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Abstract A spatial lattice model for binary data is constructed from two spatial scales
linked through conditional probabilities. A coarse grid of lattice locations is specified,
and all remaining locations (which we call the background) capture fine-scale spatial
dependence. Binary data on the coarse grid are modelled with an autologistic distribu-
tion, conditional on the binary process on the background. The background behaviour
is captured through a hidden Gaussian process after a logit transformation on its
Bernoulli success probabilities. The likelihood is then the product of the (conditional)
autologistic probability distribution and the hidden Gaussian–Bernoulli process. The
parameters of the new model come from both spatial scales. A series of simulations
illustrates the spatial-dependence properties of the model and likelihood-based meth-
ods are used to estimate its parameters. Presence–absence data of corn borers in the
roots of corn plants are used to illustrate how the model is fitted.

Keywords Auto-logistic model · EM algorithm · Gaussian process · Hierarchical
statistical model · Laplace approximation · Spatial odds-ratio

1 Introduction

Binary spatial data are involved in various domains such as economics, social sciences,
ecology, image analysis, and epidemiology; see below for references. Considering the
spatial framework, one common model for regularly spaced binary data is the auto-
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2 C. Hardouin, N. Cressie

logistic model, which belongs to Besag’s auto-models class (Besag 1974); it is a
particular case of a Markov Random Field, analogous to a classical logistic model,
except that the explanatory variables are replaced by neighbouring values of the pro-
cess. The auto-logistic model has seen a lot of use in the last 40 years and in various
contexts; see, for example, Augustin et al. (1996), He et al. (2003) and Sanderson
et al. (2005) in ecology, Gumpertz et al. (1997) in epidemiology, Koutsias (2003) in
image analysis, and Jiang et al. (2015) and Moon and Russell (2008) in land-use. The
auto-logistic model has been reparameterized by Caragea and Kaiser (2009), which
helps with interpretation of the parameters, and this was extended recently to the
spatio-temporal case by Wang and Zheng (2013).

In a hierarchical framework, when the data are noisy and missing, a Generalised
Linear Model (McCullagh and Nelder 1989; McCulloch et al. 2001) can be imple-
mented with a link appropriate for binary data. The logit link is canonical, but models
involving other link functions have been developed; for example, inMarsh et al. (2000)
and LeSage et al. (2011), a spatial probit model is applied to problems in agriculture
and economics, and Roy et al. (2016) introduce a Bayesian spatial probit model that
is more robust against extreme observations. When the spatial variable represents
presence/absence of a rare event, Elkink and Calabrese (2015) suggest the quantile
function of the Generalised Extreme Value (GEV) distribution as a link function.

In this paper, we focus on binary data on a spatial lattice with two spatial scales.
For the sake of simplicity, we assume that the process is observed on a regular lattice,
but the model can be extended to irregular lattices; see the discussion in Sect. 6. We
specify a coarse regular grid of sites, say at resolution Δ > 1, where the fine-scale
lattice is at resolution 1. The locations on the coarse grid define what we call the
Grid, and all remaining locations on the underlying lattice define what we call the
Background.

The models on the Grid and the Background account respectively for large-scale
and fine-scale spatial variation. We start with the Background model, which con-
sists of a classical hierarchical logistic model, linked to a hidden Gaussian field
ε; clearly, the local spatial dependence relies on the covariance structure of this
hidden field. Then, conditional on the Background observations, we consider an auto-
logistic model on the Grid, where the large-scale spatial dependence is expressed via
the parameters of the auto-logistic model. Thus, the final model is non-stationary,
which allows us to capture spatial dependence at different scales, and it com-
bines a geostatistical model with a Markov random field (MRF) model in a new
approach.

Section 2 is devoted to the description of the model; we display its properties and
behaviours by varying different values of the parameters in Sect. 3. The results of
this section show how we can identify the Grid resolution Δ. We present parameter
estimation in Sect. 4, where both geostatistical and MRF parameters are involved.
Section 5 contains an application to modelling the occurrence of corn borer larvae
in agricultural fields in Iowa, USA. Finally, in Sect. 6 we discuss further aspects
of the construction of the model and give our conclusions, followed by a technical
appendix.
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Two-scale spatial models for binary data 3

2 Two-scale spatial modelling

2.1 The Background and the Grid

Let us consider a two-dimensional domain of spatial-process locations D ⊂ R
2;

D = {s1, s2, . . . , sn} is a finite set of sites, with si = (si1, si2)T for i = 1, . . . , n, and
we denote P(D) as its perimeter (or boundary). We are thinking of D as having no
missing locations, but the following definition for perimeter covers all cases:

P(D) = {s ∈D: the number of nearest neighbours of s is < 4}.

For the sake of simplicity, we assume that D is a fine regular lattice, but the situation
can be generalised to irregular lattices, as is discussed in Sect. 6.

Let Z =(Z(s) : s ∈ D)T be the process on D, taking its values in the state space
E = {0, 1}n . We consider two scales of spatial dependence, which occur locally at
fine-scale resolution 1, and at a coarse-scale resolution Δ, where Δ ∈ {2, 3, . . .}.
Here we assume that Δ is known; in practice, it may be obtained from a preliminary
exploratory analysis of the data, or by subject-matter experts. We shall come back to
this point in Sect. 5 but, in what follows, Δ is not a parameter of the model.

Let G be a Grid such that the nodes are equally spaced at distance Δ; in order
to avoid edge effects, we position the Grid in the domain, such that for each site
s ∈ P(G), the four sites at distance Δ from s belong to D, see Fig. 1.

More precisely, define D0 ≡ {s :‖ s − u ‖≥ Δ ; u ∈ P(D)} ∩ D; then we define
the Grid

G(Δ) = {(kΔ, lΔ) : k = . . . ,−1, 0, 1, . . . , l = . . . ,−1, 0, 1, . . .} ∩ D0.

All remaining locations outside the Grid define the so-called Background,

B(Δ) = D\G(Δ).

Fig. 1 The Background (solid crosses) and the Grid (solid lines)
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4 C. Hardouin, N. Cressie

For the sake of simplicity, we replace B(Δ) and G(Δ) with B and G, respectively, in
all that follows. Thus, the fine-scale variation happens at the scale of the Background,
while the large-scale variation happens at the scale of the Grid. Moreover, if nA = |A|
is the cardinality of set A, we have n = nD = nG + nB .

With these notations established, we write Z = (ZT
G ,ZT

B)T, where ZG =
(ZG(s) : s ∈ G)T, ZB = (ZB(s) : s ∈ B)T, and in general ZA denotes a spa-
tial process on a set A ⊂ D, such that ZA = (ZA(s) : s ∈ A)T.

Wenow turn to spatial-processmodelling.We startwith theBackground inSect. 2.2,
which involves a conditional logistic model forZB ; then, conditional onZB , we define
ZG on the Grid in Sect. 2.3.

2.2 Fine-scale process on the Background

We consider a conditional model for binary spatial data on the Background. Wemodel
the binary variables using a Bernoulli distribution, where the mean depends on an
underlying (and unobserved) spatial process ε.Moreover, we assume conditional inde-
pendence of the Bernoulli random variables given the hidden process.

Thus, denoting the Background locations as {si : i = 1, . . . , nB}, for each
si ∈ B, we write the following independent conditional distributions for ZB(si ) given
ε = (ε(s1), . . . , ε(sn))T as those given by Bernoulli random variables,

ZB(si ) | ε ∼ Ber(p(si )), (1)

where

p(si ) = eε(si )

1 + eε(si )
; i = 1, . . . , n.

The hidden process ε is assumed to be Gaussian with mean 0 and spatial covariance
matrix�. It is possible to incorporate explanatory variables in themean, but we choose
not to do so initially; see the discussion in Sect. 6. That is,

ε ∼ Nn(0,Σ). (2)

2.3 Coarse-scale process on the Grid

We define the model on the Grid conditional on the Background using a Markov
random field (MRF) model with a neighborhood graph on the Grid, which recall has
resolution Δ. For the sake of simplicity we consider here the four nearest neighbours,
but the model can be modified easily to account for extra spatial dependence.

For each site s ∈ G, we define the four-nearest-neighbourhood set NG(s) = {u ∈
G : u = s ± (Δ, 0), s ± (0,Δ)}, and let 〈u, v〉G denote the edge between u and v,
whereu ∈ NG(v). Our conditionalmodel for theGrid values is the spatial auto-logistic
model:
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Two-scale spatial models for binary data 5

πs(ZG(s) | ZB,ZNG (s)) =
exp

{
αB(s)ZG(s) + β

4

∑
u∈NG (s) ZG(s)ZG(u)

}

1 + exp
{
αB(s) + β

4

∑
u∈NG (s) ZG(u)

} , (3)

where dependence on ZB is captured in αB(s) ; see below.
From Besag (1974), we know that these conditional distributions are compatible

and the joint distribution is,

π(ZG | ZB) = C−1 expU (ZG;ZB), (4)

where the energy U is given by

U (ZG;ZB) =
∑
s∈G

αB(s)ZG(s) + β

4

∑
〈u,s〉G

ZG(s)ZG(u), (5)

and C is the normalising constant,
∑

ZG∈{0,1}nG expU (ZG;ZB).Here, β is the spatial
interaction parameter, which we assume to be constant over the Grid; β < 0 implies
competitive behaviour, while β > 0 implies co-operative behaviour, and β = 0
corresponds to spatial conditional independence.

In the next paragraphs, we emphasize the role of ZB in (3) and (4). Now, αB(s)
accounts for the underlying behaviour of the binary process on the Background
“around” s. We propose the following model:

αB(s) = γ + α ×
∑

u∈NB (s) ZB(u)

|NB(s)| ,

where NB(s) ≡ {u = (u1, u2) ∈ B : |u1 − s1| ≤ Δ, |u2 − s2| ≤ Δ} is the set of
the neighbour Background locations. Notice that NB(s) ∩ G = ∅ for all s ∈ G, since
B ∩ G = ∅.

To understand the role of the parameters, consider the following calibration. States
0 and 1 are equiprobable if αB(s)+ β

2 = 0, whereas αB(s)+ β
2 > 0 favours state 1 and

αB(s)+ β
2 < 0 favours state 0. In building the model, we want to have the same type of

equilibriumbehaviour on theGrid as on theBackground:Wewant equilibriumof states
0 and 1, or prevalence of the same state 0 or 1, on both B andG. For equal numbers of 0

and 1 in NB(s),
1

|NB(s)|
∑

u∈NB (s) ZB(u) = 1
2 , in which case αB(s)+ β

2 = γ + α
2 + β

2 ,

and hence wewill have equilibrium on the Grid if γ = −α + β

2
.When γ = −α + β

2
,

we can write αB(s)+ β
2 = α( 1

|NB (s)|
∑

u∈NB (s) ZB(u)− 1
2 ), which depends only on α.

If α > 0 and if we have a predominance of 1s in NB(s), that is 1
2 <

∑
u∈NB (s) ZB (u)

|NB (s)| < 1,

we obtain αB(s)+ β
2 > 0, which reinforces state 1 on the Grid. The opposite happens

if α > 0 and 0 <

∑
u∈NB (s) ZB (u)

|NB (s)| < 1
2 . Thus, the general behaviour on the Background

will be reflected in the Grid.
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6 C. Hardouin, N. Cressie

For the reason given above, we calibrate our model with γ = −α + β

2
. Hence, we

can re-write (4) as:

π(ZG | ZB) = C−1 exp

⎡
⎣∑
s∈G

ZG(s)

⎧
⎨
⎩α

⎛
⎝ 1

|NB(s)|
∑

u∈NB (s)

ZB(u) − 1

2

⎞
⎠

+β

⎛
⎝ 1

2|NG(s)|
∑

u∈NG (s)

ZG(u) − 1

2

⎞
⎠

⎫⎬
⎭

⎤
⎦ , (6)

where the normalising constant C depends on α and β. In (6), there are two terms
that express the departure of the average in the neighbourhood from the equilibrium
value of 1

2 ; one is for the Background and the other is for the Grid. The sum related
to the Grid is divided by 2|NG(s)| because each edge 〈·, ·〉G is added twice in this
expression.

Let [A|B] denote the conditional probability distribution of A given B. Then the
model (1) and (2) for [ZB] and the model (6) for [ZG |ZB] defines the two-scale
spatial model, [ZG,ZB]. In Sect. 4, we discuss estimation of the model’s parameters
�, α, and β. The theoretical properties that would be obtained from [ZG |ZB] are
largely intractable, so in the following section, we illustrate a number of them through
simulation.

3 The model’s properties through simulation

In this section, we show through simulations that the two-scale spatial model given by
(1), (2), and (6) allows both competitive and co-operative behaviours. Further, we look
for possible edge effects, andwe examinemeasures that can better represent the spatial
dependence.We introduce the spatial odds ratio, which accounts for dependence better
than the spatial correlation when the data are binary.

3.1 Parameter settings

Let D be a square lattice of size 53 × 53; we fix Δ = 4, and we overlay a 12 × 12
Grid G onto D, with an edge region of width Δ, analogous to the scheme shown in
Fig. 1. That is G = {(si1, si2) : i1, i2 = 5, 9, . . . , 49}.

Following the model’s hierarchical description in Sect. 2, we simulated forward as
follows: In Step 1, we simulated a Gaussian random field ε on the domain D with
spatial covariance �, using the the R package RandomFields (Schlather et al. 2015).
In Step 2, we simulated independent Bernoulli random variables on the Background.
Finally, in Step 3, we used a Gibbs sampler (with 2000 runs) to simulate the auto-
logistic model on the Grid.

1. The Gaussian random field ε is simulated on D with distribution Nn(0, �); we
choose the exponential covariance function to characterize the spatial covariance
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Two-scale spatial models for binary data 7

matrix �; that is, Σ = (Σi j ) with Σi j = C(si − s j ) and C(h) = σ 2
ε e

−||h||/θ , for
h ∈ R

2.

In order to obtain reasonable spatial dependence, we choose θ = 5 and then
θ = 20, the latter value ensuring stronger spatial dependence. We set σ 2

ε = 1.
2. Conditional on the simulated ε, we simulate independent Bernoulli random vari-

ables ZB(s) on the Background, with parameters p(s) = eε(s)

1 + eε(s) ; s ∈ B.

3. For the standard auto-logistic model with constant α and β, values of β that
would give weak spatial dependence, stronger spatial dependence, and very strong
spatial dependence would be around 3, 8, and 16, respectively. But for our two-
scale model, we note a reinforcement of spatial interaction due to the Background
effect, through αB(s); then, a choice of β = 2 is large enough to obtain strong
positive spatial dependence. Similarly, a strong competitive behaviour can be
obtained with β = −2. We ran simulations for different values of parameters
α and β, both possibly negative and positive. Specifically, we ran simulations for
α ∈ {−6,−5, . . . ,−1, 1, . . . , 5, 6} and β ∈ {−4,−3,−2,−1, 1, 2, 3, 4}.
Each model was simulated L = 1600 times, and we denote Z(l) as the l−th real-

ization of Z = (ZT
B,ZT

G)T. The properties of our model for Z are obtained by Monte
Carlo averaging of {Z(l) : l = 1, . . . , L}.

3.2 Simulation results

3.2.1 Visualization and edge effects

Figure 2 shows one realization of the process with parameters σ 2
ε = 1, θ = 5, α =

2, β = 2. The whole process gives Z = (ZT
B,ZT

G)T, and Fig. 3 shows the correspon-
ding ZG used in the simulation of Z. Looking at the Grid only, it is obvious that there
is strong positive spatial dependence, despite the small value of β = 2. Clearly, the
Grid dependence is strengthened by the Background dependence. The proportion of
1s equals 0.5372 on D, and 0.5000 on the Grid.

In order to study edge effects, we considered the first, middle, and last columns of
the lattice, and computed the average values (taken over the L = 1600 simulations),
1

L

∑L
l=1 Z

(l)(s1, s2), for s2 = 1, 25, 53. Figure 4 plots these average values against

s1, and we see similar behaviour whether in the middle or on the edge of the lattice.
Similar results were obtained for all sets of parameters (and we would obviously
obtain analogous results if we fix s2 and look at the average values functions of s1).
Our conclusion is that there is no striking edge effect.

3.2.2 Covariance and spatial odds ratio

The spatial covariance or spatial correlation are the usual measures used to quantify
spatial dependence; however, when the state space is {0, 1}, there is some doubt about
the usefulness of the empirical covariance. In fact, when we consider pair-values
(zi , z j ), only (1, 1) contributes to the covariance. For this reason, we introduce a
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8 C. Hardouin, N. Cressie

Fig. 2 One realization of Z with σ 2
ε = 1, θ = 5, α = β = 2

Fig. 3 Representation of ZG extracted from Z

different characterization of spatial dependence that is more appropriate in the binary
0-1 context and incorporates all pair-values. The idea is to adapt the notions of relative
risk and odds ratio to a binary spatial setting. Since we obtain very similar results for
both measures, we only present here the spatial odds ratio. It is easy to derive and
study the spatial relative risk in an analogous way.

For s ∈ D, the spatial odds ratio (SOR), at location s, in the direction e and at
distance h is defined by

SORe(s, h) = p00(s, h, e) × p11(s, h, e)
p01(s, h, e) × p10(s, h, e)

, (7)

where p jk(s, h, e) is the probability of the pair (Z(s) = j, Z(s + he) = k), and
the vector e defines the direction of interest. The quantity in (7) is a property of the
model, which we study here via simulation. Based on the L = 1600 simulations, we
can define Monte Carlo averages p̂ jk that estimate p jk ; these allow us to compute

ŜORei (s, h) ≡ p̂00(s, h, ei ) × p̂11(s, h, ei )
p̂01(s, h, ei ) × p̂10(s, h, ei )

, (8)
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Fig. 4 Average values of sites on the first (line) middle (dotted line) and last (dashed line) columns of the
lattice

where p̂ jk(s, h, ei ) ≡ 1

L

∑L
l=1 1{Z (l)(s)= j, Z (l)(s+hei )=k}, and 1A denotes the indicator

function for the set A. Here, we shall study (8) in two directions, horizontal and
diagonal,meaning thatwe set directional vectors e1 and e2 with coordinates e1 = (1, 0)
and e2 = (1, 1).
To compare this spatial-dependence property to the spatial covariance cov(Z(s), Z(s+
hei )) ≡ Cei (s, h), we computed it from Monte Carlo averages as follows:

Ĉei (s, h) = 1

L

L∑
l=1

(
Z (l)(s) − Z(s)

) (
Z (l)(s+hei ) − Z(s + hei )

)
,

where Z(s) = 1

L

∑L
l=1 Z

(l)(s).Then the global covariance and global SOR are spatial

averages, respectively given by

Ĉei (h) = 1

|Dei ,h |
∑

s∈Dei ,h

Ĉei (s, h),

and

ŜORei (h) = 1

|Dei ,h |
∑

s∈Dei ,h

ŜORei (s, h), (9)

where Dei ,h = {s ∈D : s + ei h ∈ D}, for the i-th direction ei , i = 1, 2.
In the case of a continuous spatial index, the global covariance, Cei (h), can be

written as
∫
Dei ,h

cov(Z(s), Z(s+hei ))ds/
∫
Dei ,h

ds, and the global SOR, SORei (h),

can be written as
∫
Dei ,h

SORei (s,h)ds/
∫
Dei ,h

ds.
We plotted the values (9) versus h, h = 1, . . . , 5Δ = 20, for different sets of

parameters (θ, α, β). We summarize the main results in the text below and present
some illustrative plots for selective parameter values. These plots represent averages
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Fig. 5 Global covariance (left panel) and global SOR (right panel) in horizontal direction e1 (black) and
diagonal direction e2 (grey) for σ 2

ε = 1, θ = 5, α = 4, β = 4. Here, Δ = 4

over 1600 simulations, and consequently the curves are smooth; if estimated from a
single realization, the curves are muchmore irregular, and some features such as peaks
and bumps used to determine Δ will be much harder to discern (e.g., see Sect. 5).

As expected, the covariance values as well as the SOR values increase with para-
meter θ; however, more interesting to see is the influence of the Grid. Its effect can
be visually detected by the presence of a peak when β > 0 or a dip when β < 0. In
intermediate cases, it is hardly observable, or not at all; see for instance the left plot of
Fig. 6. An important observation is that, in most cases, Δ is more easily detected from
the SOR than from the covariance. Figure 5 displays the plots of the global covariance
and SOR for σ 2

ε = 1, θ = 5, α = 4, β = 4. We can see that both the covariance
and SOR are decreasing with h. We can observe peaks in the horizontal direction e1
and almost nothing in the diagonal direction e2; this is expected, because our model is
simulated using the four nearest neighbours (i.e., no diagonal dependence) and β > 0.

Furthermore, for the global SOR, we clearly observe a peak at lag h = 4, which
is the size of Δ, and a smaller peak at lag 8; there is fainter evidence of peaks at
lags 12 and 16. This periodic pattern is also present in the global covariance, but it is
much less obvious. This underlines our recommendation that one use SOR rather than
covariance to explore the behaviour of binary data.

Figure 5 demonstrates that peaks can be seen at lags Δ, 2Δ, 3Δ, and maybe
further if α and β take large positive values. In fact, the presence and magnitude of
the peaks is very sensitive to both Grid parameters, α and β. Figure 6 gives three plots
of SOR for different values of the Markov-random-field parameters, where we hold
θ fixed. The plot on the left-hand side shows no apparent bumps or concavities. We
observe a bump in the middle, at lag h = Δ = 4, but none for higher lags. The plot
on the right-hand side shows that when β is negative, we can also obtain a dip.

Finally, we observe that both the covariance and the magnitude of the possible
peaks increase with α > 0, as shown in Fig. 7, and this is more obvious for larger
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Fig. 6 SOR in horizontal direction e1 (black) and diagonal direction e2 (grey) for σ 2
ε = 1, θ = 5. Left

(α, β) = (3, 1). Middle (α, β) = (2, 2). Right (α, β) = (10, −5). Here, Δ = 4
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Fig. 7 SOR in horizontal direction e1 (black) and diagonal direction e2 (grey) for σ 2
ε = 1, θ = 5;β = 2.

Left α = 2. Middle α = 4. Right α = 6. Here, Δ = 4

values of the exponential parameter θ . From Fig. 8, we see that the magnitude of the
peaks can be increased by increasing β.

We conducted other simulations to study the covariance and SOR values for differ-
ent sites, belonging to the Grid or to the Background, located in the domain’s centre
or in the border region. Our conclusion is that the results seen in Figs. 5, 6, 7 and 8
are essentially repeated for the other sites.

4 Parameter estimation

In this section, we consider the task of obtaining maximum likelihood estimates of the
parameters (ϕε, α, β), where ϕε ≡ (σ 2

ε , θ) are parameters of the Background process
ZB . We suppose that Δ is known; in practice, there is information about Δ in the
empirical SOR (Sects. 3, 5).
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Fig. 8 SOR in horizontal direction e1 (black) and vertical direction e2 (grey) for σ 2
ε = 1, θ = 5; α = 2.

Left β = 1.Middle β = 3. Right β = 4. Here, Δ = 4

The parameters come from two structures, the Grid and the Background. Because
of the conditional manner in which the model is defined, the joint distribution of the
process is the product of two terms, corresponding to the distribution on the Grid given
the Background, times the distribution on the Background. Taking the logarithm of the
likelihood, we see that estimation of the Grid parameters can be obtained separately
from estimation of the Background parameters, which is an advantageous feature of
our model. Due to the intractable normalising constant, the auto-model parameters
α and β are estimated by maximizing the (conditional on the Background) pseudo-
likelihood introduced by Besag (1977). The second term involves the latent Gaussian
field’s parameters σ 2

ε and θ ; their estimation in a hierarchical statisticalmodel typically
requires an EM algorithm; see Dempster et al. (1977) or McLachlan and Krishnan
(2008). The E-step needs the expectation of the latent field ε given the observations,
but we do not know in closed form the distribution over which the expectation is taken.
There are several ways to overcome this issue: A common approach is to use Monte
Carlo procedures; see for instance Robert and Casella (2004) and Cappé et al. (2005).
Here, instead, we use Laplace approximations to approximate the intractable integrals.
Recall that the notation [A|B] denotes the conditional probability distribution of A
given B.

The likelihood is given by the distribution of Z = (ZT
B,ZT

G)T :

[Z | ϕε, α, β] =
∫

[ε,ZB ,ZG | ϕε, α, β]dε

=
∫

[ZG | ZB, ε, ϕε, α, β][ZB | ε, ϕε, α, β][ε | ϕε, α, β]dε

= [ZG | ZB, α, β] ×
∫

[ZB | ε][ε | ϕε]dε. (10)

123



Two-scale spatial models for binary data 13

The first term in (10) is explicit, given by (6):

[ZG | ZB, α, β] = C(α, β)−1
∏
s∈G

exp

⎡
⎣ZG(s)

⎧⎨
⎩α

⎛
⎝ 1

|NB(s)|
∑

u∈NB (s)

ZB(u) − 1

2

⎞
⎠

+β

⎛
⎝ 1

2|NG(s)|
∑

u∈NG (s)

ZG(u) − 1

2

⎞
⎠

⎫
⎬
⎭

⎤
⎦ .

The normalising constant C(α, β) is potentially problematic, since it depends on α

and β; for example, for the model we considered in the previous section on a 12× 12
Grid, C(α, β) is given by the summation of 2144 terms. Some bypass the problem by
approximating C using efficient Monte Carlo methods. In the MRF context, another
method is to replace maximizing the likelihood with maximizing the (conditional)
pseudo likelihood (Besag 1974, 1977; Cressie 1993; Gaetan and Guyon 2010), which
allows fast and easy computation. The pseudo likelihood here would be the product
of conditional probabilities,

∏
s∈G πs(ZG(s) | ZB, α, β), expressed as a function of

α and β. Of course, maximum pseudo likelihood estimators are less efficient (Besag
1977).

The second term in (10) involves the Gaussian distribution of ε and the following
conditional distribution of ZB given ε,

[ZB | ε] =
∏
s∈B

p(s)Z(s)(1 − p(s))1−Z(s) =
∏
s∈B

eε(s)Z(s) 1

1 + eε(s) .

Now, the underlying spatial process ε is not observed, but we can define the complete
likelihood based on both Z and the missing data ε.

Finally then, a quantity we call the pseudo complete log likelihood is given by

plc(ϕε, α, β;Z, ε) = A1(α, β) + A2(ϕε), (11)

where
A1(α, β) =

∑
s∈G

log[ZG(s) | ZB, α, β],

and

A2(ϕε) = −
∑
s∈B

ln(1+eε(s))+
∑
s∈B

ε(s)Z(s)−1

2
ln(det�)−1

2
εT�−1ε− |B|

2
log(2π),

where recall that [ZG(·)|ZB, α, β] and � are given in (3) and (2), respectively.
The first term, A1, concerns the estimation of the Grid parameters, while the second

term, A2, is devoted to the estimation of the hidden Gaussian field via the observations
ZB on the Background B. The second term will be used to obtain an EM estimate of
ϕε = (σ 2

ε , θ).
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14 C. Hardouin, N. Cressie

4.1 Estimation of the Grid parameters

The goal is to obtain α̂ and β̂ that maximize A1(α, β) = ∑
s∈G

log[ZG(s) | ZB, α, β].
It is straightforward to obtain

A1(α, β) =
∑
s∈G

⎛
⎝α(V (s) − 1

2
) − β

2
+ β

8

∑
u∈NG (s)

ZG(u)

⎞
⎠ ZG(s)

−
∑
s∈G

log

⎛
⎝1 + exp

⎧
⎨
⎩α(V (s) − 1

2
) − β

2
+ β

8

∑
u∈NG (s)

ZG(u)

⎫
⎬
⎭

⎞
⎠ , (12)

where V (s) ≡
∑

u∈NB (s) ZG(u)

|NB(s)| .

The maximization of this pseudo likelihood is achieved via a standard optimization
algorithm and is straightforward to implement.

4.2 Estimation of the Background parameters

4.2.1 The EM algorithm

We want to obtain estimates σ̂ 2
ε and θ̂ from the relevant component of the pseudo

complete log likelihood. Recall that ϕε = (σ 2
ε , θ) and

A2(ϕε) =−
∑
s∈B

ln(1+eε(s))+
∑
s∈B

ε(s)ZB(s)−1

2
ln(det�)−1

2
εT�−1ε− |B|

2
log(2π).

(13)
Since ε has not been observed, estimation is performed using the EM algorithm; see
Dempster et al. (1977) and McLachlan and Krishnan (2008). Here we define

q(ϕε, ϕ̂
(k)
ε ) = E

[
A2(ϕε) | ZB, ϕ̂(k)

ε

]
. (14)

Starting with an initialization ϕ̂
(0)
ε , the k-th iteration of the algorithm is achieved in

two steps. For k = 1, 2, . . . ,

– the E-step computes the expectation q(ϕε, ϕ̂
(k−1)
ε ), and

– the M-step maximizes q(ϕε, ϕ̂
(k−1)
ε ) with respect to ϕε; that is, ϕ̂

(k)
ε =

argmaxϕε q(ϕε, ϕ̂
(k−1)
ε ).

In our case, the E-step is problematic, sincewe do not have a closed-form expression
for the conditional distribution of ε given the observationsZ.There are several possible
approaches, onebeing to implement a stochasticEM(SEM)algorithm (e.g.,Robert and
Casella 2004; McLachlan and Krishnan 2008), where the expectations are evaluated
using Monte Carlo integration. The problem with this approach lies in the simulation,
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Two-scale spatial models for binary data 15

where a Metropolis algorithm is typically used to simulate ε. Choosing the “right”
proposal density (see Chib and Greenberg 1995; Roberts and Rosenthal 2001) can be
problematic, and when datasets are large, computations can be very slow.

4.2.2 Laplace approximations in the EM algorithm

We now derive Laplace approximations (LA) to approximate the E-step in (14), which
are based on second-order Taylor series expansions of the logarithm of the integrands
around their respective modes. This approach gives us a stable estimation procedure.

Write A2(ϕε) more completely as A2(ϕε;ZB , ε). Let us denote εm as the vec-
tor maximizing A2(ϕε;ZB, ε); then, a second-order Taylor series expansion for
A2(ϕε;ZB, ε) around εm yields:

A2(ϕε;ZB, ε) = A2(ϕε;ZB, εm) + (ε − εm)T
∂

∂ε
A2(ϕε;ZB, ε)

+ 1

2
(ε − εm)T

∂2

∂ε∂εT
A2(ϕε;ZB, ε)

∣∣∣
ε=εm

(ε − εm) + · · ·

Now, looking at the right-hand side, the second term is zero, sowehave the following
approximation:

A2(ϕε;ZB, ε) 
 A2(ϕε;ZB, εm) − 1

2
(ε − εm)T(−H(εm))(ε − εm),

where H(εm) = ∂2

∂ε∂εT
A2(ϕε;ZB, ε)

∣∣∣
ε=εm

.

Hence, the probability density function, [ε | ZB, ϕε], is approximately proportional
to exp A2(ϕε;ZB, εm)×exp

[− 1
2 (ε − εm)T(−H(εm))(ε − εm)

] ; that is, [ε | ZB, ϕε]
is proportional to a Gaussian density. Moreover, one can evaluate the constant that
ensures a probability density, resulting in:

[ε | ZB, ϕ] 
 1

(2π)
n
2 | − H(εm)|− 1

2

exp

[
−1

2
(ε − εm)T(−H(εm))(ε − εm)

]
.

(15)
We deduce from (15) that E [ε | ZB, ϕε] 
 εm and var(ε | ZB, ϕε) 
 −H(εm)−1.
The remaining term in (13), for which we need an approximation of its expectation,

is E[ln(1+eε(s)) |ZB, ϕε].We again use a second-order Taylor-series expansion, now
of ln(1 + eε(s)) around εm(s) :

ln(1 + eε(s)) = ln(1 + eεm (s)) + (ε(s) − εm(s))
eεm (s)

1 + eεm (s)

+ 1

2
(ε(s) − εm(s))2

eεm (s)

(1 + eεm (s))2
+ · · ·
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16 C. Hardouin, N. Cressie

Taking the expectation, we obtain

E[ln(1 + eε(s)) | ZB, ϕε] 
 ln(1 + eεm (s)) − 1

2

eεm (s)

(1 + eεm (s))2
(H(εm)−1)ss,

where Ass denotes the diagonal element of the square matrix A corresponding to the
spatial location s.

Finally, we obtain the Laplace approximation of the expectation as:

E[A2(ϕε;ZB, ε) | ZB, ϕ̂(k)
ε ] 
 q̃(ϕε, ϕ̂

(k)
ε ),

where

q̃(ϕε, ϕ̂
(k)
ε ) = −

∑
s∈B

[
ln(1 + eε

(k)
m (s)) + 1

2

eε
(k)
m (s)

(1 + eε
(k)
m (s))2

(H(ε(k)
m )−1)ss

]

+
∑
s∈B

ε(k)
m (s)ZB(s) − 1

2
ln(det�) − 1

2
ε(k) T
m �−1ε(k)

m

− 1

2
tr(�−1(−H(ε(k)

m )−1)−|B|
2

log(2π). (16)

Finally, starting with an initialization ϕ̂
(0)
ε , the k-th iteration of the EM algorithm

is achieved in the following two steps: at the E-step, we compute the mode, ε(k−1)
m , of

A2(ϕ̂
(k−1)
ε ;ZB , ε), the Hessian −H(ε

(k−1)
m ), and q̃(ϕε, ϕ̂

(k−1)
ε ). We give the details

for the computation of the mode εm and the matrix H(εm) in the Appendix.
At the M-step, we maximize q(ϕε, ϕ̂

(k−1)
ε ). This is achieved by a simple mini-

mization of a single variable function as we now demonstrate. Writing the covariance
matrix as �(ϕε) = σ 2

ε Q(θ), we want to minimize:

f (θ, σ 2
ε ) = 1

σ 2
ε

εTmQ(θ)−1εm + 1

σ 2
ε

tr(Q(θ)−1(−H(εm)−1)+n ln σ 2
ε + ln(det Q(θ)),

with respect to σ 2
ε and θ. The derivative with respect to σ 2

ε for a fixed θ gives the
following explicit solution:

σ 2
ε (θ) = 1

n

[
εTmQ(θ)−1εm + tr(Q(θ)−1(−H(εm)−1)

]
. (17)

Then the M-step is to minimize, with respect to θ,

g(θ, ϕ̂(k−1)
ε ) = n ln

[
1

n

[
ε(k−1)
m

TQ(θ)−1ε(k−1)
m + tr(Q(θ)−1(−H(ε(k−1)

m )−1)
]]

+ ln(det Q(θ)).
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Two-scale spatial models for binary data 17

Table 1 Summary of two-scale model parameter estimates

α̂ β̂ θ̂ σ̂ 2
ε

Target 2 2 5 1

Mean 1.9815 1.9297 4.6528 0.8719

Std. Dev. 1.0630 0.9223 0.7678 0.1334

4.3 Simulation experiments

Weran L = 1600 simulations, as described inSect. 3 ,with the values of the parameters
given by σ 2

ε = 1, θ = 5, α = 2, β = 2. Then estimation is performed on each
simulation based on the procedures outlined in Sects. 4.1 and 4.2. We present in
Table 1 the means and standard deviations of the estimates, obtained from the 1600
simulations.

We observe a negative bias, especially for the Background parameters. This bias
may come from the Laplace approximation and might be reduced using higher-order
terms. Looking inside the EM algorithm, we observe that, at each iteration, very often
the new value of the estimate θ̂ (k) is less than θ̂ (k−1). The initial bias for parameter θ̂

transfers to a bias for σ̂ 2
ε , since the latter is obtained directly from θ̂ by (17).

It is worth noticing that the EM procedure is not sensitive to the choice of starting
values, and the number of iterations is often less than or equal to 8; when it is larger,
we obtain a θ̂ that is typically highly biased.

Estimation of the Grid parameters is obtained from the 144 observations in ZG ,
which is not a large number. In spite of this, it is encouraging that our estimates are
close to the true values.

We conducted other experiments with the two-scale-model parameters given by
σ 2

ε = 1, θ = 20, α = 2, β = 2. The results we obtained were similar but with
higher bias for the parameter estimate θ̂ . For lattice size 53 × 53, the parameter
θ = 20 induces high spatial dependence, and a typical realization on this lattice does
not show enough contrast to estimate θ accurately. Nevertheless, amodel-based spatial
prediction using this estimate can still be good.

5 Application to corn borers dataset

An extensive entomological field study of European corn borer larvae was conducted
in northwest Iowa (McGuire et al. 1957). The original data are available in a 1954
technical report from the Iowa State Statistical Laboratory (“Uniformity Data from
European Corn Borer, Pyrausta nubilalis (Hbn.)”). Lee et al. (2001) selected one
dataset from this study, which they published, to examine whether the occurrence of
corn borer larvae exhibited spatial-dependence structure. The data come from a (1/3)-
acre square plot containing 36 rows, in which seeds had been planted in 36 equally
spaced “hills” in each row, at an average rate of 3 seeds per hill. The area was divided
into 324 regular subplots, each containing 4 hills. The response variables analyzed
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18 C. Hardouin, N. Cressie

Fig. 9 Corn borers data given in Lee et al. (2001)

were defined as binary variables for the subplots, where the value 0 was obtained if
corn borer larvae were absent, and the value 1 was obtained if one or more larvae were
present. Now, let ui ∈ {1, . . . , 18} denote the E-W position and vi ∈ {1, . . . , 18} the
N-S position of subplot i in a regular 18 × 18 lattice S; define si = (ui , vi ) and, for
i = 1, . . . , 324,

Z(si ) =
{
0 if no larvae were observed in subplot i
1 if one or more larvae were observed in subplot i

.

A figure showing the regular spatial lattice of subplots and observed values {Z(si ) :
i = 1, . . . , 324} is presented in Fig. 9, where black illustrates the value 1, and white
illustrates the value 0.

In their paper, Lee et al. considered four Bernoulli conditional models with pos-
sible multi-way dependence. The first and second models are classic auto-logistic
models with pairwise-only dependence, respectively associated with the four-nearest-
neighbour system and the eight-nearest-neighbour system; the third and fourth models
involve cliques of sizes 3 and 4 associated with the eight-nearest-neighbour system.
They show that the extra cliques contained in Model 2, due to to the diagonally adja-
cent pairs of sites, does not bring much additional information to Model 1. Models 3
and 4 allow multi-way dependence and incorporate relative positional information in
observed patterns of data. Lee et al. suggest that, for a given number of infested neigh-
bours, the spread of infestation among spatial subplots is higher if infested neighbours
occur in all directions rather than in just one direction. Having infested neighbours in
all directions implies that biological conditions are favourable for infestation through-
out the whole immediate region, as opposed to a situation in which conditions are
favourable for infestation in one direction, but not in others.

We apply ourmodel to this dataset; more precisely, we consider a centeredGaussian
spatial field, ε ∼ Nn(0, �), with �i j = σ 2

ε exp(−||i − j ||/θ), and conditionally
independent Bernoulli variables on the Background as defined in (1). Then, for a
given Δ, we superimpose the Grid (cell size Δ) on S; we consider a Markov random
fieldZG on theGridwith a four-nearest-neighbour system (based onLee et al.), defined
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Fig. 10 Empirical SOR in directions e1 (left), e2 (middle), and e3 (right), for lags h = 1, . . . , 10. The
units of lag in direction e2 have to be multiplied by

√
2 to compare to the units of lag in the directions e2

and e3

by (4) and (5), and with parameters α and β. We estimate the parameters (σ 2
ε , θ, α, β)

using the procedure described in Sect. 4.
The resolution Δ of the Grid is chosen according to a preliminary exploratory step,

by inspecting the spatial odds ratio at different lags. A first exploratory approach is to
plot the SOR defined in (7) for different lags h = 1 to 10, in the directions e1 (E-W),
e2 (SW-NE), and e3 (N-S) with coordinates e1 = (1, 0), e2 = (1, 1), and e3 = (0, 1).

Since we have a single dataset, we compute the empirical SOR at lag h in direction
e, as follows:

ŜORe(h) = p̂00(h, e) × p̂11(h, e)
p̂01(h, e) × p̂10(h, e)

, (18)

where p̂ jk(h, e) = 1
|De,h |

∑
s∈De,h

1{Z(s)= j, Z(s+he)=k}, j, k = 0, 1, and recall that

De,h = {s ∈D : s + eh ∈ D}.
In Fig. 10, we present the plots of the spatial odds ratios as a function of h in the

three directions, e1, e2, and e3.
It is apparent that ΔE−W = 2 is a good selection for the E-W direction, while

we have possible choices of ΔN−S = 2 and ΔN−S = 4 in the N-S direction; we
also notice a peak in the diagonal direction which likely comes from ΔE−W = 2 and
ΔN−S = 4.Based on this exploratory spatial data analysis, we consider two Grids,G1
with lags ΔE−W = 2 and ΔN−S = 2, and G2 with lags ΔE−W = 2 and ΔN−S = 4.
Grids G1 and G2 involve, respectively, 64 and 32 sites.

Now we want to specify the location of the Grids G1 and G2; for that purpose, we
again use the empirical SOR. We compute ŜORe1(ΔE−W ), ŜORe3(ΔN−S), and

ŜORG(ΔE−W ,ΔN−S) =(
p̂00(ΔE−W , e1) + p̂00(ΔN−S, e3)

) × (
p̂11(ΔE−W , e1) + p̂11(ΔN−S, e3)

)
(
p̂01(ΔE−W , e1) + p̂01(ΔN−S, e3)

) × (
p̂10(ΔE−W , e1) + p̂10(ΔN−S, e3)

) ,

(19)
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Table 2 Estimates of the parameters and log likelihood values for Grids G1 and G2

α̂ β̂ A1 (̂α, β̂) σ̂ 2
ε θ̂ q̃

(
ϕ̂

(k f )
ε , ϕ̂

(k f )
ε

)

Grid G1(2, 2) 1.0089 4.8032 −0.3944 0.7250 37.8321 220.9151

Grid G2(4, 2) 4.0538 1.7894 −0.2314 0.9432 21.6741 52.0199

for different positionings. We specify each location of the Grid by giving the coordi-
nates (in terms of row and column numbers) of its north-west corner. For both GridG1

and Grid G2, the largest ŜORG1(ΔE−W ,ΔN−S) and ŜORG2(ΔE−W ,ΔN−S) values
were obtained for positioning the Grid at (2, 2).

For each of the two Grids, we estimated the parameters using the procedure
described in Sect. 4. We note that since the sizes of the Grids are small, we could
use the true likelihood instead of the pseudo-likelihood for estimation of the Grid
parameters, but we chose here to follow the general procedure given in Sect. 4. The
results are summarized in Table 2. For each Grid, we give the estimates as well as the

value of the log likelihood terms, A1(̂α, β̂) and q̃(ϕ̂
(k f )
ε , ϕ̂

(k f )
ε ), defined by (12) and

(16), where for the latter, ϕ̂
(k f )
ε is the value of ϕ̂ε obtained at the final iteration k f of

the EM algorithm.
First,we can see that strong spatial dependence is estimated for bothmodels. Indeed,

the scale parameter θ of the spatial covariance is at least 21, which is quite large;
and for both Grids, the interaction parameter β indicates strong spatial dependence.
However, we can see that spatial dependence is much stronger in the model associated
with Grid G1; indeed, both spatial-interaction parameters θ (in the Background)and
β (in the Grid) are greater than their values obtained for Grid G2. Grid G2 has a larger

estimate of α and a smaller estimate of β. Finally, the values of q̃(ϕ̂
(k f )
ε , ϕ̂

(k f )
ε ) indicate

preference for the two-scale model with Grid G1.

Now, since, GridG2 has different scale on the E-W andN-S directions, it is interest-
ing to consider different values for parameterβ. Thus,we adapt ourmodel and consider
the East-West two-nearest neighbourhood and North-South two-nearest neighbour-
hood, defined respectively by, for each s ∈ G,

NG,E−W (s) = {u ∈ G : u = s ± (0,ΔE−W )},

and
NG,N−S(s) = {u ∈ G : u = s ± (ΔN−S, 0)}.

We apply the procedure for both Grids G1 and G2. The results are summarized in
Table 3. Estimates of theBackground parameters are not impacted. In both cases (Grids
G1 andG2), the estimate value of α in the anisotropic model is a bit lowered compared
to the isotropic model, which goes with the fact that β̂E−W + β̂N−S is a bit larger than
β̂. The log-pseudo-likelihood values A1(̂α, β̂E−W , β̂N−S) are quite similar to those
obtained for the isotropic model. Finally, we compare β̂E−W and β̂N−S ; we have
β̂E−W < β̂N−S for Grid G1, and β̂E−W > β̂N−S for Grid G2; this is in accordance
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Table 3 Estimates of the Grid parameters and log likelihood values for Grids G1 and G2, for the non
isotropic model

α̂ β̂E−W β̂N−S A1 (̂α, β̂E−W , β̂N−S)

Grid G1(2, 2) 0.7523 2.2126 2.8772 −0.3806

Grid G2(4, 2) 4.2634 1.1966 0.8540 −0.2343

with the empirical Spatial Odds Ratio ŜORe1(ΔE−W ) and ŜORe3(ΔN−S), equaling
respectively 4.75 and 5.42 for Grid G1 and 3.17 and 3.00 for Grid G2.

6 Discussion and conclusions

In this paper,we have developed a hierarchical (in spatial scale) spatial statisticalmodel
for binary data. The processmodel is spatially dependent and is obtained from a hidden
Gaussian spatial process. This fine-scale Background dependence is captured through
Bernoulli randomvariableswith success probabilities given by the logit transformation
of the latent process. Then, conditional on this Background, binary data on a Grid at
a coarser resolution is overlaid; the coarse-scale dependence is captured through a
binary Markov random field.

Some extensions of our research could be considered. The estimation of parameters
given in Sect. 4 requires computation of an inverse covariance matrix, which can be
problematic for large data sets. In this case, we could consider modelling ε with
a Spatial Random Effects (SRE) model, as described by Cressie and Johannesson
(2008); see also Kang and Cressie (2011) and Sengupta and Cressie (2013a). Other
reduced-rank approaches could also be used (e.g. Wikle and Hooten 2010), or indeed
the inverse covariance matrix could be modelled directly (e.g., Lindgren et al. 2011).

Themethodologypresented here for regular lattices could be generalised to irregular
lattices. The Background (representing fine-scale variation) would be irregular, but the
Grid (representing coarse-scale variation) is regular and obtained by moving nearest
locations on the irregular lattice to the Grid locations. In Cressie and Kornak (2003),
it is shown that the effect on spatial variability is small.

Furthermore, covariates could be incorporated in the modelling through the latent
Gaussian process as follows: In (1), write

p(si ) = eL(si )

1 + eL(si )
,

L(si ) = X(si )′b + ε(si ), (20)

where X(.) denotes a p-dimensional vector of known covariates, and b is a p-
dimensional vector of regression coefficients. This model and the estimation of its
parameters is currently under investigation.

In this paper, we considered binary data, although the approach is clearly general-
isable to count data or other data arising from a generalised linear model. The binary
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Markov random field on the superimposed Grid could quite naturally be generalised
to a spatial auto-model from the same member of the exponential family that is used
to generate the Background.

Simple assumptions on spatial dependence on theGridweremade, namely the four-
nearest-neighbour system and pairwise-only dependence. These assumptions can be
easily extended to more neighbours and, indeed, the pairwise-only assumption can be
relaxed in amanner similar to that given in Lee et al. (2001). This might be particularly
useful within the context of image analysis, where higher-order interactions allow for
improved image processing (e.g., see Descombes et al. 1995; Tjelmeland and Besag
1998).

Appendix

In Sect. 4, we use the EMalgorithmwhere the E-step is to compute the Laplace approx-
imation, q̃(ϕε, ϕ̂

(k)
ε ), given by (16); its expression depends on the mode εm and on the

Hessian H(εm) of A2(ϕε;ZB, ε), computed at the mode. Recall that the process ε can

bewritten as a vector, εT = (εTB, εTG),with covariancematrix,� =
(

�B �BG

�GB �G

)
.

We note �−1 =
(
A CT

C B

)
, with A = (�B − �BG�−1

G �GB)−1, B = (�G −
�GB�−1

B �BG)−1, and C = −�−1
G �GB A = −B�GB�B

−1. Then, with respect to
this decomposition,

A2(ϕε;ZB, ε) =
∑
s∈B

(
ε(s)Z(s) − ln(1 + eε(s))

)

− 1

2
εTB AεB − 1

2
εTG BεG − εTGCεB − ln |�| − n

2
ln(2π).

The gradient of this function is given by ∂
∂ε

A2(ϕε;ZB, ε) =
(
V (εB)

V (εG)

)
, with

V (εB) = ZB − vec(
eεB

1 + eεB
) − CTεG − AεB, and V (εG) = −CεB − BεG . Since

V (εG) = 0, we have εG = −B−1CεB, which results in the equation,

ZB − vec

(
eεB

1 + eεB

)
+ (CTB−1C − A)εB = 0.

This equation can be solved by a Newton-Raphson algorithm; from it, we obtain
εB,m, and then the mode is εTm = (εTB,m, εTG,m), where εG,m = −B−1CεB,m .

A simple calculation gives the Hessian H(εm); that is,

−H(εm) =
⎛
⎝ diag

(
eεB,m

(1 + eεB,m )2

)
+ A CT

C B

⎞
⎠ .
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