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Abstract We study properties of maximum likelihood estimators of parameters in
generalized linear mixed models for a binary response in the presence of random-
intercept model misspecification. Further exploiting the test proposed in an existing
work initially designed for detecting general random-effects misspecification, we are
able to reveal how the true random-intercept distribution deviates from the assumed.
Besides this advance compared to the existing methods, we also provide theoretical
insights on when and why the proposed test has low power to identify certain forms of
misspecification. Large-sample numerical study and finite-sample simulation experi-
ments are carried out to illustrate the theoretical findings.

Keywords Bridge distribution · Cluster data · Grouped data · Skew normal

1 Introduction

Cluster data arise naturally in a host of applications. For instance, in longitudinal
studies, each subject is followed at multiple time points, producing repeated measures
for each subject; or, at a fixed time point, measures of multiple traits of each subject
are collected; in animal experiments, data on animals in each litter are recorded, with
a cluster referring to a litter of animals. It is important in statistical analyses of such
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data to account for the correlation among observations within a cluster. When the
response of interest is discrete, generalized linear mixed models (GLMM) provide
a practically useful and mathematically flexible platform for analyzing cluster data.
Random effects in GLMM are hypothetical, unobservable quantities that play the
key role in characterizing cluster-specific features and introducing correlation among
observations within a cluster. Molenberghs and Verbeke (2005), Jiang (2007), and
McCulloch et al. (2008) provide comprehensive reviews on theories of GLMM and
abundant examples of its application.

Most off-the-shelf statistical software carry out analyses of cluster data modeled by
GLMM under the assumption that random effects follow normal distributions. There
is a sizable collection of literature concerning statistical inference drawn based on this
normality assumption when the assumption is violated. Some researchers reported
empirical evidence along with theoretical explanations suggesting that likelihood-
based inference can be compromised in the presence of random-effects model
misspecification (Ten Have et al. 1999; Heagerty and Kurland 2001; Agresti et al.
2004; Litière et al. 2007, 2008). On the other hand, some studies showed that the
bias in covariate (fixed) effects estimation due to this type of misspecification is usu-
ally small (Butler and Louis 1992; Neuhaus et al. 1992; McCulloch and Neuhaus
2011a, b; Neuhaus et al. 2013), although loss of efficiency in these estimators and an
inflated Type I error when testing a covariate effect are observed. The consent among
these existingworks is that random-effectsmisspecification has non-negligible adverse
effects on the estimators of variance components and the fixed intercept. Misleading
inference on variance components and the intercept are unattractive in many fields
of research. For example, in genetics, reliable inference for variance components are
important to scientists (Scurrah et al. 2000); for many models in the item response
theory, the intercept represents the item difficulty, a quantity very much of interest
to psychometricians (Woods 2008). More importantly, random-effects distributions
themselves are the focal point of studies in many applications. These applications
include surrogate marker evaluation and psychometric properties evaluation, as well
as pharmachokenetics (PK) and pharmechodynamics (PD), where mixed effects mod-
els are often used to characterize a PK/PD process with practically meaningful random
effects that scientists wish to understand.

Relaxingmodel assumptions on random effects in GLMM is oneway to avoid some
of the aforementioned adverse effects. This motivates semi/non-parametric modeling
for randomeffects inGLMM, such as those proposedbyFollmannandLambert (1989),
Butler and Louis (1992), Zackin et al. (1996),Magder and Zeger (1996), Kleinman and
Ibrahim (1998), Chen et al. (2002), Caffo et al. (2007), Lee and Thompson (2008),
Komàrek and Lesaffre (2008), Wang (2010), Papageorgiou and Hinde (2012), and
Lesperance et al. (2014). In the study presented in this article, we aim at exploiting
informative diagnostic methods to assess the adequacy of an assumed random-effect
distribution. Many existing methods sharing the same goal as ours are designed to
estimate the random effects or their distributions (Ritz 2004; Pan and Lin 2005;
Waagepetersen 2006). There exists a collection of Hausman-type tests constructed
based on contrasting a statistic that is robust to such misspecification with another
one that is sensitive to it (White 1982; Tchetgen and Coull 2006; Alonso et al. 2008;
Bartolucci et al. 2015), following the general idea of the specification tests pioneered
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in Hausman (1978). A very similar idea of comparing two statistics is employed in
Bartolucci et al. (2015) to detect time-variant unobserved heterogeneity in general-
ized linear models (GLM) for panel data, with one feature distinguishing it from the
aforementionedHausman-type tests, which is that both statistics can be sensitive to the
time-invariant assumption. Claeskens and Hart (2009) considered order selection-type
goodness-of-fit (GOF) tests in the framework of linear mixed models (LMM), which
entails nesting the normal distribution for random effects within a bigger, thus more
flexible, class of distributions, and then testing for normality against a higher-order,
i.e., more complicated, model in the class. In theory, this idea is applicable to GLMM,
but the lack of closed-form likelihood functions in general for GLMM discourages
its use. Also, most GOF tests are not informative enough to shed light on how the
true distribution differs from normal. Verbeke and Molenberghs (2013) proposed an
exploratory diagnostic tool based on the gradient function, which can give certain
indication of how the true random-effects distribution deviates from normal. Efendi
et al. (2014) further constructed a test statistic based on this idea and developed a
bootstrap procedure to estimate the p value associated with the test. Drikvandi et al.
(2016) proposed yet another test based on the gradient function that outperforms the
test in Efendi et al. (2014), who also derived the asymptotic null distribution of the pro-
posed test statistic. A different aspect of informativeness is achieved by the diagnostic
method proposed by Huang (2009), which can distinguish model misspecification on
a random intercept from that on a random slope (among possibly multiple random
slopes), but it can not tell how the true distribution deviates from the assumed. In this
article, we further exploit her test statistic within the subclass of GLMMs where the
random intercept is the only random effect, allowing one to gain more information on
the direction of deviation of the true random-intercept distribution from an assumed
distribution.

Standing in stark contrast to the Hausman-type diagnostic methods, which require
some component of robust (to random-effects model assumptions) inference, our
method does not require robust estimators, which free us from seeking for consis-
tent inferential methods in the presence of model misspecification. The key ingredient
that frees us from robust inference is the grouped data induced from the observed clus-
ter data, which is described in Sect. 2 following the model formulated for the observed
data. In Sect. 3, effects of random-intercept misspecification on maximum likelihood
estimators (MLE) based on the raw data and the MLEs based on the grouped data
are investigated. We revisit the test statistics in Huang (2009) in Sect. 4 to facilitate
assessing an assumed random-intercept distribution. Following this review, we seek
theoretical explanations for when and why the test has low power to detect certain
types of misspecification. Implementation and performance of the proposed diagnos-
tic method are illustrated via simulation in Sect. 5, where we compare our method with
that in Tchetgen and Coull (2006) and two tests proposed in Alonso et al. (2008). In
Sect. 6, we apply the proposed method to two real-life applications. We conclude the
article with discussions on the contributions of our study and future research directions
in Sect. 7.
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2 Data and models

Denote byYi = (Yi1, . . . ,Yini )
t the vector of observed binary responses from cluster

i , and by Xi the ni × p matrix of the associated covariates, with the j th row being
Xi j , for i = 1, . . . ,m, j = 1, . . . , ni . Suppose that the conditional mean of Yi j given
the covariates and the random effect is

E
(
Yi j |Xi j , bi0;β

) = h
(
Xi jβ + bi0

)
, for i = 1, . . . ,m, j = 1, . . . , ni , (1)

where β is the p × 1 vector of fixed effects, bi0 is the cluster-specific random inter-
cept, and h(·) is a known inverse link function. Under the assumed model of bi0,
which is specified by the probability density function (pdf) indexed by parame-
ter(s) τ , fb(bi0; τ), the contribution of cluster i to the observed-data likelihood is
fY(Yi |Xi ;β, τ ) = ∫

fb(bi0; τ)
∏ni

j=1 h(Xi jβ+bi0)Yi j
{
1 − h(Xi jβ + bi0)

}1−Yi j dbi0,
for i = 1, . . . ,m. Note that the cluster-specific nature of bi0 (in the true and assumed
GLMMs) rules out scenarioswith endogeneity,where a randomeffect depends on (or is
correlated with) within-cluster covariates or where there is a time-varying unobserved
individual effect as considered in Bartolucci et al. (2015).

To implement the proposed diagnostic method, another data set induced from the
above observed data is needed. To create this induced data set, one partitions cluster i
into Gi groups and define grouped responses as Y ∗

ig = max j∈Iig Yi j , where Iig is the
index set such that j ∈ Iig indicates that observation j is in group gwithin cluster i , for
i = 1, . . . ,m, g = 1, . . . .Gi . We defer discussions on some practical and theoretical
consideration of the actual implementation of such partition to Sect. 7. Using the
grouped data, letting Y∗

i = (Y ∗
i1, . . . ,Y

∗
iGi

)t , one has the contribution of cluster i to

the grouped-data likelihood as fY∗(Y∗
i |Xi ;β, τ ) = ∫

fb(bi0; τ)
∏Gi

g=1[1−
∏

j∈Iig {1−
h(Xi jβ + bi0)}]Y

∗
ig [∏ j∈Iig {1 − h(Xi jβ + bi0)}]1−Y ∗

ig dbi0, for i = 1, . . . ,m.
Due to its appeal to practitioners, we consider for the majority of the article a

normal assumed model for bi0, where τ denotes the standard deviation of bi0, and
fb(bi0; τ) = τ−1φ(bi0/τ), with φ(·) being the standard normal pdf. In addition,
we also consider another assumed model for bi0 that has aroused a great deal of
interest among statisticians since its proposal in Wang and Louis (2003), namely the
bridge distribution. The pdf of a mean-zero bridge distribution (for bi0) is given by
fb(bi0; τ) = sin(τπ)/[2π{cosh(τbi0)+cos(τπ)}], where τ ∈ (0, 1) and the standard
deviation of bi0 now becomes π

√
(τ−2 − 1)/3. Like a normal distribution, the pdf of a

bridge distribution is symmetric and bell-shaped but with a heavier tail. The appealing
feature of a bridge distribution for bi0 is that, if the link function in a GLMM is the
logit link and bi0 is the only random effect (as in our study), then the logit link is
retained in the marginal model of Yi j (given Xi j ).

Define Ω = (β t , τ )t as the vector of all unknown parameters in the assumed
GLMM, and denote by Ω̂ theMLEofΩ derived under the assumedmodel based on the
observed data, and by Ω̂

∗
as the counterpartMLEbased on the grouped data. In the next

section, we look into the limits of Ω̂ and Ω̂
∗
asm → ∞ (with max1≤i≤m ni bounded)

when the true distribution of bi0 deviates from the assumed model in different ways.
Throughout the article, the notational conventions used to denote the (limiting) MLEs
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of Ω based on the observed/grouped data are also adopted for individual parameters
in Ω .

3 Limits of maximum likelihood estimators

By invoking the Kullback–Leibler (KL) divergence between the true model and an
assumed model, White (1982) established that Ω̂ converges almost surely to

Ω̃ = argmin
Ω

lim
m→∞m−1EY|X

{
log

gY(Y|X;Ω0)

fY(Y|X;Ω)

}
, (2)

where gY(Y|X;Ω0) is the likelihood function of Y = {Yi }mi=1 given X = {Xi }mi=1
under the correct model evaluated at the true parameter value Ω0, fY(Y|X;Ω) is the
observed-data likelihood under the assumed model, and the expectation is taken with
respect to the true model of Y given X. Similarly, Ω̂

∗
converges almost surely to

Ω̃
∗ = argmin

Ω
lim

m→∞m−1EY∗|X
{
log

gY∗(Y∗|X;Ω0)

fY∗(Y∗|X;Ω)

}
, (3)

where gY∗(Y∗|X;Ω0) is the true-model likelihood of grouped data Y∗ = {Y∗
i }mi=1,

fY∗(Y∗|X;Ω) is the grouped-data likelihood under the assumedmodel, and the expec-
tation is taken with respect to the true model of Y∗ given X.

In the upcoming two subsections, we first focus on a specific GLMMwith the logit
link, under which we are able to evaluate the KL divergence appearing in (2) and (3)
nearly exactly. We then switch to a similar GLMMbut with the probit link and the true
distribution of bi0 being a skew normal, which allows for more analytic derivations to
reveal some properties of the MLEs under a misspecified random-intercept model.

3.1 Logistic GLMM

Consider a logistic regression model for Yi j given by, for i = 1, . . . ,m and j =
1, . . . , 8,

E
(
Yi j |Xi j , bi0

) = {
1 + exp

(−β0 − β1Xi j,1 − β2Xi j,2 − β3Xi j,1Xi j,2 − bi0
)}−1

,

(4)
where Xi j,1 = xi with xi equal to either 0 or 1, Xi j,2 = ( j − 1)/7, and the true fixed
effects values are β = (β0, β1, β2, β3)

t = (−2, 1, 0.5, −0.25)t . With ni = 8 for
i = 1, . . . ,m, the sample space of Yi consists of 256(=28) distinct binary-valued
8 × 1 vectors, { yl}256l=1. And, under the current covariates setting, Xi is equal to either
X(1) = [1 0 S 0] or X(2) = [1 1 S S], where 1 is the 8 × 1 vector of ones, 0 is the
8 × 1 vector of zeros, and S = (0, 1, . . . , 7)t/7. Now specifying gY(Yi |Xi ;Ω0)

boils down to finding two sets of probabilities, {π(k)( yl)}256l=1, for k = 1, 2, where
π(k)( yl) = gY( yl |X(k);Ω0), for l = 1, . . . , 256. Because deriving these 512(=
2 × 256) probabilities explicitly is infeasible even when the true distribution of bi0
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is normal, we use empirical probabilities observed from a large sample generated
from the true model to approximate these true-model probabilities. More specifically,
for each fixed-effect design matrix X(k) (k = 1, 2), we generate a random sample
{Yi }106i=1 from the true model with Xi = X(k) for i = 1, . . . , 106, and use the observed
proportion of yl to approximate π(k)( yl) for l = 1, . . . , 256. We further assume that
Xi takes X(1) or X(2) equally likely across the entire sample. Once we obtain the two
sets of true-model probabilities, finding Ω̃ defined in (2) is equivalent to maximizing

256∑

l=1

2∑

k=1

π(k)( yl) log fY
(
yl |X(k);Ω

)
(5)

over Ω , where the integral that defines fY
(
yl |X(k);Ω

)
, for k = 1, 2 and l =

1, . . . , 256, is numerically solved using the M-point Gauss–Hermite quadrature, with
a suitably large M . This recipe of finding Ω̃ follows the idea of artificial sample pro-
posed by Rotnitzky andWypij (1994), which was employed by Heagerty and Kurland
(2001) and Huang (2009) to numerically obtain limiting MLEs under misspecified
models. The accuracy of the resulting Ω̃ has been shown to be satisfactory in these
existing works.

To fix the idea of grouped data, we set Gi = 2, for i = 1, . . . ,m, and
split each cluster right at the middle according to the sorted values in Xi j,2. We

then repeat the same exercise as above to find Ω̃
∗
by maximizing the objective

function,
∑4

l=1
∑2

k=1 π(k)( y∗
l ) log fY∗

(
y∗
l |X(k);Ω

)
, over Ω , where π(k)( y∗

l ) =
gY∗( y∗

l |X(k);Ω0), for k = 1, 2 and l = 1, . . . , 4.

With the theoretical formulations needed to numerically obtain Ω̃ and Ω̃
∗
in posi-

tion, we handpick the following four mean-zero true random-intercept distributions to
pair with either the normal distribution or the bridge distribution as the assumedmodel
for bi0: (I) the standard normal distribution (when the assumedmodel is normal) or the
bridge distribution with τ = 0.5 (when the assumed model is a bridge distribution);
(II) a Student’s t distribution with degrees of freedom 8/3, resulting in a standard devi-
ation of 2; (III) a shifted (via centering) and scaled (via multiplying −2) left-skewed
gamma distribution with standard deviation 2, based on a gamma distribution with
shape and scale parameters both equal to 1 (before shifting and scaling); (IV) a shifted
and scaled right-skewed gamma distribution that is symmetric of (III). Table 1 presents
Ω̃ and Ω̃

∗
under different true models for bi0 when one assumes a normal bi0 (upper

half of Table 1) and when one assumes bi0 follow a bridge distribution (lower half of
Table 1).

Results regarding β shown in Table 1 are in line with the finding in Neuhaus et al.
(1992), who concluded that the bias in the MLEs of the fixed effects is usually small,
and β̃0 can differ more from the truth when the true distribution of bi0 is skewed. We
reach a similar conclusion for β̃

∗
, which is not considered in the existing literature.

Results regarding τ shown in Table 1 are more intriguing. When the true distribution
of bi0 is symmetric around zero but different from the assumed, a small or moderate
amount of bias is present in τ̃ and τ̃ ∗, but the relative change from τ̃ to τ̃ ∗ is minimal.
In contrast, when the true random-intercept distribution is skewed, although the bias
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Table 1 Limiting MLEs based on the observed data, Ω̃ , and limiting MLEs based on the grouped data,
Ω̃

∗
, under different combinations of true/assumed models for bi0

True model Data β0 β1 β2 β3 τ

Assume bi0 ∼ N (0, τ2)

(I) N (0, 1) Observed −2.00 1.00 0.50 −0.25 1.00

Grouped −2.00 1.00 0.50 −0.25 1.00 (0.00%)

(II) Student’s t Observed −2.01 1.00 0.49 −0.24 1.40

Grouped −2.01 1.00 0.50 −0.24 1.29 (7.86%)

(III) Left-skewed gamma Observed −1.67 1.00 0.51 −0.27 1.31

Grouped −1.63 1.13 0.57 −0.34 1.97 (−50.38%)

(IV) Right-skewed gamma Observed −2.37 1.02 0.48 −0.23 2.12

Grouped −2.30 0.91 0.44 −0.18 1.51 (28.77%)

Assume bi0 ∼ bridge(τ )

(I) Bridge(0.5) Observed −2.00 1.00 0.50 −0.25 0.50

Grouped −2.00 1.00 0.50 −0.25 0.50 (0.00%)

(II) Student’s t Observed −2.00 1.00 0.50 −0.25 0.75

Grouped −2.00 1.00 0.50 −0.24 0.75 (0.00%)

(III) Left-skewed gamma Observed −1.60 1.01 0.52 −0.28 0.74

Grouped −1.62 1.10 0.56 −0.31 0.61 (17.57%)

(IV) Right-skewed gamma Observed −2.40 1.01 0.49 −0.23 0.62

Grouped −2.30 0.92 0.45 −0.19 0.69 (−11.29%)

The last column gives values of 100% × (τ̃ − τ̃∗)/τ̃ in parentheses

in τ̃ and τ̃ ∗ may be small or moderate, the relative change from τ̃ to τ̃ ∗ is much
more substantial. More interestingly, after translating τ̃ and τ̃ ∗ to the corresponding
limiting MLEs of the standard deviation of bi0, denoted by σ̃ and σ̃ ∗ respectively, we
observe that σ̃ − σ̃ ∗ < 0 when the true distribution of bi0 is left-skewed, whereas
σ̃ − σ̃ ∗ > 0 when the true model is right-skewed. This pattern is observed under
both assumed models for bi0. The same clean contrast between σ̃ and σ̃ ∗ is also
observed when the true model is multimodal with different directions of skewness
(results omitted here). Later, in Sect. 4.2, we will provide some theoretical insight on
the reason for this tantalizing phenomenon. Besides the skewness of the true random-
intercept distribution, Alonso et al. (2008) provided empirical evidence showing that
how much the MLEs are affected by random-intercept misspecification also depends
on the variance of the true random-intercept distribution. Bearing this finding in mind,
we purposefully set the variance of distributions (II), (III), and (IV) above to be the
same across these three cases, which all correspond to scenarios where the assumed
random-intercept model (either normal or bridge) deviates from the true model. With
this common variance changed to other values (results not included in Table 1), the
relative change from σ̃ to σ̃ ∗ remains substantial when the true model is skewed, with
the sign of σ̃ − σ̃ ∗ reflecting the direction of skewness.

Intrigued by the pattern of the limiting MLEs of τ , we propose to use τ̂ − τ̂ ∗ as
the basis of an informative diagnostic test to reveal the direction of skewness of the
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true random-intercept distribution. Before we present a formal test statistic for this
purpose, we wish to look more closely into the dependence of Ω̃ −Ω̃

∗
(and individual

limiting MLEs) on the skewness of the true random-intercept distribution without
being distracted by other features of the true distribution. This close inspection is
made possible by considering a probit GLMMwith the true model of bi0 specified by
a skew normal pdf, as elaborated in the next subsection.

3.2 Probit GLMM

Consider a probit regression model for Yi j , E(Yi j |Xi j , bi0) = Φ(Xi jβ + bi0), for i =
1, . . . ,m and j = 1, . . . , ni , whereΦ(·) is the standard normal cumulative distribution
function (cdf). Suppose that one assumes normal bi0, but the true distribution of bi0 is a
skew normal (SN, Azzalini 1985) with mean zero and variance σ 2, of which the pdf is
gb(bi0; σ, α) = (2/ω)φ{(bi0 +αdσ)/ω}Φ{(α/ω)(bi0 +αdσ)},where α is the shape
parameter,d = √

2/{π(1 + α2) − 2α2}, andω = σ
√

π(1 + α2)/{π(1 + α2) − 2α2}.
Note that α < 0 results in a left-skewed distribution, α > 0 leads to a right-skewed
distribution, and α = 0 yields a normal distribution.

With the probit regression model in conjunction with the SN random intercept,
integrals used to define the true/assumed observed-data likelihood can be derived
analytically up to the point where one only needs to evaluate the cdf of a multivariate
normal. As shown in Appendix S1 of the supplementary material, the true observed-
data likelihood for cluster i is, for i = 1, . . . ,m,

gY (Yi |Xi ;Ω) = 2P
{
Vi0 ≤ 0, Vi j ≤ (−1)Yi j

(−Xi jβ + αdσ
)
, j = 1, . . . , ni

}
,

(6)
where Vi = (Vi0, Vi1, . . . , Vini )

t ∼ Nn+1(0, SVi ), in which

SVi =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

1 + α2 (−1)Yi1+1αω (−1)Yi2+1αω . . . (−1)Yini +1αω

(−1)Yi1+1αω 1 + ω2 (−1)Yi1+Yi2ω2 . . . (−1)Yi1+Yini ω2

(−1)Yi2+1αω (−1)Yi1+Yi2ω2 1 + ω2 . . . (−1)Yi2+Yini ω2

...
...

...
. . .

...

(−1)Yini +1αω (−1)Yi1+Yini ω2 (−1)Yi2+Yini ω2 . . . 1 + ω2

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

. (7)

The observed-data likelihood function under the assumed model can be obtained by
setting α = 0 in (6) and (7), resulting in the following likelihood evaluated at Ω̃ , for
i = 1, . . . ,m,

fY
(
Yi |Xi ; Ω̃

)
= 2P

{
Wi0 ≤ 0, Wi j ≤ (−1)Yi j+1Xi j β̃, j = 1, . . . , ni

}
, (8)
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where Wi = (Wi0, Wi1, . . . ,Win)
t ∼ Nn+1(0, SWi ) with

SWi =

⎡

⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 0 0 . . . 0
0 1 + σ̃ 2 (−1)Yi1+Yi2 σ̃ 2 . . . (−1)Yi1+Yini σ̃ 2

0 (−1)Yi1+Yi2 σ̃ 2 1 + σ̃ 2 . . . (−1)Yi2+Yini σ̃ 2

...
...

...
. . .

...

0 (−1)Yi1+Yini σ̃ 2 (−1)Yi2+Yini σ̃ 2 . . . 1 + σ̃ 2

⎤

⎥
⎥⎥⎥⎥⎥
⎥
⎦

. (9)

Similarly, integrals that define the true/assumed grouped-data likelihood can also be
greatly simplified, as elaborated in Appendix S1 of the supplementary material.

Having the aforementioned four (nearly) explicit likelihood functions not only
improves the transparency of the numerical search for Ω̃ and Ω̃

∗
as maximizers of the

corresponding objective functions (such as (5)), but also allows analytic exploration
of the dependence of these limitingMLEs on α. In particular, because Ω̃ is the point in
the r -dimensional parameter space that makes the wrong-model likelihood “look like”
the truth-model likelihood evaluated at the true parameter values, one may compare
(6)–(7) with (8)–(9) to get a sense of how Ω̃ differs fromΩ0. For example, to simplify
the comparison, we approximate (8) by setting (β̃1, β̃2, β̃3) at the true parameter val-
ues, (β1, β2, β3). This approximation is not far-fetched because, as shown inNeuhaus
et al. (1992), (β̂1, β̂2, β̂3)

t are very close to being consistent in the presence of most
random-intercept model misspecification. With this approximation, one can heuristi-
cally compare β̃0 with the truth, β0, by matching the upper bounds involved in the
cdf in (6) with those in (8), that is, setting (−1)Yi j (−Xi jβ + αdσ) ≈ (−1)Yi j+1Xi j β̃,
resulting in β̃0 ≈ β0 − αdσ . Because d, σ > 0, this approximation for β̃0 indicates
positive bias in β̃0 when α < 0, negative bias when α > 0, and zero bias when α = 0
(as expected).

Using the same true values of β and covariates setting as those in Sect. 3.1, fixing σ

at 1 in the true SN pdf and varying α from−15 to 15 at increments of 0.5, we obtain Ω̃

and Ω̃
∗
as functions of α. Figure 1 shows these functions and Fig. 2 depicts Ω̃ − Ω̃

∗
.

Note that the direction of bias in β̃0 demonstrated in Fig. 1 reconciles with the above
heuristic arguments about β̃0. Figure 2 highlights the interesting phenomenon, partly
underscored in Sect. 3.1, that the sign of θ̃ − θ̃∗ solely depends on the sign of α, where
θ denotes generically a parameter inΩ; and the absolute difference, |σ̃ − σ̃ ∗|, is much
larger than that associated with any other parameter when α 	= 0.

4 Model diagnostics

4.1 Revisit Huang’s test

Properties of limiting MLEs revealed in Sect. 3 suggest the following test statistic to
facilitate diagnosing random-intercept model misspecification,

tτ = (
τ̂ − τ̂ ∗) /ν̂τ , (10)
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Fig. 1 Limiting MlEs of Ω based on the observed (dashed lines)/grouped (solid lines) data versus α for
probit GLMM with skew normal bi0. The horizontal dotted reference line in each panel refers to the true
value of the corresponding parameter

where ν̂τ is an estimator of the standard error of τ̂ − τ̂ ∗. Recall that, if one assumes a
normal random intercept, τ is the standard deviation of bi0, i.e., σ ; if one assumes a
bridge distribution for bi0, τ is the only parameter in the bridge distribution, of which
σ is a decreasing function. As implemented in Huang (2009), where more general
GLMMs that include random slopes are considered, one may certainly construct test
statistics like (10) associated with other parameters estimated along with τ . That is,
denoting by θ a generic element inΩ and by Û an estimator of the variance–covariance
matrix of Ω̂−Ω̂

∗
, onemay consider tθ = (θ̂−θ̂∗)/ν̂θ , where ν̂θ is the square root of the

diagonal element of Û corresponding to θ .Onemayalso combine tθ ’s for all parameters
inΩ in the following test statistic, T 2 = (m−r){r(m−1)}−1(Ω̂−Ω̂

∗
)t Û−1(Ω̂−Ω̂

∗
),

where r is the number of parameters in Ω . The estimator Û is derived from the
influence-function approximation of Ω̂ − Ω̂

∗
, as elaborated in Huang (2009). It is

also shown there that, under the null hypothesis (to be stated momentarily), T 2 ∼
F(r,m − r) and tθ ∼ Student’s t with m − r degrees of freedom asymptotically, and
significant deviation from zero of any one of these test statistics signals some form of
model misspecification.

Strictly speaking, these test statistics do not directly test H0 : bi0 ∼ N (0, τ 2) or
H0 : bi0 ∼ bridge(τ ) versus an alternative. Instead, take tτ as an example, it merely
tests H∗

0 : τ̃ − τ̃ ∗ = 0 versus an alternative such as H∗
a : τ̃ − τ̃ ∗ 	= 0. As observed in

the large-sample numerical studies in Sect. 3, τ̃−τ̃ ∗ can be very close to zero even if the
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Fig. 2 Plot of Ω̃ − Ω̃
∗
versus α for probit GLMM with skew normal bi0. Horizontal dotted reference

lines signify the value zero

true random-intercept distribution is neither normal nor a bridge distribution yet is also
symmetric. Hence, tτ (or even T 2) typically lacks power to distinguish two symmetric
distributions for bi0. This is the price we pay for letting go of robust inference, i.e., not
requiring consistent estimators in the presence of model misspecification, in return for
amore flexible and informative diagnostic test. More importantly, this is not surprising
because of the intrinsic arbitrariness in random-effects modeling according to Verbeke
and Molenberghs (2010), who concluded that “. . .to any given model an entire class
of (random-effects) models can be assigned, with all of its members producing the
same fit to the observed data. . .”. To look deeper into this “gray area” of the test, in the
next subsection, we search for theoretical explanations for when and why τ̃ − τ̃ ∗ ≈ 0.
A byproduct of this search is an explanation for the relationship between the sign of
σ̃ − σ̃ ∗ and the skewness direction of the true random-intercept distribution observed
in Sect. 3.

4.2 Local effects of skewness

We begin with formulating the true random-intercept distribution by contaminating
the assumed distribution as Gb = (1− ε)Fb,τ0 + εGc

b, where Gb is the cdf of the true
random-intercept distribution, Fb,τ0 is the cdf of the assumed distribution evaluated at
the true parameter value(s) τ0, andGc

b can be viewed as the contaminating distribution
that, along with the weight ε ∈ [0, 1], contributes to the discrepancy between the truth
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and the assumed model. This is also the formulation used in Gustafson (1996) when
studying the so-called local effect of misspecification. Similar to the assumptions
made in Gustafson (1996), to retain the interpretability of τ even in the wrong-model
inference so that, for example, it is always meaningful to estimate the variance of bi0,
it is assumed that Fb is parameterized in terms of moments of bi0, and Gc

b belongs to
a class of distributions that have the same first two moments as those of Fb,τ0 . This is
a large enough class of contaminating distributions to keep the investigation of model
misspecification interesting and practically well motivated, and also a sensible class to
consider now that we wish to detect random-intercept misspecification mainly based
on the difference between two estimators of the secondmoment of bi0, σ̂−σ̂ ∗. To adapt
to the context of Sect. 3, Fb,τ0 is assumed to correspond to a mean-zero symmetric
distribution. Consequently, the direction of skewness ofGb is fully determined by that
of Gc

b unless ε = 0.
Because ε partly controls the severity of distributionalmisspecificationonbi0, it is of

interest to study Ω̃ and Ω̃
∗
both as functions of ε. Now, considering a first-order Taylor

expansion of Ω̃(ε) and Ω̃
∗
(ε) around ε = 0, while noting that Ω̃(0) = Ω̃

∗
(0) = Ω0,

one can see that εΩ̃
′
(0) and εΩ̃

∗′
(0) are the first-order asymptotic bias of Ω̃(ε) and

Ω̃
∗
(ε), respectively. This motivates us to derive the first derivative, Ω̃

′
(0) and Ω̃

∗′
(0).

Like in Gustafson’s derivations, all derivatives evaluated at zero are right derivatives.
Unlike Gustafson’s goal of study, we are less interested in each first-order bias term
and more interested in the difference between these two bias terms for the purpose
of model diagnostics. With details provided in Appendix S2 of the supplementary

material, we first derive Ω̃
′
(0) − Ω̃

∗′
(0), of which the element associated with σ is

of most interest. Based on this difference and assuming that both random-intercept
distributions specified by Fb,τ0 andG

c
b have pdf’s tail off as bi0 (or b for short) deviates

fromzero, so that, under both Fb,τ0 andG
c
b, themajority of probabilitymass is assigned

at a neighborhood of b = 0, we show that

σ̃ − σ̃ ∗ = (ε/6)Δ(3)
σ (0,Ω0)Egc (b

3) + O(b4), (11)

where Egc (b3) is the third moment of Gc
b, which determines the skewness of Gc

b;

Δ
(3)
σ (0,Ω0) is the third-order partial derivative of Δσ (b,Ω0) with respect to b eval-

uated at b = 0, and Δσ (b,Ω0) denotes the element in the following r × 1 vector
corresponding to σ ,

EX

⎧
⎨

⎩
I−1
f ∗

4∑

l=1

s∗( y∗l ;X, Ω0) fY∗( y∗l |X, b; Ω0) − I−1
f

2n∑

l=1

s( yl ;X, Ω0) fY( yl |X, b; Ω0)

⎫
⎬

⎭
,

(12)
in which s( yl;X,Ω0) is the observed-data score function associated with the assumed
model evaluated at Ω0 and yl , s

∗( y∗
l ;X,Ω0) is the counterpart grouped-data score

function evaluated at y∗
l , I f and I f ∗ are the negative Fisher information matrices

associated with these two scores, respectively. Looking at (11), one may conclude
that the sign of σ̃ − σ̃ ∗ is dominated by the sign of Δ

(3)
σ (0,Ω0)Egc (b3). Hence, it
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is expected that, if Gc
b is symmetric and thus Egc (b3) = 0, σ̃ − σ̃ ∗ ≈ 0, resulting

in the aforementioned gray area of our test based on tτ . Given (12), it is numerically
straightforward to compute Δ

(3)
σ (0,Ω0) given any true parameter configuration (i.e.,

the value of Ω0) and design matrix configuration (i.e., the distribution of X). And we
observe Δ

(3)
σ (0,Ω0) ≥ 0 for a broad range of these configurations (see Appendix S2

for a pictorial demonstration). This explains the connection between the sign of σ̃ −σ̃ ∗
and the skewness direction of Gb, which is fully determined by the sign of Egc (b3).

The phenomenon that tτ has low power when Gb is symmetric should not cause
much concern as, after all, both β̂ and β̂

∗
are practically unaffected by this type of

misspecification. The informativeness of tτ when Gb is skew deserves more attention
(and celebration) as this is the case where wrong-model inference suffers more. The
information revealed by tτ can be further exploited in choosing a more adequate
model for the random intercept that is flexible yet constrained to reflect the direction of
skewness. Imposing this constraint can improve the efficiencyof inference compared to
when one assumes a bigger class of flexible distribution family without the constraint
imposed. Admittedly, such informativeness of tτ can be partly due to the fact that
we focus on the subclass of GLMMs where bi0 is the only random effect, which is
undoubtedly an important subclass that has been the topic of great interest among
many researchers (Neuhaus et al. 1992; Wang and Louis 2003, 2004; Tchetgen and
Coull 2006; Caffo et al. 2007, etc.). The operating characteristics of tτ in the presence
of random slope(s), whose distribution(s) may be misspecified, are among the topics
of our follow-up investigation.

The last step of the derivations outlined above (and elaborated in Appendix S2)
leading to (11) requires the assumption that the pdf associated withGb tails off outside
a neighborhood of zero. We discuss in Appendix S3 of the supplementary material
implication and consequences of violation of this assumption. The take-homemessage
there is that tτ can have some power to detect model misspecification when the pdf
associated with Gb, although symmetric, does not tail off as b deviates from zero.

5 Empirical evidence

We realize that the test statistics defined in Sect. 4.1 have a similar structure as the
test statistic proposed by Tchetgen and Coull (2006). Their method is applicable for
GLMMs with at least one within-cluster covariate. Denote by βW the q × 1 subvector
of β corresponding to the within-cluster covariate(s). Then an estimator of βW can
be obtained based on the conditional distribution of a sufficient statistic for βW given
a sufficient statistic for the random effects derived in Sartori and Severini (2004).

Denote this estimator as β̂
W
C , where the subscript “C” signifies that this estimator

originates from a conditional likelihood rather than the marginal likelihood used to

obtain the MLE of βW , β̂
W
. Note that the term “conditional distribution/likelihood”

in Tchetgen and Coull (2006) should not be confused with the conditional model of

the response given random effect(s) as in, say, (1). By construction, β̂
W
C is robust to

model assumptions on random effects. Making use of this feature, Tchetgen and Coull
(2006) proposed to diagnose random-effects misspecification via the following test
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statistic that follows a χ2
q asymptotically in the absence of model misspecification,

D = m
(
β̂
W
C − β̂

W)t
Σ̂

−1
(
β̂
W
C − β̂

W)
, (13)

where Σ̂ is the estimator for the variance-covariance matrix of β̂
W
C − β̂

W
derived

based on influence functions corresponding to the two estimators, β̂
W
C and β̂

W
. We

include their test as a competing method in the simulation study presented next.
In addition, we also implement two determinant tests developed by Alonso

et al. (2008). These determinant tests exploit the equivalence between the inverse
Fisher’s information matrix and the sandwich variance-covariance matrix in the
absence of model misspecification (White 1982). The two test statistics are δd1 =
log |B(Ω̂){−A−1(Ω̂)}| and δd2 = |B(Ω̂)||−A−1(Ω̂)|, whereA(Ω) = m−1 ∑m

i=1 ∂2

log fY(Yi |Xi ;Ω)/(∂Ω∂Ω t ), and B(Ω) = m−1 ∑m
i=1(∂ log fY(Yi |Xi ;Ω)/∂Ω)

(∂ log fY(Yi |Xi ;Ω)/∂Ω)t . The authors showed that, with Ω̂ replaced by Ω0 in these
two test statistics, under regularity conditions (including that the score function is nor-
mally distributed), the asymptotic null distributions ofmδ2d1/(2r) andm(δd2−1)2/(2r)
are both χ2

1 . In what follows, we consider two simulation settings, with the first one
closely mimicking that in Tchetgen and Coull (2006). Both R code and SAS IML
code that implement the proposed method are available from the correspondence
author upon request. Computing D, as well as the test proposed by Bartolucci et al.
(2015), involves the conditional MLE of within-cluster fixed effects. Computing our
test statistics only involves the marginal MLEs, which are less readily available in
standard software when it comes to grouped data than conditional MLEs.

[Setting I]: In this experiment, given a realization of {bi0}mi=1, binary responses
{Yi j , j = 1, . . . , n}mi=1 are generated according to the model considered in the accom-
panying technical report of Tchetgen and Coull (2006) at http://www.bepress.com/
harvardbiostat/. In particular, this model is the same as that given in (4) but with the
linear predictor being β0 +β1Xi j,2 +β2Xi j,1Xi j,2 + bi0, where β = (β0, β1, β2)

t =
(−0.5, 0.2, 0.5)t , the between-cluster covariate is Xi j,1 = xi , with {xi }mi=1 simulated
from Bernoulli(0.5), and the within-cluster covariate is Xi j,2 = 5( j − 1)/(n − 1), for
i = 1, . . . ,m, j = 1, . . . , n. We set m = 150, 300, 600, and, at each level of m, four
levels of n (3, 5, 8, 10) are considered.When creating grouped data, we setGi = 2 for
i = 1, . . . ,m, and partition each cluster into two subgroups according to the sorted
values of Xi j,2. Fixing the assumed model of bi0 at N (0, τ 2), we consider the follow-
ing five true models for bi0 when generating {bi0}mi=1: (I) N (0, 1); (II) a t distribution
with standard deviation 2; (III) a shifted and scaled right-skewed gammawith standard
deviation 2; (IV) amixture normal specified by λN (2.0, 0.5)+(1−λ)N (−0.86, 0.5),
where λ ∼ Bernoulli(0.3); (V) bi0|Xi j,1 ∼ N {0, (1+ 2Xi j,1)

2}. For each simulation
configuration, we generate 300 Monte Carlo (MC) replicates (to be consistent with
the scale of simulations in Tchetgen and Coull (2006)), resulting in 300 sets of tθ from
our proposed method, 300 realizations of D defined in (13), and 300 realizations of
(δd1, δd2). To compute Tchetgen and Coull’s D, we employ the SAS code provided
in their technical report, implemented using PROC LogXact 7.0 for SAS 9.2 (Cytel
Software, Inc. 2012). To compute our test statistics, we only need to go through two
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rounds of relatively more straightforward marginal, as opposed to conditional, max-
imum likelihood estimation. And quantities needed to compute the two determinant
test statistics are readily available as byproducts from computing ν̂θ involved in our
test statistics.

Table 2 presents the proportions of tests among 300 MC replicates from each
method that reject H∗

0 , thus also reject H0 : bi0 ∼ N (0, τ 2), at significance level
0.05. Considering the “directional” nature of our test statistic, and now that we do
know the sign of τ̃ − τ̃ ∗ based on the skewness of the true distribution of bi0, we
also report rejection rates of our test assuming a one-sided alternative under cases
(III) and (IV), besides the rejection rates associated with a two-sided alternative H∗

a :
τ̃ − τ̃ ∗ 	= 0. Empirical evidence here suggest that our test confers the right size
when the assumed random-intercept model coincides with the true model; and when
the true model is skew, our test has comparable or higher power than Tchetgen and
Coull’s test, especially when n > 3. When the true model is symmetric as in case
(II), where bi0 follows a t distribution, the determinant tests have moderate power to
reject the normality assumption whenm and n are large. For case (V) with bi0|Xi j,1 ∼
N {0, (1 + 2Xi j,1)

2}, our tτ performs like that under cases (I) and (II), which is not
surprising because the true marginal distribution of bi0 is symmetric, like those under
cases (I) and (II). However, as seen in Table 2 under case (V), the test statistic tβ2
sends strong signals to indicate model misspecification. This phenomenon of tθ , where
θ is one of the fixed effects, is explored in Huang (2009) and Huang (2011), where
more general GLMMs and more different types of random-effects misspecification
are considered. This observation motivates inspection of tθ for all parameters in Ω if
one wishes to discover existence of model misspecification besides the type we focus
on in this article. When multiple tθ ’s are used simultaneously for model diagnosis, one
should address the issue of multiple testing, say, by using the Bonferroni correction.
[Setting II]: Note that both fixed effects in the model considered in Setting I are
associatedwithwithin-cluster covariates, that is,βW = (β1, β2)

t , and there is no fixed
effect associated with the between-cluster covariate.We now consider another GLMM
that includes a between-cluster covariate by itself so that β contains a fixed effect (β1)
associatedwith the between-cluster covariate. ThisGLMMis specified by (4)withβ =
(β0, β1, β2, β3)

t = (−2, 1, 0.5, −0.25)t . Except for that Xi j,2 = ( j − 1)/(n − 1),
the configurations of Xi j,1, the sizes of m and n, as well as the way to create grouped
data, are the same as those in Setting I. Interestingly, with a between-cluster covariate
by itself in the GLMM besides two within-cluster covariates, Tchetgen and Coull’s
test (implemented using the authors’ SAS code applied to the model in Setting II)
gives nearly no power in all considered configurations to detect random-intercept
misspecification. Table 3 provides the rejection rates of our tests associated with a two-
sided H∗

a , Tchetgen andCoull’s test, and the determinant testswhen assuming a normal
bi0 across 900 MC replicates. Except when the true random-intercept distribution is a
Student’s t , the proposed test mostly outperforms the competing tests. Table 4 shows
the empirical power of the aforementioned tests when one assumes bi0 follows a bridge
distribution. To pair up with the assumed bridge distribution, we use the same five true
distributions as in Setting I except that we replace the t distribution in (II) with the
bridge distribution in order to monitor the size of the tests. The size of the determinant
tests are severely inflated in this scenario (and thus their rejection rates in the presence
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Table 4 Empirical size (in percentage) of our proposed test (tθ ), the test proposed by Tchetgen and Coull
(2006) (D), and two determinant tests (δd1, δd2) proposed by Alonso et al. (2008) in the absence of model
misspecification, and rejection rates associated with tθ and D in the presence of model misspecification
when bi0 is assumed to follow a bridge distribution across 900MC replicates generated from the true model
in Setting II in Sect. 5

m n = 3 n = 5 n = 8 n = 10

150 300 600 150 300 600 150 300 600 150 300 600

(I) bi0 ∼ Bridge

tτ 5.8 6.7 4.6 6.5 4.5 6.1 6.4 5.7 4.0 4.4 5.8 4.8

D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

δd1 50.7 71.0 92.3 28.7 34.6 54.8 21.3 26.3 32.8 17.8 20.8 23.8

δd2 24.9 53.0 86.2 11.3 21.8 43.4 9.1 14.7 24.8 5.8 10.8 16.6

(II) bi0 ∼ N (0, 1)

tτ 5.1 5.8 5.0 6.3 9.2 9.0 5.1 4.5 6.2 2.8 5.1 4.8

D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(III) bi0 ∼ Gamma

tτ 7.4 8.5 9.8 12.9 21.2 39.0 27.1 48.0 78.3 34.9 60.2 89.1

D 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.2 0.2 0.1 0.3 0.3

(IV) bi0 ∼ Mixture normal

tτ 4.0 3.5 4.0 6.2 4.2 4.4 12.1 20.6 41.6 23.1 37.0 62.3

D 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.1

(V) bi0 ∼ N
{
0,

(
1 + 2Xi j,1

)2}

tβ2 2.9 4.7 12.5 6.1 3.8 7.3 17.1 34.6 54.6 21.0 35.4 66.5

D 0.4 0.0 0.9 0.0 0.6 0.9 0.4 0.7 0.3 0.7 0.8 0.6

of model misspecification in Table 4 are omitted). We again observe promising power
of our test except when the true distribution is symmetric, while retaining the right
size in the absence of model misspecification.

Up to this point, the assumed random-intercept distribution has always been sym-
metric in our theoretical anlyses and simulation studies, a feature playing a key role
especially in Sect. 4.2 where we establish analytically the connection between the
skewness of the true random-intercept distribution and the sign of σ̃ − σ̃ ∗. Keeping
the model of Yi j given Xi j and bi0 under Setting II, assuming that bi0 follows a SN
distribution specified by two parameters, α and σ , as introduced in Sect. 3.2, we com-
pute tσ as we vary the true bi0-distribution. Recall that the family of SN includes
normal distributions as well as (unimodal) skewed distributions. To violate the model
assumption, we consider generating bi0 from three bimodal mixture normals given by
a symmetric mixture normal, 0.5N (−1, 0.25) + 0.5N (1, 0.25), a left-skewed mix-
ture normal, 0.2N (−2, 0.16) + 0.8N (0.5, 0.16), and a right-skewed mixture normal,
0.2N (2, 0.16) + 0.8N (−0.5, 0.16). To monitor the size of the test, we also simu-
late bi0 from N (0, 1). Figure 3 presents the rejection rates across 300 MC replicates
when the cluster size is 10. The comparison between σ̃ and σ̃ ∗ when the assumed
bi0-distribution is skewed no longer follows the arguments in Sect. 4.2. But we still
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Fig. 3 Plot of rejection rates (in percentage) of tσ when bi0 is assumed to follow a skew normal distribution
across 300MC replicates generated from the true model in Setting II in Sect. 5. The true distribution is
(I) N (0, 1), (II) a symmetric mixture normal, (III) a left-skewed mixture normal, and (IV) a right-skewed
mixture normal, respectively

observe some empirical power from this experiment, suggesting that, this type of dis-
crepancy between the assumed and the truth (unimodality versus bimodality) can lead
to significant disagreement between the MLE of the variance component based on the
raw data and the MLE from the grouped data. In this particular case, the estimated
shape parameter of the assumed SN model can provide a clue on the direction of the
skewness of the underlying truth.

6 Real-data examples

In what follows, we entertain two real-life examples where cluster data are collected
andmodeled byGLMMs. For illustration purposes,we focus on using the proposed test
to assess the adequacy of a GLMMwith a random intercept, of which the distribution
is assumed to be normal or a bridge distribution. Two-sided tests are considered in
both examples when computing p-values associated with the tabulated test statistics.

Example 1 (Respiratory infection data): In this study 275 preschool children were
examined every three months for 18 months for the presence of respiratory infection
(Lin and Carroll 2001). Besides the binary response as an indicator of the pres-
ence/absence of a child’s infection status, each child’s age at the beginning of the
study and the season when the examination took place were also recorded. We start
from a relatively simple GLMM given by, for i = 1, . . . , 275, j = 1, . . . , ni , with ni
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ranging from 4 to 6,

E
(
Yi j |Xi j , bi0;β

) = {
1 + exp

(−β0 − β1Xi j,1 − β2Xi j,2 − bi0
)}−1

, (14)

where Xi j,1 is defined as [{baseline age (in months)−36}/12]3, and Xi j,2 takes values
1, 2, 3, 4, representing the season of the j th examination for child i . The inclusion of a
cubic term of baseline age in (14) is supported by Lin and Carroll (2001), who found
that this term is highly statistically significant. To create grouped data, we leave the
clusters with ni < 3 as they are, and for clusters with ni ≥ 3, we create two subgroups
within each cluster according to the sorted values of Xi j,2. Using the raw observed
data and the grouped data, we carry out maximum likelihood estimation to obtain Ω̂

and Ω̂
∗
twice, first assuming bi0 ∼ N (0, τ 2), and second assuming bi0 ∼ bridge(τ ).

For completeness, under each random-intercept assumed model, we compute tθ for all
parameters as well as T 2. The MLEs and the corresponding test results are tabulated
in Table 5 (upper half of the table).

According to Table 5, the test based on tτ under neither assumed random-intercept
model suggests significant discrepancy between τ̂ and τ̂ ∗, although the tests based on
tβ0 and tβ2 show border-line significant evidence of model misspecification. Referring
back to our observations in the simulation study, one may conclude that, the true
distribution of bi0 may have a variance component that depends on Xi j,2 and the
marginal distribution of bi0 (after “marginalizing out” Xi j,2) may be approximately
symmetric. Additionally, we notice that the values of tβ0 , tβ2 , and T

2 under the normal
assumed model for bi0 are slightly more significant than those under the bridge-
distribution assumption. This could be evidence that the true (marginal) distribution
of bi0 has a heavier tail, like that of a bridge distribution, than a normal distribution.
Refitting the GLMMassuming other heavy-tailed distributions for bi0 can be a follow-
up model building exercise, which we do not further pursue in this example.

Example 2 (Toenail infection data): This data set is from a multi-center study, in
which two oral treatments for toenail infection are compared (Fitzmaurice et al.
2004). In the study, each patient was scheduled to be evaluated for the degree
of onycholysis seven times, although in the end only 224 out of a total of 294
patients provided the complete set of seven follow-up measures. The onycholysis
outcome variable is the binary response of interest, with 0 representing none or
mild infection and 1 indicating moderate or severe infection. Besides the response,
recorded information of each patient include the treatment indicator, Xi j,1, and the
time point (in months) when a measure was taken, Xi j,2, for i = 1, . . . , 294 and
j = 1, . . . , ni , where ni varies from 1 to 7. We adopt the GLMM considered
in Molenberghs and Verbeke (2005, Chapter 14) given by E

(
Yi j |Xi j , bi0;β

) =
{
1 + exp

(−β0 − β1Xi j,1 − β2Xi j,2 − β3Xi j,1Xi j,2 − bi0
)}−1, where, as in Example

1, we first assume bi0 ∼ N (0, τ 2) and then assume bi0 ∼ bridge(τ ). To implement
the proposed test, we partition each cluster of size greater than 2 into two groups
according to the sorted values of Xi j,2, and leave the other smaller clusters as they

are. Using the raw observed data and the induced grouped data, we obtain Ω̂ and Ω̂
∗
,
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Table 5 Maximum likelihood estimates of Ω and values of the corresponding test statistics computed in
Example 1 (upper half of the table) and Example 2 (lower half of the table) in Sect. 6

Observed Grouped tθ T 2

Example 1: Respiratory infection data

Assume bi0 ∼ N (0, τ2)

β0 −2.66 (0.31) −1.76 (0.46) −2.15 (0.03) 1.98 (0.10)

β1 −0.05 (0.01) −0.05 (0.02) 0.95 (0.34)

β2 −0.06 (0.10) −0.48 (0.20) 2.13 (0.03)

τ 0.97 (0.23) 1.10 (0.28) −0.69 (0.49)

Assume bi0 ∼ bridge(τ )

β0 −2.53 (0.28) −1.67 (0.45) −2.06 (0.04) 1.61 (0.17)

β1 −0.04 (0.01) −0.05 (0.02) 1.17 (0.24)

β2 −0.06 (0.10) −0.48 (0.20) 2.13 (0.03)

τ 0.90 (0.03) 0.85 (0.06) 0.99 (0.32)

Example 2: Toenail infection data

Assume bi0 ∼ N (0, τ2)

β0 −1.63 (0.45) −1.77 (0.39) 0.72 (0.472) 3.57 (0.004)

β1 −0.15 (0.64) −0.27 (0.55) 0.43 (0.669)

β2 −0.39 (0.07) −0.27 (0.09) −1.73 (0.083)

β3 −0.14 (0.13) −0.05 (0.12) −0.79 (0.428)

τ 4.02 (0.51) 3.00 (0.49) 2.79 (0.005)

Assume bi0 ∼ bridge(τ )

β0 −1.42 (0.41) −1.72 (0.36) 1.90 (0.057) 4.92 (0.000)

β1 −0.11 (0.61) −0.25 (0.51) 0.53 (0.596)

β2 −0.39 (0.07) −0.26 (0.08) −2.01 (0.045)

β3 −0.14 (0.13) −0.05 (0.12) −0.77 (0.441)

τ 0.41 (0.03) 0.49 (0.04) −2.95 (0.003)

Numbers in parentheses following the MLEs are the sandwich estimated standard errors of the MLEs.
Number in parentheses following the test statistics are the corresponding p values

along with the corresponding test statistics, under each assumed distribution for bi0.
These results are presented in Table 5 (lower half of the table).

Under both assumed models for bi0, besides the overall test based on T 2, tτ stands
out as highly significant in Table 5, which is a strong signal suggesting that both
assumed models for bi0 are questionable. Moreover, because the value of tτ is positive
(negative) when a normal (bridge) random intercept is assumed, this test provides
sufficient evidence that the true random-intercept distribution is right-skewed. We
notice that, in Verbeke and Molenberghs (2013) where this data set is analyzed using
the sameGLMM, they estimated the distribution of bi0 using amixture normal, and the
estimated density (Verbeke and Molenberghs 2013, Fig. 1(c)) is indeed right-skewed,
matching up with our conclusion based on tτ . To follow up, we repeat our tests when
bi0 is assumed to follow a two-component mixture normal, with a common standard
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deviation τ in the two components. Now we obtain a p-value of 0.465 associated
with tτ , suggesting that a mixture normal is likely a more adequate model for bi0
than a normal distribution. Although in principle the proposed test can be used to
check the adequacy of any assumed random-intercept distribution, we discourage its
use on a complicated assumed distribution that is flexible at the price of involving
many parameters. This is because the proposed test requires one to infer all unknown
parameters using the less informative grouped data, which can be inefficient and in
turn compromise the power of the test.

7 Discussion

In this study we are able to reveal more information of the true model and gain further
insight of the diagnostic test in Huang (2009) when applying to GLMMwith a random
intercept bi0 as the only random effect. Focusing on this class of GLMM, we discover
an interesting connection between the discrepancy of the two limiting MLEs, σ̃ − σ̃ ∗,
and the skewness of the true random-intercept distribution, where σ is the standard
deviation of bi0. We provide theoretical explanations for this connection, as well as
other observed properties of MLEs.We find reasons for the low power of the proposed
test in the presence of certain misspecification. With closed-form likelihood functions
rarely available for GLMM, such theoretical development are important contributions
that can advance the understanding of likelihood-based inference in the framework of
GLMM in the presence of random-effects model misspecification.

Besides being able to detect random-intercept misspecification of the type that
can substantially compromise inference, the test based on tτ can reveal in what
direction the true random-intercept distribution deviates from the assumed. Such valu-
able information is attained without estimating bi0 or its pdf (as being attempted by
many researchers). This advantage of the proposed method is achieved by drawing
wrong-model inference twice, starting from the same assumed GLMM (with the same
assumption onbi0), first using the rawobserved data and then using an induced grouped
data set. Itmaybe surprising, albeit expected after some in-dept theoretical exploration,
that repeated wrong-model analyses can be more fruitful than exploitation of some
robust/consistent inference in developing diagnostic methods. And the key to an infor-
mative diagnostic method based on wrong-model analyses is to understand how such
analyses based on different types of data compare with each other, rather than how
each round of wrong-model analysis is affected by model misspecification. This is a
fresh view we have not seen in the existing literature on the topic of model diagnosis.
To recap, when it comes to assessing model assumptions, making use of wrong-model
analyses repeatedly can be a more fruitful direction than many traditional routes.

We have not addressed some practical issues related to creating grouped data. In
all examples in this article, we set Gi = 2 as long as ni ≥ 2, and we partition each
cluster according to the sorted values of the within-cluster covariate. Themotivation of
partitioning according to the sorted values of a within-cluster covariate is to maximize
the between-group variation of such covariate, which yields more informative groups
within a cluster compared to groups randomly formed. Setting Gi = 2 is mainly for
simplicity, although onemay legitimately concern about the information losswith such
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a small Gi (compared to a bigger Gi ). Noticing that the raw observed data is a special
case of the grouped data with Gi = ni , one may wish to distinguish Gi from ni as
much as possible (i.e., making Gi as small as possible) so that the grouped data differ
from the observed data more, which typically leads to more discrepancy between Ω̂

and Ω̂
∗
(at least in limit) in the presence of model misspecification. However, with a

smaller Gi , the variability of Ω̂
∗
is higher since more information are lost with fewer

groups per cluster. Hence, there is a trade-off between Ω̃−Ω̃
∗
and Û. And the interplay

of “discrepancy between limitingMLEs” and “finite-sample variability” is reflected in
tθ and T 2 constructed in Sect. 4.1. In other words, these test statistics are designed to
balance these two factors by “standardizing” the discrepancy on the numerator, which
weakens the dependence of the test statistics on Gi . Hence, in practice, one does not
need to be too concerned about the choice of Gi . After all, the power of the proposed
tests mainly depends on, first, the type of model misspecification, and second, the
observed data structure, neither of which one can manipulate at the testing stage.

The above discussion leads to the awareness that forming grouped data is like a
one-trick pony in the sense that one does not have many options to create grouped
data that can influence the amount or the type of information one can obtain from
the test statistics. This trick is useful enough for the subclass of GLMM considered
in this article. It will be interesting to look into how the operating characteristics of
the proposed tests are affected by co-existence of other model misspecification in a
bigger class ofGLMM.When there aremultiple sources ofmodelmisspecification, we
conjecture that more flexible ways of creating induced data from the observed data are
needed to disentangle different inappropriatemodel assumptions. Rather than this one-
trick pony considered in the current study,wehave started looking into creatingmissing
data within each cluster as a mechanism of constructing induced data, based on which
wrong-model analyses are carried out (repeatedly). This direction has been shown to
be promising in detecting model misspecification in LMM (Huang 2013). A referee
brought up the possibility of applying the proposed idea to detect time-varying latent
individual effects inGLM for panel data as those considered in Bartolucci et al. (2015).
Although this context is beyond the scope of the current study, where exogeneity is
imposed,we conjecture that somemodification of the proposed testwith amore careful
design of the grouped data can yield tests for detecting time-varying unobserved
heterogeneity. Lastly, we would like to point out that the presented study is in the
frequentist framework, and the consideration of random-effects specification in the
Bayesian framework is fundamentally different, as discussed in Grilli and Rampichini
(2015). There, a complete specification of a random-effect distribution involves a
conditional distribution of the random effect given τ , and a prior for τ .
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