 × 10−1 0.000002 × 10−1 0.000001 × 10−1

DT f̂ 0.002889 0.001826 0.001808 0.001434

f̃TS 0.003393 0.001583 0.001542 0.000857

f̃JLN 0.004142 0.003615 0.000836 0.000537

Bold values indicate the best results, which are in general for the MBC approaches
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Table 6 Empirical ISB values based on 500 replications for the previous considered pmfs

f Kernel Estimator n = 20 n = 50 n = 100 n = 200

F1 DDU f̂ 0.001044 0.001041 0.001030 0.001028

f̃TS 0.000416 0.000135 0.000051 0.000023

f̃JLN 0.000204 0.000129 0.000065 0.000042

DT f̂ 0.006911 0.003771 0.001309 0.000225

f̃TS 0.000508 0.000350 0.000239 0.000030

f̃JLN 0.004287 0.000073 0.000034 0.000033

F2 DDU f̂ 0.004498 0.004448 0.004447 0.004463

f̃TS 0.001642 0.001479 0.001448 0.001521

f̃JLN 0.000258 0.000145 0.000140 0.000132

DT f̂ 0.006280 0.005772 0.005392 0.004935

f̃TS 0.007141 0.003604 0.002514 0.001346

f̃JLN 0.005146 0.002067 0.001280 0.001003

F3 DDU f̂ 0.002007 0.001993 0.001992 0.001941

f̃TS 0.002461 0.000488 0.000475 0.000020

f̃JLN 0.000238 0.000137 0.000063 0.000007

DT f̂ 0.007637 0.007351 0.005861 0.003762

f̃TS 0.007279 0.006882 0.004247 0.003259

f̃JLN 0.006215 0.003963 0.003135 0.002800

F4 DDU f̂ 0.003082 0.002755 0.002382 0.002365

f̃TS 0.003401 0.003200 0.002375 0.002001

f̃JLN 0.002176 0.002152 0.001894 0.000968

DT f̂ 0.003027 0.002814 0.002709 0.001951

f̃TS 0.005236 0.004054 0.000979 0.000011

f̃JLN 0.000503 0.000354 0.000216 0.000093

F5 DDU f̂ 0.003155 0.003933 0.003800 0.002954

f̃TS 0.001244 0.000203 0.000180 0.000043

f̃JLN 0.000308 0.000146 0.000077 0.000054

DT f̂ 0.002525 0.000336 0.000115 0.000083

f̃TS 0.004808 0.004231 0.001527 0.000898

f̃JLN 0.000130 0.000219 0.000016 0.000003

F6 DDU f̂ 0.000013 0.000006 0.000002 0.000001

f̃TS 0.000007 0.000004 0.0000026 0.0000022

f̃JLN 0.000007 × 10−1 0.000004 × 10−1 0.000002 × 10−1 0.000001 × 10−1

DT f̂ 0.000972 0.000703 0.000692 0.000212

f̃TS 0.000527 0.000363 0.000334 0.000444

f̃JLN 0.004053 0.000287 0.000155 0.000021

Bold values indicate the best results, which are in general for the MBC approaches
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Table 7 Empirical IV values based on 500 replications for the previous considered pmfs

f Kernel Estimator n = 20 n = 50 n = 100 n = 200

F1 DDU f̂ 0.041743 0.041568 0.041544 0.041535

f̃TS 0.033289 0.032094 0.031980 0.031338

f̃JLN 0.034573 0.034272 0.032315 0.031945

DT f̂ 0.006492 0.008611 0.006161 0.001084

f̃TS 0.002397 0.001528 0.001127 0.000309

f̃JLN 0.020913 0.004213 0.001016 0.000001

F2 DDU f̂ 0.049383 0.049047 0.048866 0.048719

f̃TS 0.020756 0.020912 0.020929 0.018779

f̃JLN 0.005864 0.005344 0.004995 0.004516

DT f̂ 0.001303 0.000282 0.000062 0.000096

f̃TS 0.009080 0.011232 0.010557 0.007799

f̃JLN 0.000035 0.002827 0.000677 0.000169

F3 DDU f̂ 0.024621 0.024615 0.024586 0.024129

f̃TS 0.011953 0.007176 0.004206 0.004646

f̃JLN 0.010093 0.006802 0.005529 0.005435

DT f̂ 0.000741 0.000149 0.001326 0.001662

f̃TS 0.001511 0.000702 0.000377 0.000821

f̃JLN 0.000158 0.001441 0.000099 0.000392

F4 DDU f̂ 0.031925 0.024423 0.024672 0.024644

f̃TS 0.035045 0.035236 0.036035 0.024178

f̃JLN 0.022374 0.022372 0.010035 0.009238

DT f̂ 0.001491 0.000024 0.000068 0.000555

f̃TS 0.002873 0.002261 0.000457 0.000189

f̃JLN 0.001794 0.001626 0.000014 0.000058

F5 DDU f̂ 0.058179 0.056855 0.051370 0.048035

f̃TS 0.030212 0.030663 0.023384 0.018949

f̃JLN 0.021774 0.019780 0.019161 0.018993

DT f̂ 0.007164 0.000474 0.000029 0.000224

f̃TS 0.000556 0.000387 0.001993 0.000802

f̃JLN 0.000029 0.000037 0.000091 0.000005

F6 DDU f̂ 0.000007 × 10−1 0.000001 × 10−1 0.000003 × 10−2 0.000005 × 10−3

f̃TS 0.000008 × 10−1 0.000002 × 10−1 0.000004 × 10−2 0.000001 × 10−2

f̃JLN 0.000001 × 10−1 0.000005 × 10−2 0.000001 × 10−2 0.000002 × 10−3

DT f̂ 0.001917 0.001123 0.001115 0.001221

f̃TS 0.002866 0.001220 0.001208 0.000413

f̃JLN 0.003328 0.000657 0.000681 0.000516

Bold values indicate the best results, which are in general for the MBC approaches
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Fig. 1 The pmf estimation of Binomial data with n = 200 using the standard andMBC discrete associated
kernel estimators. a DDU kernel. b DT(a = 2) kernel

1. for all estimators, the means of ISE and ISB based on 500 simulations decrease as
sample size n increases, which indicates that our estimators are consistent;

2. in terms of ISE and ISB, the performances of JLN-DDU and TS-DDU kernel
estimators are mixed depending on the distribution. For example, in case of the
binomial distribution, the JLN-DDU kernel estimator in general works better than
the other competitors in the sense of ISB;

3. for all sample sizes the TS-DDU, JLN-DDU, TS-DT, JLN-DT kernel estimators
outperform the standard DDU and DT kernel estimators in the senses of ISE and
ISB.

Note that the performances of theWVRandLRkernels are similar to those obtained by
theDDUkernel, for this reason and to avoidmaking themanuscriptmore cumbersome,
we have considered the DDU kernel rather than the WVR nor the LR in simulations
and empirical illustrations.

The comparison is also illustrated in Figs. 1 and 2. We have plotted the estimates
for sample size n = 200 with DDU and DT(a = 2) kernel. The solid lines represent
the true pmf, the dotted lines represent the classical (C) estimator with DDU or DT
kernel, the TS-DDU and TS-DT estimator are represented by the dashed lines, the
JLN-DDU and JLN-DT estimators by the solid lines in gray. The plot shows that in
general the MBC-DDU and MBC-DT estimators improves the standard DDU and
DT kernel estimator for all pmfs. The smoothing quality is considered satisfactory.
We have obtained the best smoothing quality by using the MBC-DDU (TS-DDU and
JLN-DDU) or the MBC-DT (TS-DT and JLN-DT) kernel estimators.

The TS-MBC estimator depends on two smoothing parameters h and h/c, these two
smoothing parameters also play a role in determining the boundary region. Controlling
both h and h/c is a cumbersome task. Because 0 < c < 1, the pmf estimator using h/c
tends to be oversmoothed, which is potentially a source of a large bias in every TS-
MBC estimator. On the other hand, we make c too long in order to have a reasonable
short of h/c.
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Fig. 2 The pmf estimation of mixture of Poisson and Geometric distributions data with n = 200 using the
standard and MBC discrete associated kernel estimators. a DDU kernel. b DT(a = 2) kernel

Table 8 Summary Statistics for
Travel Mode Choice Data

Categories Air Train Bus Car Total

Number choosing 58 63 30 59 210

p 0.28 0.30 0.14 0.28 1

Table 9 Data of longevity of adult insects observed in days

Days 1 2 3 4 5 6 7 8 9 Total

Observed frequencies 29 16 22 8 2 4 0 0 1 82

5 Illustrations from real data

To complete our Monte Carlo simulations, we consider in this section two real data
applications. First we illustrate the performances of the MBC techniques for discrete
kernel estimators based on DDU and DT(a = 2) kernels for the travel mode choice
(between Sydney and Melbourne, Australia) data from Greene (2011). This data con-
sists of n = 210 observations and m = 4 categories (air, train, bus and car). Note that
the relative proportions of air, train, bus and car are 0.28, 0.30, 0.14 and 0.28 respec-
tively. Table 8 provides the summary statistics of these real data observations. The
second real application is related to the development of an insect parasite called the
spiraling whitefly and observed in Republic of Congo, see Senga Kiessé and Mizère
(2012). This insect pest plant causes some damages as sucking the sap, decreasing
photosynthesis activity and drying up the leaves. The congolese biologists are search-
ing for a suitable modeling by studying some count data characterizing the growth of
spiraling whitefly such as the longevity of the adult insect (see Table 9).
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Table 10 Results from
bandwidth and I SE0 by discrete
and MBC kernels estimators of
real data from the travel mode
choice (between Sydney and
Melbourne, Australia) of
n = 210

Estimators hucv I SE0

f̂DDU 0.015000 0.082230

f̃TS−DDU 0.999361 0.000708

f̃JLN−DDU 0.206504 0.017897

f̂DT 0.043106 0.020105

f̃TS−DT 0.995202 0.015453

f̃JLN−DT 0.952180 0.016453

Bold values indicate the best
results, which are for the MBC
approaches

Table 11 Results from
bandwidth and I SE0 by discrete
and MBC kernels estimators of
real data from longevity of adult
insects observed in days of
n = 82

Estimators hucv I SE0

f̂DDU 0.047749 0.097224

f̃TS−DDU 0.999513 0.005144

f̃JLN−DDU 0.556757 0.042317

f̂DT 0.084456 0.049919

f̃TS−DT 0.920273 0.020639

f̃JLN−DT 0.902025 0.043699

Bold values indicate the best
results, which are for the MBC
approaches

Now we apply the MBC-DDU and MBC-DT kernel estimators to estimate the
pmfs for the considered real data. The value of c is fixed at 0.5 for TS-DDU and
TS-DT kernel estimators. The standard DDU and DT kernel estimators are also used
for comparison.

In order to measure the performance of all estimators, we simply use the practical
integrated squared error given by [see Kokonendji and Senga Kiessé (2011)]:

ISE0 :=
∑

x∈N

[
f̂ (x) − f0(x)

]2
,

where f0(x) is the empirical (naive) estimator. Categorical independent variables can
be used in a nonparametric pmf estimation, but they need to be coded. In our study
we use the following code: 1=”air”; 2=”train”; 3=”bus”; 4=”car”. The bandwidths for
the estimators are chosen by using the popular UCV technique. The obtained values
of hucv and I SE0 for both applications are given in Tables 10 and 11.

We can see that in terms of the ISE0, the MBC discrete kernel estimators with
UCV bandwidths perform better than the standard kernel estimators for both appli-
cations. We have also plotted the estimations obtained by the classical (C) estimator
and the MBC (TS and JLN) estimators with the Dirac Discrete Uniform and the trian-
gular kernels for the second real data of longevity of adults insects observed in days.
From Fig. 3, we observe that the smoothing quality is satisfactory. But the smoothing
contributed by the JLN estimator is more suitable.
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Fig. 3 The pmf estimation of real data of longevity of adults insects observed in days with n = 82 using
the standard and MBC discrete associated kernel estimators. a DDU kernel. b DT(a = 2) kernel

6 Conclusion

This paper has proposed two multiplicative bias correction (MBC) techniques for dis-
crete kernels in the context of probability mass function (pmf) estimation. We have
shown that these two classes of MBC techniques improve the order of magnitude in
bias from O(h) to O(h2). The performances of theMBC techniques for discrete kernel
estimators (TS-DDU, TS-DT, JLN-DT and JLN-DDU kernel estimators) with unbi-
ased cross-validation (UCV) bandwidth selectors are investigated through a simulation
study and a real data application for count and categorical data. In general, the MBC
discrete kernel estimators perform better than the standard discrete kernel estimators
in the sense of integrated squared error (ISE) and integrated squared bias (ISB).

This paper deals only with the univariate case. An extension is obviously given by
the estimation of multivariate pmfs. We are aware of two recent publications, which
deal with multivariate (discrete) kernels. Kokonendji and Somé (2015) investigated
multivariate kernels for the estimation of the density of continuously distributed ran-
dom vectors.Moreover, discrete multivariate kernels have been studied by Belaid et al.
(2016). In the latter one, a Bayesian bandwidth selection method for those kernels has
been proposed.

Hence, let X = {(Xi1, . . . , Xid), i = 1, . . . , n} be a sample of i.i.d. random
vectors of dimension d ≥ 1. When following the approach by Belaid et al. (2016), we
define the multivariate version of a discrete kernel with diagonal bandwidth matrix
H = diag(h1, . . . , hd) and kernel L according to

f̂L(x) := 1

n

n∑

i=1

d∏

j=1

K [ j]
L(x j ,h j )

(Xi j ),

where K [ j]
L(x j ,h j )

(Xi j ) denotes the univariate discrete kernel studied in this paper and

x := (x1, . . . , xd) ∈ T
d := ×d

j=1T
[ j]
1 ⊆ Z

d
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denotes the target vector. Moreover, Td denotes the support of the underlying pmf f ,
which has to be estimated at x.

In view of our univariate findings and in analogy of the asymmetric kernel based
approach by Funke and Kawka (2015), we define the multivariate version of the TS
estimator as

f̂T S,L(x) :=
(
f̂L(x)

) 1
1−c

(
f̂L(x)

)− c
1−c

.

In an analogous way, the multivariate JLN estimator is defined according to

f̂ J LN (x) := f̂L(x)
1

n

n∑

i=1

∏d
j=1 K

[ j]
L(x j ,h j )

(Xi j )

f̂L(Xi )
.

Under appropriate assumptions, it can be shown that the mean squared errors of both
estimators are given by

MSE
(
f̂T S,L(x)

)
=O

(
h4 +

∏d
j=1

(
KL(x j ,h)(x j ) − cKL(x j ,h/c)(x j )

)2

n

)
as n→∞,

as well as

MSE
(
f̂ J LN (x)

)
= O

⎛

⎝h4 + 1

n

d∏

j=1

K 2
L(x j ,h)(x j )

⎞

⎠ as n → ∞,

where, for the sake of simplicity, the bandwidth vector h is given by h ≡ h1 = · · · =
hd . Analytical exact expressions of both bias terms are under investigation and will
be covered in a following paper.
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Appendix

We present a sketch of proofs of Theorems 1 and 2. We provide the proofs when the
discrete triangular kernel is used. The proofs using the other kernels can be given
similarly.
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Sketch of the proof of Theorem 1

Bias

First, note that E
(
f̂DT,h(x)

) = E( f (T )), where the random variable T ∼
DT (a; x, h). By using a fourth-order discrete Taylor expansion around T = x for

Ih(x) = E( f̂DT,h) =
∑

KDT,h(y) f (y) = E( f (T )),

we have

Ih(x) = f (x) +
4∑

j=1

f ( j)

j ! E(T − x) j + o(E(T − x)4).

Byusing the property of the discrete triangular randomvariable and a Taylor expansion
around h = 0,

E(T − x) = 0,

E(T − x)2 =
{
log(a + 1)S(a) − 2

a∑

k=1

k2 log(k)

}
h

+
{
log2(a + 1)

2
S(a) −

a∑

k=1

k2 log2(k)

}
h2 + o(h2),

E(T − x)3 = 0,

E(T − x)4 =
{
log(a + 1)R(a) − 2

a∑

k=1

k4 log(k)

}
h

+
{
log2(a + 1)

2
R(a) −

a∑

k=1

k4 log2(k)

}
h2 + o(h2),

where

R(a) = 2

5
a5 + a4 + 2

3
a3 − 1

15
a.

The Taylor expansion of Ih(x) around h = 0 is then given by

Ih(x) = f (x)

{
1 + l1(x, f )

f (x)
h + l2(x, f )

f (x)
h2 + o(h2)

}
,

where

l1(x, f ) = f (2)(x)

2

(
log(a + 1)S(a) − 2

a∑

k=1

k2 log(k)

)
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+ f (4)(x)

24

(
log(a + 1)R(a) − 2

a∑

k=1

k4 log(k)

)

and

l2(x, f ) = f (2)(x)

2

(
log2(a + 1)

2
S(a) −

a∑

k=1

k2 log2(k)

)

+ f (4)(x)

24

(
log2(a + 1)

2
R(a) −

a∑

k=1

k4 log2(k)

)
.

Similarly, Ih/c(x) = E
(
f̂DT,h/c(x)

)
can be approximated by

Ih/c(x) = f (x)

{
1 + 1

c

l1(x, f )

f (x)
h + 1

c2
l2(x, f )

f (x)
h2 + o(h2)

}
.

Now, we define

f̂DT,h(x) = Ih(x) + Z

and

f̂DT,h/c(x) = Ih/c(x) + W.

The estimator f̃T S,DT can be written as follows:

f̃T S,DT = {Ih(x)} 1
1−c

{
1 + Z

Ih(x)

} 1
1−c {

Ih/c(x)
}− c

1−c

{
1 + W

Ih/c(x)

}− c
1−c

.

Using the expansion (1 + t)α = 1 + αt + o(t2), we then have

f̃T S,DT (x) = {Ih(x)} 1
1−c

{
Ih/c(x)

}− c
1−c + 1

1 − c
Z

{
Ih(x)

Ih/c(x)

}− c
1−c

− c

1 − c
W

{
Ih(x)

Ih/c(x)

} 1
1−c + O

{
(Z + W )2

}
. (4)

Based on Assumption 2 and using the same calculations as in Hirukawa (2010) and
Terrell and Scott (1980), we can show easily that

E

(
f̃T S,DT (x)

)
= f (x) + 1

c

[
1

2

{
l21(x, f )

f (x)
− l2(x, f )

}]
h2 + o(h2).
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Variance

For the variance, from Eq. (4) we have

Var
(
f̃T S,DT (x)

)
= E

(
1

1 − c
Z − c

1 − c
W

)2

+ o(n−1)

= Var

(
1

1 − c
f̂DT,h(x) − c

1 − c
f̂DT,h/c(x)

)
+ o(n−1)

= 1

(1 − c)2
Var

(
f̂DT,h(x)

) + c2

(1 − c)2
Var

(
f̂DT,h/c(x)

)

− 2c

(1 − c)2
cov

(
f̂DT,h(x), f̂DT,h/c(x)

)
.

First, note that the terms Var
(
f̂DT,h(x)

)
and Var

(
f̂DT,h/c(x)

)
are given by [see

Kokonendji et al. (2007)]:

Var
(
f̂DT,h(x)

) = f (x)(1 − f (x))K 2
DT,h(x) + o

(
1

n

)

= f (x)

n
(1 − f (x))

(1 + a)2h

P2(a, h)
+ o

(
1

n

)
,

and

Var
(
f̂DT,h/c(x)

) = f (x)(1 − f (x))K 2
DT,h/c(x) + o

(
1

n

)

= f (x)

n
(1 − f (x))

(1 + a)2h/c

P2(a, h/c)
+ o

(
1

n

)
.

Now,

cov
(
f̂DT,h(x), f̂DT,h/c(x)

)

= E
(
f̂DT,h(x) f̂DT,h/c(x)

) − E
(
f̂DT,h(x)

)
E

(
f̂DT,h/c(x)

)

= 1

n2

n∑

i=1

n∑

j=1

E
(
KDT,h(Xi )KDT,h/c(X j )

) − E
(
KDT,h(Xi )

)
E

(
KDT,h/c(X j )

)

= 1

n
E

(
KDT,h(Xi )KDT,h/c(Xi )

) + (n − 1)

n
E

(
KDT,h(Xi )

)
E

(
KDT,h/c(X j )

)

−E
(
KDT,h(Xi )

)
E

(
KDT,h/c(X j )

)

= 1

n
E

(
KDT,h(Xi )KDT,h/c(Xi )

) − 1

n
E

(
KDT,h(Xi )

)
E

(
KDT,h/c(X j )

)
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= 1

n
KDT,h(x)KDT,h/c(x) f (x) − 1

n
KDT,h(x)KDT,h/c(x) f

2(x) + o

(
1

n

)

= 1

n
f (x)(1 − f (x))

(1 + a)h

P(a, h)

(1 + a)h/c

P(a, h/c)
+ o

(
1

n

)
.

Therefore, the variance of f̃T S,DT (x) is given by

Var
(
f̃T S,DT (x)

)
= f (x)(1 − f (x))

n(1 − c)2

(
(1 + a)h

P(a, h)
− c

(1 + a)h/c

P(a, h/c)

)2

+ o

(
1

n

)
,

which corresponds to the results in Theorem 1.

Sketch of the proof of Theorem 2

Bias

At first, the estimator f̃ J LN ,DT can be written as [see Hirukawa (2010)]

f̃ J LN ,DT (x) = f (x)

{
1 + f̂DT (x) − f (x)

f (x)

}
{1 + (ψ(x) − 1)} ,

where ψ(x) = n−1 ∑n
i=1 KDT,h(Xi )/ f̂DT (Xi ). Then, we have

E

(
f̃ J LN ,DT (x)

)
= f (x) + f (x)E

{
f̂DT (x) − f (x)

f (x)

}
+ f (x)E {ψ(x) − 1}

+ f (x)E

{(
f̂DT (x) − f (x)

f (x)

)
(ψ(x) − 1)

}
.

By using Assumption 2 and the properties of DT random variables, the terms

E

{
f̂DT (x)− f (x)

f (x)

}
, E {ψ(x) − 1} and E

{(
f̂DT (x)− f (x)

f (x)

)
(ψ(x) − 1)

}
can be approx-

imated following the same procedures as in Hirukawa (2010). Thus, E( f̂ J LN−DT ) is
approximated by

E( f̃ J LN−DT (x)) = f (x) − f (x)

⎡

⎣1

2

⎧
⎨

⎩log(a + 1)S(a) − 2
a∑

k=1

k2 log(k)

⎫
⎬

⎭ q(1)(x)

⎤

⎦ h2

− f (x)

⎡

⎣ 1

24

⎧
⎨

⎩log(a + 1)R(a) − 2
a∑

k=1

k4 log(k)

⎫
⎬

⎭ q(2)(x)

⎤

⎦ h2 + o(h2),

E( f̃ J LN−DT (x)) = f (x) − f (x)

⎡

⎣1

2

⎧
⎨

⎩log(a + 1)S(a) − 2
a∑

k=1

k2 log(k)

⎫
⎬

⎭ q(1)(x)
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+ 1

24

⎧
⎨

⎩log(a + 1)R(a) − 2
a∑

k=1

k4 log(k)

⎫
⎬

⎭ q(2)(x)

⎤

⎦ h2 + o(h2),

where q(x) = l1(x, f )/ f (x) with l1(x, f ) given in the proof of Theorem 1.

Variance

Note that following Hirukawa (2010) and Jones et al. (1995), we can show that
f̃ J LN ,DT (x) is equivalent to

f̃ J LN−DT (x) = f (x)
1

n

n∑

i=1

KDT,h(Xi )

f (Xi )
.

It follows that

Var
(
f̃ J LN−DT (x)

) = f 2(x)
1

n
Var

{
KDT,h(Xi )

f (Xi )

}

= f 2(x)
1

n

{
E

(
K 2

DT,h(Xi )

f 2(Xi )

)
−

[
E

(
KDT,h(Xi )

f (Xi )

)]2}

= f 2(x)

n

{
K 2

DT,h(x)

f (x)
− K 2

DT,h(x)

}
+ o

(
1

n

)

= f (x)

n
(1 − f (x))

(1 + a)2h

P2(a, h)
+ o

(
1

n

)
.

Therefore, we obtain the approximation for the variance given in Theorem 2. �	

References

Aitchison J, Aitken CGG (1976) Multivariate binary discrimination by the kernel method. Biometrika
63:413–420

Belaid N, Adjabi S, ZougabN, Kokonendji CC (2016) Bayesian bandwidth selection in discretemultivariate
associated kernel estimators for probability mass functions. J Korean Stat Soc 45:557–567

Chu CY, Henderson DJ, Parmeter CF (2015) Plug-in bandwidth selection for kernel density estimation with
discrete data. Econometrics 3:199–214

Funke B, Kawka R (2015) Nonparametric density estimation for multivariate bounded data using two
non-negative multiplicative bias correction methods. Comput Stat Data Anal 92:148–162

Greene W (2011) Econometric analysis. Pearson, Cambridge
Hirukawa M (2010) Nonparametric multiplicative bias correction for kernel-type density estimation on the

unit interval. Comput Stat Data Anal 54:473–495
HirukawaM,SakudoM(2014)Nonnegative bias reductionmethods for density estimationusing asymmetric

kernels. Comput Stat Data Anal 75:112–123
HirukawaM, SakudoM (2015) Family of the generalised gamma kernels: a generator of asymmetric kernels

for nonnegative data. J Nonparametric Stat 27:41–63
JonesMC, Foster PJ (1993) Generalized jackknifing and higher order kernels. J Nonparametric Stat 3:81–94
Jones MC, Linton O, Nielsen JP (1995) A simple bias reduction method for density estimation. Biometrika

82:327–338

123



276 L. Harfouche et al.

Kokonendji CC, Senga Kiessé T (2011) Discrete associated kernels method and extensions. Stat Methodol
8:497–516

Kokonendji CC, Senga Kiessé T, Zocchi SS (2007) Discrete triangular distributions and non-parametric
estimation for probability mass function. J Nonparametric Stat 19:241–254

KokonendjiCC,SoméSM(2015)Onmultivariate associated kernels for smoothing general density function.
arXiv: 1502.01173

Racine JS, Li Q (2004) Nomparametric estimation of regression functions with both categorical and con-
tinuous data. J Econom 119:99–130

Senga Kiessé T, Mizère D (2012) Weighted Poisson and semiparametric kernel models applied for parasite
growth. Aust N Z J Stat 55:1–13

Terrell GR, Scott DW (1980) On improving convergence rates for nonnegative kernel density estimators.
Ann Stat 8:1160–1163

Wang M, Ryzin J (1980) A class of smooth estimators for discrete distributions. Biometrika 68:301–309
ZougabN,Adjabi S (2015)Multiplicative bias correction for generalizedBirnbaum–Saunders kernel density

estimators and application to nonnegative heavy tailed data. J Korean Stat Soc 45:51–63

123

http://arxiv.org/abs/1502.01173

	Multiplicative bias correction for discrete kernels
	Abstract
	1 Introduction
	2 Discrete kernel estimator
	3 MBC for discrete kernel estimators
	3.1 Estimators
	3.2 Asymptotic properties
	3.3 Global property
	3.4 Normalization
	3.5 Choice of smoothing parameter for discrete MBC kernel estimators

	4 Illustrations from simulated data
	5 Illustrations from real data
	6 Conclusion
	Acknowledgements
	Appendix
	Sketch of the proof of Theorem 1
	Bias
	Variance

	Sketch of the proof of Theorem 2
	Bias
	Variance


	References




