
Stat Methods Appl (2017) 26:609–628
DOI 10.1007/s10260-017-0383-1

ORIGINAL PAPER

Multiple treatment comparisons in analysis
of covariance with interaction
SCI for treatment covariate interaction

Frank Schaarschmidt1

Accepted: 29 May 2017 / Published online: 20 June 2017
© Springer-Verlag GmbH Germany 2017

Abstract When multiple treatments are analyzed together with a covariate, a
treatment-covariate interaction complicates the interpretation of the treatment effects.
The construction of simultaneous confidence bands for differences of the treatment
specific regression lines is one option to proceed. The application of these methods
is difficult because they are described as a collection of special cases and the imple-
mentation requires additional programming or relies on non-standard or proprietary
software. If inferential interest can be restricted to a pre-specified set of covariate val-
ues, a flexible alternative is to compute simultaneous confidence intervals for multiple
contrasts of the treatment effects over this grid. This approach is available in the R
software: next to treatment differences in the linear model, approximate simultane-
ous confidence intervals for ratios of expected values and asymptotic extensions to
generalized linear models are straightforward. The paper summarizes the available
methodology and presents three case studies to illustrate the application to different
models, differences and ratios, as well as different types of between treatment com-
parisons. Simulation studies in the general linear model, for different parameters and
different types of comparisons are provided. The R code to reproduce the case studies
and a hint to a related R package is provided.
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1 Introduction

In linear models, the effects of a classification variable, e.g., the indicator for two or
several treatments, can be modeled together with that of covariates. The presence of
a significant overall treatment-covariate interaction complicates the interpretation of
treatment effects: the significance, magnitude or even direction of the treatment effects
depends on the value of the covariate. Nevertheless, the primary objective can be the
comparison of the treatments. Often not all possible comparisons but only a special
subset of treatment comparisons are of interest. A simplistic approach is to perform
these multiple treatment comparisons for one fixed value of the covariate, e.g., the
overall mean of the covariate. A more detailed comparison of treatments is provided
by methods that yield confidence bands for differences between the treatment-specific
regression lines. However, the practical application of such methods is complicated by
the fact that they are described as many separate special cases. The focus of this work
is on a flexible and user-friendly alternative that is computationally available in free
software: simultaneous confidence intervals for multiple contrasts among treatments
for a set of pre-specified values of the covariate.

A multitude of publications consider the construction of simultaneous confidence
bands for (multiple) differences of regression lines, and it is difficult to review all
methodological special cases completely. The methods differ in the number of treat-
ments and the set of contrasts between treatments that can be handled; they differ in
whether restrictions are imposed on the treatment specific subsets of the designmatrix,
the number of covariates and the considered range of the covariate.Most methods have
in common that they are based on the assumptions of the general linear model. The
very general and easily applicable method by Scheffe (1959) can be used to construct
exact simultaneous confidence intervals for all possible contrasts. However, in many
applications a restricted set of contrasts among the treatments and a restricted range
of the covariates is of interest a priori, for example, all pairwise comparisons, com-
parisons to a control, special user-defined contrasts or one-sided comparisons. Then,
the Scheffe method yields unnecessarily conservative confidence bands. Alternative
solutions are provided for all contrasts but a restricted range of covariates (Spurrier
1999; Lu and Chen 2009; Jamshidian et al. 2010). Confidence bands for all pairwise
differences and differences to control among several treatments have been proposed
(Spurrier 2002; Bhargava and Spurrier 2004), however, under restrictive assumptions
concerning the equality of the treatment specific designmatrices. In a paper addressing
various problems (Liu et al. 2004), a number of numerical approaches is described
for all pairwise differences and differences to control with three or more treatment
groups, several covariates, and, importantly, without severe restrictions on the design
matrices. In a recent book (Liu 2010), a number of these approaches is described
again. However, all these previous publications concerning exact simultaneous confi-
dence bands have two practical problems: the computational methods are split up in a
number of special cases, described in special publications or book chapters, and, more
severely, putting the computation of the critical values into practice usually requires
the additional programming of the described algorithms or relies on non-standard or
proprietary software packages (Jamshidian et al. 2005).

123



Multiple treatment comparisons in analysis of covariance… 611

Alternatively, onemay restrict inference to a pre-specified set of covariate values and
construct simultaneous confidence intervals (SCI) formultiple comparisons among the
treatments for this set of values. This approachwill not lead to simultaneous confidence
bands for all possible covariate values. But it still allows a more detailed interpretation
of the treatment effects in case of an interaction than do global tests like theANOVA-F-
test, and treatments can be compared in terms of multiple contrasts which are tailored
for the particular experimental question (Bretz et al. 2001). Standard problems as
all pairwise comparisons and comparisons to control are contained as special cases.
Asymptotically, this approach can be used in generalized linear models (Hothorn et al.
2008), or, treatment effects may be expressed as ratios instead of differences, using
approaches of Young et al. (1997) and Dilba et al. (2006). The computational methods
to obtain adequate quantiles of multivariate t and multivariate normal distributions are
available in the package mvtnorm (Genz et al. 2011) in the R software. For a number
of special cases, this approach has been applied recently:Bretz et al. (2010, p. 111–114)
and, with different computational details,Westfall et al. (2011) show the application to
the comparison of two regression lines.Herberich et al. (2014) consider the comparison
of differently shaped curves, fitted by splines, between several treatment groups in
presence of repeated measurements from the same subject, including a simulation
study customized for this special application.

This manuscript recapitulates the methods to construct simultaneous confidence
intervals for multiple contrasts among the treatments for a pre-specified set of covari-
ate values. Approximate extensions to generalized linear models multiple ratios are
described. A simulation study is presented to assess the validity of the methods for
differences and ratios in the general linear model. Three examples illustrate the appli-
cation, including all pairwise differences, comparisons to a control in terms of ratios
in a model including an interaction to the quadratic term, as well as all pairwise
comparisons in log logistic model assuming a binomial response.

2 Material and methods

Consider the general linear model

y = Xθ + e, (1)

where y is an (N × 1) vector of observations, X is an (N × P) design matrix, θ is a
(P×1) parameter vectorwith index p = 1, . . . , P , and e an (N×1) vector of residuals.
The residuals are assumed to be identically Gaussian distributed, en ∼ N (0, σ 2),
independently for n = 1, . . . , N . Fitting the model yields the estimate θ̂ and the
corresponding (P × P) covariance matrix Σ̂ .

2.1 SCI for linear combination of parameters

Under the assumptionof an independent, homogeneousGaussian error distribution, the
estimates θ̂ follow a multivariate normal distribution. The predictions ŷ = X θ̂ , linear
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612 F. Schaarschmidt

combinations thereof, or other linear combinations of the model parameters follow
a multivariate normal distribution as well. Simultaneous confidence intervals for M
linear combinations of the P model parameters can be constructed using quantiles
of the multivariate t distribution with degree of freedom N − P , or, asymptotically,
usingmultivariate normal quantiles (Genz et al. 2011;Hothorn et al. 2008). The general
methodology according to Hothorn et al. (2008) is:

Let C be a (M × P) matrix with elements cmp, m = 1, . . . , M , which define M

linear combinations of the P model parameters, δ = Cθ . An estimate for δ is δ̂ = Cθ̂ .
The (M×M) covariancematrix of δ̂ can be estimated by V̂ = CΣ̂CT , where T denotes
a transposed matrix. Denote the diagonal elements of V̂ by v̂ = (v̂11, v̂22, . . . , v̂MM ).
Standardizing the covariance matrix V̂ by its diagonal elements yields the correlation
matrix R̂ with elements rmm′ , i.e., rmm′ = v̂mm′ v̂−1/2

mm v̂
−1/2
m′m′ .

The lower and upper limits, δ̂(l)
m , δ̂

(u)
m , of simultaneous 95% confidence intervals for

the M linear combinations can be constructed by

[
δ̂(l)
m , δ̂(u)

m

]
=

[
δ̂m ± t0.95,R̂,d f =N−P v̂

−1/2
mm

]
,

where δ̂m is the mth element of δ̂ and t0.95,R̂,d f =N−P is an appropriate two-sided
0.95 quantile of the multivariate t distribution as is computable using the R–package

mvtnorm (Genz et al. 2011): P
(
|tm | < t0.95,R̂,d f =N−P ,∀m = 1, . . . , M

)
= 0.95,

where t = (t1, . . . , tM )T is a central M-variate t random vector with degree of free-
dom N − P and correlation R̂. When interest is in one-sided intervals, a quantile
t0.95,R̂,d f=N−P has to be chosen such that

P
(
tm < t0.95,R̂,d f =N−P ,∀m = 1, . . . , M

)
= 0.95.

The methods implemented in mvtnorm can deal with complicated structures of
R̂, including the case that R̂ has not full rank. This case is important for the follow-
ing applications, where confidence sets are constructed for substantially more linear
combinations than there are elements in the parameter vector, that is P < M . Note
that M is bounded at 1000 in this implementation. For the computational details, see
Genz and Bretz (2009). An implementation of the complete method relying on a fitted
model object and a corresponding contrast matrix C, is available in the R–package
multcomp (Hothorn et al. 2008).

These intervals are simultaneous 95% confidence intervals, i.e., the probability
that at least one of the M true parameters δ is not included, is smaller than 5%,
P(δ̂

(l)
m ≤ δm ≤ δ̂

(u)
m ,∀m = 1, . . . , M) = 0.95. Corresponding hypotheses tests for a

hypothetical parameter δm0, H0 : ∩M
m=1δm = δm0 versus H1 : ∪M

m=1δm �= δm0 can be
rejected if at least one of the hypothesized parameters is excluded by the corresponding
lower or upper bounds, δ̂(l)

m > δm0 or δm0 > δ̂
(u)
m for at least one m. For such tests, the

familywise error rate (FWER) is controlled in the strong sense (Hothorn et al. 2008),
that is, the probability of erroneously excluding at least one of the true hypothesized
parameters is = 0.05, irrespective of which of the remaining δm0 are true.
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Multiple treatment comparisons in analysis of covariance… 613

2.2 Differences on the link scale of generalized linear models

Asymptotically, the abovemethodology can be applied to the scale of the linear predic-
tor in generalized linear models. Consider the systematic part of a generalized linear
model,

g(μ) = η = Xθ, (2)

where θ is parameterized as above, and g() is the link function. Relying on the asymp-
totic normality of θ̂ (McCulloch and Searle 2001; Hothorn et al. 2008), the methods
described in Sect. 2.1 can be applied aswell with the exception that a quantile zM,0.95,R̂
will be taken from the multivariate normal distribution with dimension M , correlation
matrix R̂. The resulting intervals are constructed for differences on the scale of the
linear predictor, η.

2.3 Multiple ratios in the general linear model

In the general linear model in Eq. (1), treatment effects may be expressed in terms
of ratios instead of differences (Zerbe 1978; Young et al. 1997; Djira 2010). Their
methods are briefly reviewed in the following: the parameters of interest are M ratios
γm = (cmθ) / (dmθ), m = 1, . . . , M . The known coefficients in the vectors cm =
(cm1, . . . , cmP ) and dm = (dm1, . . . , dmP ) define which linear combinations of θ are
to be compared in themth ratio. They are summarized in the two (M × P) matricesC
andD, with elements cmp and dmp, respectively. To construct simultaneous confidence
intervals for γ1, . . . , γM , considerWm = (cm − γmdm) θ̂ . The joint distribution ofWm

is M-variate normal with covariance matrix U, with elements umm′ given in Eq. (3):

umm′ = Cov (Wm,Wm′) = (cm − γmdm) Σ (cm′ − γm′dm′)T . (3)

U depends on the unknown ratios, an estimate, Û, can be obtained by evaluating
Eq. (3) at the estimates γ̂m = cm θ̂/dm θ̂ and Σ̂ (Dilba et al. 2006; Djira 2010).
The corresponding correlation matrix R̂ can be obtained by standardizing Û by its
diagonal elements. That is, the elements ρ̂mm′ of R̂ are then: ρ̂mm′ = ûmm′ û−1/2

mm û−1/2
m′m′ .

Approximate simultaneous 95% Fieller-type confidence intervals can be obtained by
solving the corresponding inequalities

[
(cm − γmdm) θ̂

]2

(cm − γmdm) Σ̂ (cm − γmdm)T
≤ t2

0.95,M,d f =N−P,R̂
(4)

for γm (Djira 2010). Note, that the resulting intervals may be unbounded, that
is, there might be no solution, or solutions that are not easily interpretable. The
method is approximate because the critical value for inverting the test in Eq. (4),
t2
0.95,M,d f=N−P,R̂

depends on the unknown parameters of interest via the plug-in of
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614 F. Schaarschmidt

the estimates γ̂m to obtain the correlation matrix, R̂. These methods are implemented
in the function gsci.ratio in the R–package mratios (Djira et al. 2011).

2.4 Simultaneous confidence intervals over a grid of covariate values: multiple
differences between treatments

The abovemethods can be applied to compare multiple treatments over a pre-specified
grid of covariate values. It is assumed that interest is only in a fixed range of the
covariate, and that the grid of covariate values spans this range, i.e., the limits of
the range of interest are the minimal and maximal values of the covariate grid. What
remains is to formulate C for a given model parameter θ such that δ defines the
comparison of model predictions between treatments for a number of different values
of the covariate x . This involves to consider how treatment and treatment-covariate
interaction are parameterized in θ , the definition of a set of covariate values, and the
definition of the type of treatment comparisons of interest. As a simple introduction,
denote the index of I treatments with i = 1, . . . , I , and denote j = 1, . . . , Ji as the
index of replications of treatment i , such that an experimental unit is identified by i j .
The observed values of the covariate and dependent variable in unit i j are denoted xi j
and yi j , respectively, and the model (Eq. 5) involves treatment specific intercepts αi

and slopes βi ,

yi j = αi + βi xi j + ei j , ei j ∼ N (0, σ 2), (5)

where the parameter vector first contains the I intercepts followed by the I slopes,
θ = (α1, . . . , αI , β1, . . . , βI )

T . Denote by Q the number of positions of x for which
the treatment specific regression lines should be compared, and the actual values by
x̃ = (

x̃1, . . . , x̃Q
)
, with index q = 1, . . . , Q. Lastly, let A define a (K × I ) matrix

where the rows k = 1, . . . , K define the K comparisons of interest between the I
treatments. If the parameters in δ should be interpretable as differences of (weighted
arithmetic means) of the treatment specific regression lines for the covariate positions
x̃, the coefficients aki should be defined under the constraints

∑I
i=1 aki = 0 and∑

i :aki>0 aki = 1 for each row k = 1, . . . , K . The M = QK comparisons of interest
can then shortly be written as

C = (
1Q x̃

) ⊗ A, (6)

where ⊗ denotes the Kronecker product and 1Q denotes a column vector of 1s of
length Q. As an illustration, consider a case with Q = 4 covariate values of interest,
x̃ = (5, 10, 15, 20)T and the K = 2 comparisons to the control group (i = 1) when
there are I = 3 treatment groups:

C =

⎛
⎜⎜⎝
1 5
1 10
1 15
1 20

⎞
⎟⎟⎠ ⊗

(−1 1 0
−1 0 1

)
=

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 −5 5 0
−1 0 1 −5 0 5
...

...
...

...
...

...

−1 1 0 −20 20 0
−1 0 1 −20 0 20

⎞
⎟⎟⎟⎟⎟⎠

. (7)
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2.5 Multiple ratios and odds ratios in generalized linear models

In the important case of dichotomous observations, modeled in a generalized linear
model with the binomial distribution (or related assumptions) and the canonical logit
link, the resulting confidence bounds can be transformed by the exp function and can
then be interpreted as intervals for odds ratios between the predicted treatment specific
odds at x̃1, . . . , x̃Q . Similarly, for count data modeled with the Poisson distribution or
related assumptions and the canonical log link, the exp transformationof the confidence
bounds leads to confidence bounds for ratios of means between the treatments at
x̃1, . . . , x̃Q .

2.6 Multiple ratios of model predictions in the general linear model

The matrices of coefficients for the numerator and denominator, C and D can be
defined in a similar way as described for the difference in Sect. 2.4. For the model in
Eq. (5) with the parameterization θ = (α1, . . . , αI , β1, . . . , βI )

T , the K ratios among
the I treatments can be defined in two (K × I ) matrices A and B, for the numerator
and the denominator, respectively. The M = QK ratios of interest for Q positions of
x can then shortly be written as

C = (
1Q x̃

) ⊗ A, and D = (
1Q x̃

) ⊗ B. (8)

An illustration for a slightly more complicated model is given in Example 4.2.

2.7 Simulation study

Given that only afixed rangeof the covariate is of interest, and the set of covariate values
(x̃1, . . . , x̃Q) spanning this range is pre-specified, the above methods will control the
simultaneous coverage probability (e.g., Bretz et al. 2001; Hothorn et al. 2008; Bretz
et al. 2010; Djira 2010) for the family of the resulting M parameters of interest (Fig. 1
left panel). In many applications, such a coarse grained interpretation of the treatment-
covariate-interaction will be sufficient. If the number of contrasts between treatments,
K , is not large, say K < 20, even rather dense grids of Q = 50 covariate values can
be computed given the computational limitation of K Q = M < 1000 in the package
mvtnorm.

It may still be tempting to perform the computations of the multivariate t quantile
for a limited number of covariate values, Q, spanning the covariate range of interest,
but then to perform inference for any possible covariate value in that range. Thatmeans
to interpret the simultaneous confidence intervals as if a simultaneous confidence band
for all values in the pre-specified covariate range had been constructed: First, adjacent
confidence limits for a given between-treatment comparison may be joined by lines
(Fig. 1, middle), this will be referred to as linear interpolation. Second, one may use
the quantile of the multivariate t or normal distribution that has been computed for a
limited number (Q) of covariate values that span the pre-specified covariate range of
interest. This ’approximated’ quantilemay be used for computing a smooth confidence
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Fig. 1 Point wise interpretation at Q = 6 grid points, linear interpolation between adjacent confidence
limits in the covariate range [0; 10] and construction of a confidence band over that fixed range, by using
the approximate quantile for only six points. Black lines and symbols show the true difference between two
predicted lines, gray shows model estimates and corresponding confidence limits

band over the range of interest (Fig. 1, right), for a much larger set of covariate
values than has been used for computing the quantile; this will be referred to as
quantile approximation. For such approximations of confidence bands and subsequent
interpretations for any possible value of x in the given range of the covariate, the
simultaneous coverage probability of the nominal level 0.95 is not guaranteed for
all cases. However, depending on the complexity of the model, on using differences
or ratios and depending on the number of grid points Q, the extent and direction of
violation of the nominal coverage probability may change:

In case that the true functions of interest are straight lines depending on the covariate
(e.g. differences between treatment specific regression lines in model Eq. (5) or Exam-
ple 4.1), it is clear from Fig. 1, that the linear interpolation will yield simultaneous
confidence bands that have slightly too much content and might be slightly conser-
vative, if only few covariate values are used. If one uses the quantile approximation
in this case, using too few equidistant values spanning the pre-specified range of the
covariate when computing the quantile, will yield a liberal confidence band. However,
for a large number of grid points, Q, the simultaneous coverage probability of both
approaches should be close to the nominal simultaneous confidence, as suggested for
discrete confidence bands for the difference of two treatments (Bretz et al. 2010).

In case that the true functions of interest are no straight lines depending on the
covariate, a larger number of covariate values, Q, will be needed to yield an interpre-
tation that is close to a simultaneous confidence band for all values in the pre-specified
covariate range. Such cases are, for example, ratios of regression lines or differences
of quadratic regressions per treatment (Example 4.2), or the more ambitious problem
of comparing splines between several treatments as considered by Herberich et al.
(2014).

A simulation study has been performed to illustrate that with increasing Q, prac-
tically valid simultaneous confidence bands can be constructed: the model in Eq. (5),
has been used to simulate data with xi j sampled from the uniform distribution, with
number of treatment groups I = 3 or 6, sample sizes of ni = 5, 10, 20 or 100 per
treatment group, and parameter configurations involving intercepts and slopes equal,
either slopes or intercepts differing between treatments or both intercepts and slope dif-

123



Multiple treatment comparisons in analysis of covariance… 617

fering between treatments. For each simulated data sets, the methods described above
have been applied for comparisons to control (referred to as Dunnett), all pairwise
comparisons (referred to as Tukey) and comparisons of each treatment to the average
of treatments (referred to as GrandMean), combined with a set of Q = 3, 6, 10, or 20
equidistant grid points spanning the pre-specified covariate range. For each combina-
tion of parameter setting and each method, 5000 data sets have been simulated such
that the estimated simultaneous coverage probability for an exact 0.95 simultaneous
confidence set can be expected to fall within [0.944; 0.956] with a probability 0.95.

More complications arise if the treatment difference of interest is not a linear
functiondependingon the covariate, for example,when themodel involves a treatment-
interaction with a quadratic term, as in Example 4.2. In this situation, the point wise
interpretation of between treatment differences is still exact, whereas it is obviously
unwise to use the linear interpolation with only few covariate values. In this case, the
quantile approximation can be supposed to be the better choice to approximate confi-
dence bands. Yet more complications arise when using the ratio approach described in
Sect. 2.3: even for the point wise interpretation, the small sample performance is not
clear because the method involves the plug-in of an estimated correlation matrix that
depends on the estimated ratios of interest. For this reason, the ratio approach has been
simulated for model (5) and the parameter and sample size settings described above.
Moreover, amodel involving treatment-specific intercepts, slopes, and quadratic terms,
yi j = αi+β1i xi j+β2i x2i j+ei j has been simulated for the sample size settings described
above. The parameter settings involved cases without any treatment effect, as well as
treatment interactions w.r.t to the linear and/or the quadratic term. For Q = 3, 6, 10,
and 20, ratios (middle row of Fig. 3) and differences (lower row of Fig. 3) between
model predictions over a covariate grid have been considered. The full details of the
simulation settings are provided as supplementary material, part A, which is also
available from the GitHub repository.

2.8 Software

The methods can be applied in R (Team 2014) with a few lines of code using basic
functionality of R and the add-on packages mvtnorm (Genz et al. 2011), multcomp
(Hothorn et al. 2008) andmratios (Djira et al. 2011). The code for applying the above
methods will involve the model fit, the definition of the treatment contrasts of interest
and the grid of covariate values, their combination by the Kronecker product, and
the computation of simultaneous confidence intervals. For the figures, the R package
ggplot2 (Wickham 2009) has been used. The R code for the examples shown below
is provided as supplementary material part B.

For even simpler application, the R package statintcov is provided on the
GitHub repository: the special case of a linear model with one treatment factor and
interaction to one covariate (Eq. 5) is covered in the functions scitreatcov,
sciratiotreatcov, for differences and ratios, respectively. For slightly more
general cases, involving generalized linear models, more than one covariate or inter-
actions with quadratic terms as exemplified in Sect. 4.2, the functions cmiacov and
cmratioiacov can be used to supply linear combinations of the parameters of a fit-
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Fig. 2 Simulated simultaneous coverage probabilities (5000 data sets per parameter setting) for the given set
of discrete covariate values, confidence bands constructed by linear interpolation, or quantile approximation
using a multivariate-t-quantile for approximation using Q = 3, 6, 10, 20 equidistant covariate values.
Dotted lines show the range in which 95% of the simulation results can be expected for an exact 95%
method

tedmodel that are suitable for further use in the function glht of package multcomp
or in function gsci.ratio of package mratios. The R code for the analysis of the
examples using this package is provided as supplementary material part C. Recently,
Lenth (2016) provided the R–package lsmeans which allows to apply the methods
for differences of regression lines in a very versatile way, when combined with the
multcomp package.

3 Results

For the simple model involving only treatment specific intercepts and slopes and
inference in terms of differences, simulated simultaneous coverage probabilities are
shown in Fig. 2: the linear interpolation provides confidence bands with adequate
coverage probabilities already for small numbers of covariate values, such as Q = 3
or 6, irrespective of the type of treatment contrast, the number of treatment groups
or the sample size settings. When using the multivariate t quantile computed for
only Q = 3 or 6 equidistant values in the covariate range, constructed confidence
bands (‘quantile approximation’) based on that quantile have too low simultaneous
coverage probability. However, the simulation settings used here suggest that already
multivariate t quantiles computed for Q = 10 or 20 covariate values, lead to confidence
bands with actual simultaneous coverage probability very close to the nominal.
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Fig. 3 Simulated simultaneous coverage probabilities (5000 data sets per parameter setting) for the given
set of discrete covariate values, confidence bands constructed by linear interpolation, or approximation using
a multivariate-t-quantile for Q = 3, 6, 10, 20 equidistant covariate values. Dotted lines show the range in
which 95% of the simulation results can be expected for an exact 95% method. In four settings, where
observed coverage probabilities fell below 0.85, the minimal coverage probability is shown in parentheses

The comparison of treatment-specific regression lines in terms of ratios (Fig. 3,
upper row) shows that, the point wise interpretation for a given set of covariate val-
ues yields correct simultaneous coverage probability unless being an approximative
approach. The attempt to construct confidence bands using only Q = 3 or 6 covariate
values with either of the two approaches may yield liberal confidence bands, whereas
Q = 20 covariate values lead to correct confidence bands in all cases considered
here. Note, that for small sample sizes and some simulation settings, up to 13% of
the simulated data sets yield unbounded confidence sets and thus the methods appears
conservative due to the fact that it yields uninformative confidence bands.

In the quadratic model (with three parameters estimated for each treatment group),
the point wise interpretation of differences between treatment-specific model predic-
tions has observed simultaneous coverage close to the nominal level for all settings
considered (Fig. 3, lower row, left panel). For either approach to construct confidence
bands using only Q = 3, 6 or 10 lead to severely, or at least slightly too low coverage
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Fig. 4 Observed post-weight and pre-weight, predicted post-weight and confidence intervals for predicted
post-weight in three treatments of anorexia and pre-weight for six values in the range [70; 95]

probabilities. When using the approximate Fieller-type intervals for ratios to compare
treatment-specific predictions in the quadratic model with sample sizes as low as 5
or 10 per treatment group, the coverage probabilities appear systematically too high.
This is due to the fact that for up to 50% of simulated data sets there was no finite
solution for Eq. (4).

4 Examples

4.1 All pairwise comparisons with baseline as a covariate

The first data set contains weights (in lbs) of young girls before (’preweight’) and after
(’postweight’) treatment for anorexia (Hand et al. 1994). Thefirst treatment group of 26
girls is the untreated control, the second and third treatment group received a cognitive
behavioral treatment (CBT) and family therapy (FT), consisting of 29 and 17 girls,
respectively. Analyzing the post-weight in dependency of the treatments, including
pre-weight as a possibly interacting covariate, leads to significant main effects for
pre-weight and treatment (p = 0.0011 and p = 0.0004, respectively), as well as to a
significant interaction between pre-weight and treatment (p = 0.0067) in ANOVA.

Because at least themagnitude of treatment effects depends on the pre-weight value,
one may now ask, for which values of pre-weight the treatments differ significantly in
post-weight, and if so, by what magnitude. Therefore, the model is fitted, parametrized
as in Eq. (5), and all pairwise comparisons are specified in the (3 × 3) matrix A in
Eq. (9), and Q = 6 equidistant pre-weight values are chosen to cover [70; 95] (Fig. 4).
The simultaneous 95% confidence intervals for the resulting M = 18 are shown in
Fig. 5.

C =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 −70 70 0
−1 0 1 −70 0 70
...

...
...

...
...

...

−1 0 1 −95 0 95
0 −1 1 0 −95 95

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 70
1 75
...

...

1 95

⎞
⎟⎟⎟⎠ ⊗

⎛
⎝

−1 1 0
−1 0 1
0 −1 1

⎞
⎠ . (9)
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Fig. 5 Simultaneous 95% confidence intervals for all pairwise comparisons between the three anorexia
treatment groups at six equidistant values of pre-weight

As can be presumed from Fig. 4, the significant interaction between pre-weight
and treatment is due to the significant difference in post-weight between the CBT and
control as well as FT and control, when pre-weights are 85, 90 and 95 lbs. For none
of the six pre-weight values, there is significant difference in expected post-weights
between the two treatment groups CBT and FT.

The above intervals are constructed only for interpretations at the chosen Q = 6
discrete values of the covariate, x̃ = (70, 75, 80, 85, 90, 95). Figure 6 illustrates the
effect of increasing the number of covariate values on the correlation structure (6), and
consequently on the multivariate t-quantiles (7): the above all pairwise comparison
problem is considered for Q = 3, 6, 12, 24, 50, 100 equidistant points in [70; 95],
resulting in total numbers of parameters ofM = 9, 18, 36, 72, 150, 300.As a reference
point for the critical value, the case Q = 1, for all pairwise comparisons at the overall
mean of the covariate, x̃ = x̄ = 82.4 is added.

With Q = 3, the correlations between linear combinations with adjacent covariate
values for the same treatment contrast, are below 0.5. For Q = 6, such linear combina-
tions have already correlations greater than 0.95, when the covariate values are close
to the limits of [70; 95], but correlations of 0.5–0.9 for covariate values in the center
of the covariate range. Doubling Q from 12 to 24 yields correlations that are always
higher than 0.95 for directly adjacent values of x within the same contrast. Figure 7)
shows the quantiles of the multivariate t distribution with d f = 72− 6 in dependence
of Q, and M . For Q = 24, 50 and 100 the quantiles approach 2.88, where the slight
changes in the values are mainly due to the Monte Carlo error in the computation of
the quantiles. For Q = 6 the critical value (2.84) is still slightly smaller.

4.2 Treatment interaction with a quadratic regression term

In an experiment discussed by Milliken and Johnson (2002), the yield yi j of a process
in dependency of the amount of a substance, xi j , was investigated. The effect of two
additives (S1, S2) on that yield is compared to a control group without any additive.
Among the I = 3 treatment groups, i = 1 denotes the control group. Milliken and
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Fig. 6 Correlation matrices for an increasing number Q of equidistant values x̃ in the range [70; 95]. The
rows and columns of the correlation matrices are ordered primarily by the between-treatment-comparisons
(blocks), and within each between-treatment-comparison entries are ordered by increasing values of x̃. The
entries of the correlation matrices are represented by a gray scale, where black indicates strong positive
correlation

Fig. 7 Quantiles of the
multivariate t distribution
recomputed for an increasing
number Q of equidistant values
x̃, spanning the range [70; 95]
for all Q ≥ 3
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Fig. 8 Observed yield and substance x, predicted yields and confidence intervals for the predicted yield
for the process data set (Example 4.2)

Johnson (2002) assume treatment specific intercepts αi , an overall linear increase β1
depending on the substance xi j , as well as treatment specific parameters β2i for the
quadratic terms x2i j in a general linear model:

yi j = αi + β1xi j + β2i x
2
i j + ei j . (10)

The predicted values for the yield y according to the fitted model, as well as the
corresponding simultaneous 95% confidence intervals for Q = 11 values x̃ =
(0, 1, 2, . . . , 10)T as are shown in Fig. 8 along with the observations.

The parameter vector is ordered θ = (α1, α2, α3, β1, β21, β22, β23)
T , similar as

in Eq. (1). Interest is in estimating the gain in expected yield when using one of the
two additives compared to running the process without any of the additives (K = 2
comparisons to control). Because the yields in the control group are clearly positive
(except when substance x is close to 0) one could express the effect of the additives
in terms of ratios. That is, expressing the increase in yield when using additive S1 or
S2 as fold–change relative to the yield in the control treatment. Relying on Sect. 4.3,
the matrix C defines the expected yield of additive S1 and S2 for x̃, and D defines the
yields in the control group for Q = 9 values of substance x , x̃ = (1, 2, . . . , 9).

A =
(
0 1 0
0 0 1

)
,B =

(
1 0 0
1 0 0

)
, (11)

C =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1 0
0 0 1 1 0 0 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 1 0 9 0 81 0
0 0 1 9 0 0 81

⎞
⎟⎟⎟⎟⎟⎠

= (
1Q×1 ⊗ A, x̃ ⊗ 12×1, x̃2 ⊗ A

)
, (12)

D =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0 0
1 0 0 1 1 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 0 0 9 81 0 0
1 0 0 9 81 0 0

⎞
⎟⎟⎟⎟⎟⎠

= (
1Q×1 ⊗ B, x̃ ⊗ 12×1, x̃2 ⊗ B

)
. (13)
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Fig. 9 Simultaneous 95% confidence intervals for the ratios of expected yields between additive S1 and
the control as well as additive S2 and the control

Figure 9 shows that with low concentrations of substance x , the yield is significantly
increased with both additives, 1 and 2. For larger concentrations of substance x, the
effect of the additives decreases and is not significantly different (at a 5% familywise
error rate) for x = 8, 9 with additive 1 and x = 9 with additive 2. With approximately
95%confidence it can be stated that themean yieldwith x = 1, 2, 3 using additive S1 is
more than 1.96, 1.56, 1.39 times the mean yield in the control. For additive S2 and x =
1, 2, 3, the mean yield is at least 2.96, 2.21, 1.89 times that of the control. Increasing
the number of points in x̃ from Q = 10 (t0.95,M=20,d f =N−P=29,R̂ = 2.8125) has only
small effects on the resulting quantile: for Q = 20, 40, 80 equidistant values in the
range [1; 9], the corresponding quantiles are 2.8157, 2.8192, 2.8181, respectively.

4.3 All pairwise comparisons in a binomial generalized linear model

An experiment investigating the mortality of flies exposed to different concentrations
of four different compounds containing Selenium is reported in Jeske et al. (2009). In
the original publication, the data are analyzed by a generalized linear model assuming
the binomial distribution, a probit link with a correction for baseline mortality, and
compound specific intercepts and slopes in dependence on the log–concentrations. The
data with non-zero concentrations are analyzed here with a simple logit link instead,

yi j ∼ Bin(ni j , πi j ),

log
[
πi j/

(
1 − πi j

)] = ηi j ,

ηi j = αi + βi xi j ,

(14)

where yi j denotes the observed number of dead flies out of ni j flies under observation
in the i th compound and dose level j , j = 1, . . . , Ji . The corresponding unknown
mortality is denoted πi j , the linear predictor ηi j is modeled with αi and βi being the
compound specific intercepts and slopes on the logit scale, where xi j are the log10 of
the concentrations. Fitting this model and ordering the parameter vector as in Sect. 2.2,
allows to construct asymptotic 95%confidence intervals for the predicted odds at log10-

123



Multiple treatment comparisons in analysis of covariance… 625

Selenate Selenite Selenomethionine Selenocysteine

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000 10 100 1000 10 100 1000 10 100 1000

Concentration

P
ro

po
rt

io
n 

of
 d

ea
d 

fli
es

Fig. 10 Observedmortality for the four compounds and asymptotic simultaneous 95% confidence intervals
for the predicted mortality based on the fitted model corresponding to Eq. (14)

dose levels x̃ = (0.7, 0.9, 1.1, . . . , 2.9)T , i.e., Q = 12. For this purpose, a (48 × 8)
matrixC can be constructed by

(
1Q, x̃

)⊗A, whereA is a (4×4) identity matrix. The
confidence intervals for Cθ are on the scale of the linear predictor and applying the
inverse link exp(η)/[1+exp(η)] on the resulting confidence bounds yields confidence
bounds for the predictedmortalities shown in Fig. 10. All pairwise comparisons among
the four compounds can be performed using the matrix C as defined in Eq. (15),

C =

⎛
⎜⎜⎜⎜⎜⎝

1 0.7
1 0.9
1 1.1
...

...

1 2.9

⎞
⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

Asymptotic confidence limits for ratios among the I compounds with respect to
the odds of the probability to die relative to the probability to survive,

π |i,x̃q
(1−π |i,x̃q )

π |i ′,x̃q
(1−π |i ′,x̃q )

, for q = 1, . . . , Q, and all pairs {i, i ′} : i �= i ′, (16)

can be constructed by applying the exp function to the confidence limits for the dif-
ferences on the scale of the linear predictor defined by Cθ . These intervals are shown
in Fig. 11.

Figure 10 reveals a number of problems concerning pairwise comparisons among
the compounds: the range of concentrations differs among the four compounds, in par-
ticular between Selenite and Selenate on the one side and Selenocysteine on the other
side, with ranges only overlapping in concentration 100. If one believes in model (14),
Fig. 11 may lead to the following conclusions: Selenite leads to odds(die/survive) that
are roughly 80% that of Selenate for the considered high concentrations (x̃ > 300).
Selenomethionine leads to increased odds (die/survive) compared to both Selenite
and Selenate, for the considered high concentration values (x̃ > 100). Most striking
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Fig. 11 Asymptotic simultaneous 95% confidence intervals for all pairwise oddsratios among the four
Selenium compounds for Q = 12 concentration values

is the 5- to 10-fold increase of this odd in Selenomethionine relative to that in Selenite
for the considered high concentrations (x̃ > 300). Selenocysteine shows an about
2-fold increased odds (die/survive) compared to Selenite for the considered high con-
centrations (x̃ > 300) and also compared to Selenomethionine but then for the low
concentration values (x̃ < 10). The two-sided 95%multivariate normal quantiles cor-
responding to Q = 6, 12, 24, 48 and 96 equidistant points in {0.7, 2.9} for the given
data are 2.9389, 2.9839, 2.9977, 2.9987 and 2.9975. That is, the intervals on the logit
scale would increase in width by about 0.5% if 96 instead of the given 12 values in x̃
would be considered.

5 Discussion

This paper shows how a detailed interpretation of treatment-covariate interactions is
possible with standard methods based on simultaneous confidence intervals for user-
defined multiple contrast tests in freely available software. Different types of multiple
comparisons among several treatments can be interpreted for a pre-specified set of
covariate values. The case studies illustrate how to set the methods into practice for a
variety of models and experimental questions.

In a strict sense, the simultaneous interpretation is valid only for the pre-specified
set of covariate values which have been used for computing the quantile, and not as
simultaneous confidence bands, i.e., for any covariate value over the pre-specified

123



Multiple treatment comparisons in analysis of covariance… 627

range of the covariate. Previously, it has been argued (Bretz et al. 2010; Westfall et al.
2011) that for a sufficiently large set of points that spans a pre-specified range of
the covariate, the approach approximates the corresponding confidence bands. The
informal assessment of the correlation structure and the results of simulation studies
presented in this paper suggest that already a grid of 20 equidistant points in a given
covariate range can be used to construct confidence bands with simultaneous coverage
probabilities very close to the nominal level. However, the simulation settings used
here are restricted to the general linear model and a well-behaved sampling scheme
with the covariate values sampled from the uniform distribution. If model complexity
increases, covariates have a skewed distribution or include extreme observations, or
the covariate range differs between treatments, the recommendations for the number of
covariate values may need further assessment. Also, for the application to generalized
linear models an assessment of the small sample performance is needed. The findings
of this paper and the need for further assessment of coverage probabilities in more
complex models are supported by the simulation results of Herberich et al. (2014):
their model involves repeatedmeasurements from the same individuals and smoothing
splines fitted in dependence of a covariate. The differently shaped curves are compared
between several groups. In this far more complicated model only asymptotic methods
are available. Though, given a sufficient sample size per group, for only slightly higher
numbers of grid points (such as Q = 25) FWER is controlled for the majority of
settings in their simulation study.
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