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Abstract Recent advances in technology have allowed researchers to collect large
scale complex biological data, simultaneously, often in matrix format. In genomic
studies, for instance, measurements from tens to hundreds of thousands of genes are
taken from individuals across several experimental groups. In time course microarray
experiments, gene expression is measured at several time points for each individ-
ual across the whole genome resulting in a high-dimensional matrix for each gene.
In such experiments, researchers are faced with high-dimensional longitudinal data.
Unfortunately, traditional methods for longitudinal data are not appropriate for high-
dimensional situations. In this paper, we use the growth curve model and introduce
test useful for high-dimensional longitudinal data and evaluate its performance using
simulations. We also show how our approach can be used to filter genes in time
course genomic experiments. We illustrate this using publicly available genomic data,
involving experiments comparing normal human lung tissue with vanadium pentoxide
treated human lung tissue, designed with the aim of understanding the susceptibility
of individuals working in petro-chemical factories to airway re-modelling. Using our
method, we were able to filter out 1053 (about 5%) genes as non-noise genes from a
pool of 22,277. Although our focus is on hypothesis testing, we also provided modi-
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fied maximum likelihood estimator for the mean parameter of the growth curve model
and assessed its performance through bias and mean squared error.

Keywords Growth curve model · Longitudinal data · High-dimensional data · Time
course data · Genomic data · Gene filtering

1 Introduction

Technological advances within the last couple of decades have allowed statisticians
to have acquisition of large scale and complex biological data, where large number of
variables are measured simultaneously from often very small number of experimen-
tal units. One such example is the field of genomics, where measurements from tens
to hundreds of thousands of genes are taken simultaneously from a given individual
(Jonhstone and Titterington 2009; Smyth 2004; Lönnstedt and Speed 2002). However,
with this access to abundant data, statisticians are also faced with enormous method-
ological and computational challenges, where traditional approaches, often designed
under the assumption of large n and small p, fail under high-dimensional situations.

In time course genomic experiments, data become even more complex, where mea-
surements for the tens of thousands of genes are taken from individuals at several time
points. Adding to this layer of complexity, sample size is often smaller than the number
of time points, leading to singularity problems. Moreover, given very few replications
and several thousands of genes, the covariance matrices are poorly estimated (Yuan
and Kendziorksi 2006; Ma 2006; Tai and Speed 2006, 2009; Hamid and Beyene
2009). Time course gene expression data allow researchers to explore the temporal
expressions of tens of thousands of genes simultaneously and researchers are inter-
ested in identifying genes that are relevant to the study at hand (gene filtering); that is,
genes with change in expression profiles over time as well as genes that have different
expression profiles across groups.

A fewmethods useful in the analysis of time course genomic experiments have been
proposed in recent years, among them are a moderated Hotelling’s T 2 statistic (Tai
and Speed 2006) and moderated likelihood ratio statistic under the MANOVA model
(moderated Wilks’ lambda) (Tai and Speed 2009). These approaches are based on the
empirical Bayes method, where the authors used a prior on the covariance matrix.
Moderated sample variance-covariance matrix is then provided using the posterior
distribution. The parameters of the prior distribution are estimated from data across
the genes. Although both methods address the problem of high-dimensionality while
accounting for the correlation across time points, they rely on MANOVA models and
hence do not account for temporal ordering. Moreover, the models do not account for
time dependency and the actual time points do not enter the model. Other methods for
high dimensional problems that have been proposed in the recent past include two-
sample test for high-dimensional data (Chen andQin 2010) and regularizedHotelling’s
T 2 test statistic (Chen et al. 2012).

Inmost longitudinal studies, in general, and time course genomic studies, in particu-
lar, themean is often structured.Gene expression over time is a biologically continuous
process and can thus be represented by a continuous function (Hamid and Beyene
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2009; Ma 2006). Furthermore, it is indicated that individual genes often share similar
expression patterns, although the shape of the functions might be different. Methods
that overcome the challenges of high dimensionality, incorporate correlation across
time points (within individuals) as well as model the gene expression profile over time,
are more optimal. Using the growth curvemodel (GCM), which is a generalizedmulti-
variate analysis of variance (GMANOVA)model, Hamid and Beyene (2009) proposed
a method for analysing time-course microarry experiments. They used gene specific
GCM to model expression values for a given gene, where the covariance matrix is
assumed to be distributed as an inverted Wishart random variable similar to Tai and
Speed (2006). The authors then applied Potthoff and Roy’s approach to transform the
model into MANOVA, where the moderated sample covariance matrix using empir-
ical Bayes approach, is used as the arbitrary matrix G in the transformation. Genes
were then ranked using the resulting test statistic. The method takes the correlation
into account and also allows structured mean, and hence allowing the relationship
across time to be modelled. However, the limitation with this approach is that data are
first transformed, where each group is represented by polynomials over time. The test
statistic is then calculated using the transformed data. The transformation might lead
to loss of relevant information and hence result in low power. Moreover, the distrib-
ution of the test statistic under the null hypothesis is difficult to obtain, as a result it
is not possible to get a critical value for the test statistic, allowing only gene ranking
to be performed. For some other approaches concerning MANOVA modelling under
high-dimensionality, see Läuter (2009), where additional references are also given.

In this paper, we consider the trace test for the GCM model proposed by Hamid
et al. (2011) and provide a moderated version of the test, using the Moore–Penrose
generalized inverse. We perform extensive simulations to show the performance of the
proposed test statistic. We illustrate application of the method for gene-filtering using
publicly available time course genetic data.

2 Trace test for the growth curve model and its high-dimensional
extension

Suppose we have k groups where p repeated observations at different time points are
taken from individuals in each group. Time dependency is assumed to be a polynomial
of degreeq−1(p ≥ q). The expected value of the i th group can, therefore, be described
as (Pan and Fang 2002; Hamid et al. 2011)

b0,i + b1,i t + · · · + bq−1,i t
q−1, i = 1, 2, . . . , k. (1)

In matrix notation, the model can be represented as the following multivariate bilinear
setup, which is referred to as the Growth Curve Model (GCM) (Pan and Fang 2002;
Kollo and Rosen 2005)

Y = ZBX + E, (2)

whereY : p×n is the observation or responsematrix, B : q×k is the parametermatrix,
Z : p × q is the within individual design matrix, X : k × n is the between individual
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design matrix. Columns of the error matrix E are assumed to follow the multivariate
normal distribution with mean zero and positive definite variance-covariance matrix,
� i.e. E ∼ Np×n(0,�, I) and q ≤ p, rank(X) + p ≤ n (Potthoff and Roy 1964;
Khatri 1966; Rosen 1989; Pan and Fang 2002). The within individual design matrix
Z takes care of the time dependency within the individuals, whereas the between
individual design matrix X models the group differences. Note that when Z = I , the
GCM reduces to the classical MANOVA model, indicating that linear restriction on
the MANOVAmodels results in the GCM. Note also that the GCM can be viewed as a
generalization of MANOVA, and hence the name Generalized Multivariate Analysis
of Variance (GMANOVA) model.

Suppose now that the GCM is fitted for a given longitudinal data and we are inter-
ested in the hypotheses H0 : B = 0 against H1 : B �= 0. Consider the likelihood
function for the GCMunder the assumption of multivariate normal distribution, which
can be written as

L = α|�|− n
2 e− 1

2 tr{�−1(Y−ZBX)(Y−ZBX)′},

where α = (2π)− 1
2 np. The likelihood function can be decomposed into two indepen-

dent components as

L = L1 ∗ L2, (3)

where

L1 = αe− 1
2 tr{�−1(YX′(XX′)−X−ZBX)(YX′(XX′)−X−ZBX)′},

L2 = |�|− n
2 e− 1

2 tr{�−1S},

where,

S = Y(I − X′(XX′)−X)Y′.

Note that the first and the second components of the likelihood, respectively, are
functions of the sample mean and sample covariance matrix of a multivariate normal
distribution and hence are independent. In our next step, we maximize the L2 with
respect to �, which results in

�̂ = 1

n
S.

We then replace � by its estimator to get the estimated likelihood

EL = α1|S|− n
2 e− 1

2 ntr{S−1(YX′(XX′)−X−ZBX)(YX′(XX′)−X−ZBX)′}, (4)

whereα1 = n
n
2 (2π)− 1

2 npe− 1
2 pn . The ratio of themaximumof the estimated likelihood

under Ho and Ho ∪ H1 is then taken to obtain the trace test

φ(Y) = tr{S−1Z(Z′S−1Z)−Z′S−1YX′(XX′)−XY′}. (5)
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The null hypothesis is rejected when φ(Y) > c, where c is calculated such that
PHo(φ(Y) > c) = α, where α is the desired level for the test.

Suppose now that the covariance matrix� is known, then the ratio of the likelihood
function of the GCM under Ho and Ho ∪ H1 results in

φ(Y) = tr{�−1Z(Z′�−1Z)−Z′�−1YX′(XX′)−XY′}. (6)

That is, the test statistic reduces to (6), when � is known. If we compare the two
test statistics provided in (5) and (6), it appears that the covariance matrix � in (6) is
replaced by the sample covariance matrix S in (5), when � is unknown. Now, let us
consider high-dimensional longitudinal data, where the sample covariance matrix S
is singular and (5) is no longer a valid test. Different regularization methods can be
considered to overcome this challenge, however, in this paper we consider a simple
approach, where the inverse of the unknown covariance matrix,�−1 is replaced by the
Moore–Penrose generalized inverse of the sample covariance matrix, S. For details on
the Moore–Penrose generalized inverse, we refer the reader to Moore (1920), Penrose
(1955) and Rao and Mitra (1972). We refer to this test as the moderated trace test and
it can be written as

˜φ = tr{S−Z(Z′S−Z)−Z′S−YX′(XX′)−XY′}. (7)

Now consider the original trace test provided in (5), it has been shown that it has the
same distribution as (Hamid et al. 2011)

tr{�−1/2U�−1/2W−1(I : 0)′((I : 0)W−1(I : 0)′)−(I : 0)W−1},

where W = �−1/2S�−1/2, and U = Y Z′(ZZ′)−ZY ′. Note that W and U are
independent and are distributed asWishart random variables, both free of the unknown
covariance matrix �. Let us now re-write the trace test as (by substituting W−1 =
�1/2S−1�1/2)

tr{�−1/2U�−1/2�1/2S−1�1/2(I : 0)′((I : 0)�1/2S−1�1/2

(I : 0)′)−(I : 0)�1/2S−1�1/2}. (8)

Observe now that, in themoderated test,whereS is singular due to high-dimensionality,
we substitute S−1 by the generalized inverse S−. Equation (8), therefore, reduces to

tr{�−1/2U�−1/2�1/2S−�1/2(I : 0)′((I : 0)�1/2S−�1/2(I : 0)′)−(I : 0)�1/2S−�1/2}.

Now consider W = �−1/2S�−1/2. It is shown above that its distribution is free of �.
Using the property of a generalized inverse, we can write S as SS−S, so that W can
be re-written as

W = �−1/2SS−S�−1/2,
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which can be further re-written as

W = �−1/2S�−1/2�1/2S−�1/2�−1/2S�−1/2 = W�1/2S−�1/2W ,

indicating that �1/2S−�1/2 is a reflexive generalized inverse of W . However, in
order the �1/2S−�1/2 to be equivalent to the Moore–Penrose generalized inverse of
W = �−1/2S�−1/2, we need to assume that S is � invariant, i.e C(�−1S) = C(S),
where C(.), is the column space of a matrix. Consequently, the distribution of the
moderated trace test is free of �, only in some special cases. As a result, in practical
applications involving high-dimensional data, we recommend re-sampling approaches
(such as the bootstrap) to empirically generate the null distribution.

Note that we are testing statistical hypothesis for a matrix parameter, and so the dif-
ference between the values under the null and alternative hypotheses is also a matrix,
and investigating some properties of the power curve (eg. unbiasedness, monotonic-
ity) is not obvious. For simplicity, we used the vector function to change the matrix
into a long vector and calculated Euclidean distance between the two vectors, i.e.
d = Euclidean Distance (vec(Bo), vec(B1)), where vec(Bo) and vec(B1) are the
vectorized forms of parameter matrices under the null and alternative hypotheses,
respectively. Note that this distance measure is equivalent to the Euclidean norm used
to calculate distance between two matrices, which is also often referred to as Frobe-
nius norm or the Hilbert-Schimdt norm (Horn and Johnson 1985). When assessing
symmetry of the power curve, we used the matrix form where we compared power
curves for B1 and −B1, that is matrices of same distance from zero but in opposite
directions.

3 Multivariate bias and mean squared error (MSE)

Although the main focus of this paper is testing linear hypothesis in high-dimensional
longitudinal situations, we also investigated the maximum likelihood estimator of the
parameter matrix B, mainly because this estimator is also a function of S−1 and hence
undefined in high-dimensional situations.

Consider the maximum likelihood estimator (MLE) for B, which is derived by
(Khatri 1966). For high-dimensional data, where S in singular, we use the Moore–
Penrose generalized inverse and examine the performance of this estimator through
simulation studies. To avoid confusion with MLE, we will refer to this estimator as
the moderated maximum likelihood estimator (MMLE).

̂B = (Z′S−Z)−Z′S−YX ′(XX ′)−. (9)

Investigation of performance of estimators is often done using bias and mean
squared error. Since our parameter of interest, B, is a matrix, we define the bias matrix
as the expected difference of the estimator and the true parameter matrix, keeping it
analogous to its univariate counterpart, where bias is defined as Eθ (̂θ − θ ). However,
comparison of bias matrices among different scenarios (for different parameter matri-
ces across different sample sizes) is not straight forward. It is necessary to reduce the

123



High dimensional extension of the growth curve model and. . . 279

bias matrix to a scalar quantity. To that effect, we first converted the bias matrix for
each parameter matrix into a vector format and calculated the Euclidean distance of
the bias vectors from a vector of zeros. Scenarios are, therefore, compared using the
Euclidean distance of the bias vectors. This is again equivalent to the Frobenius norm
measuring the distance between two matrices under the L2 norm defining the distance
between the bias matrix and the unbiased matrix (a matrix of all zeroes), thus giving
us an intuitive measure for Bias.

Investigating only bias of a given estimator can be misleading since decrease in
bias might be at the expense of increase in variance (decrease in precision). Bias
investigation, therefore, should be accompanied by investigation of mean squared
error (MSE). The mean squared error for an estimator of a scalar parameter is defined
as Eθ (̂θ − θ)2 (Casella and Berger 2002). Analogous to the definition of the scalar
MSE, we define matrix MSE for our estimator as the expectation of the inner product
of the difference between the estimator and the true parameter matrix which is

MSE = E[(̂B − B)′(̂B − B)]
= E[(̂B − E(̂B) + E(̂B) − B)′(̂B − E(̂B) + E(̂B) − B)]
= E[(̂B − E(̂B))′(̂B − E(̂B)) − (̂B − E(̂B))′(B − E(̂B))

+ (E(̂B) − B)′(̂B − E(̂B)) + (E(̂B) − B)′(E(̂B) − B)]
= Cov(̂B) − (E(̂B) − E(̂B))′(̂B − E(B))

+ (E(̂B) − B)′(E(̂B) − E(̂B)) + Bias′Bias
= Cov(̂B) + Bias′Bias,

where Cov(̂B) matrix in MSE is the variance-covariance matrix. Unlike the univari-
ate case, where MSE = bias2 + variance, our matrix MSE involves covariance
terms. However, covariances of estimators may not be associated with precision of
estimators, and hence we also considered another form of the matrix MSE by taking
just the diagonal of the variance covariance matrix. In comparing MSE among the
different scenarios, we first converted the matrix MSE to vector form and calculated
the Euclidean distance between this vector and a vector of zeroes.

4 Simulations

We performed extensive simulations to investigate the performance of the proposed
moderated trace test. This was done by considering many plausible values of the
parameter of interest, B, and several covariance structures for the longitudinal data.
We calculated empirical level and power of the test for all the scenarios included.
We also investigated power for different sample sizes and for different number of
time points, and investigated power curves for increasing sample size and increasing
B with respect to the Euclidean distance. For the estimation problem, we calculated
empirical bias and MSE for several scenarios. The description as well as the results of
the simulations are presented in this section. Table 1 shows the range of the parameters
used in our simulation.
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Table 1 Range of parameters considered in the simulation study

Number of groups, k 2

Average growth curve Linear

Sample size, n n = 5, 10, 15, 20, 25, 30, 35, 40, 50, 60 and n < p

Number of time-points, p p = 25, 40, 100

Variance covariance matrix Generated from the Wishart distribution

Euclidean distance
of the parameter
matrices B from
the null

0–1.8, increment by 0.1

Distribution of the outcome variable Multivariate normal

Description of simulation
For each simulation scenario, the Growth Curve Model (GCM) is fitted, where a
combination of parameters were generated according to the values provided in Table 1.
The design matrices Z and X are

Z =
(

1 1 . . . 1
1 2 . . . p

)

and X =
(

1n1 0n2
0n1 1n2

)

.

The hypothesis of B = 0 vs B �= 0 is investigated and empirical level and power of
the proposed test are calculated for each scenario. The methods presented and hence
the simulation results do not depend on (are invariant to) the number of groups k.
Therefore, we have, without loss of generality, assumed the number of groups to be
2. Similarly, the test statistic does not depend on the dimension of B and hence the
average growth curve for each of the groups is assumed to be linear. However, we have
also performed simulations with quadratic growth curves and the findings are similar.
Simulation results

The null distributions for the moderated trace test under different scenarios are
presented in the histograms in Fig. 1, where the empirical critical values are indicated
using arrows. As can be seen from the figure, the distribution is positively skewed.
We have investigated the null distribution for many different values of p and n and
the results are consistent, where the distributions for all the scenarios are positively
skewed.

In all the scenarios considered, the empirical level of the moderated test averaged
over 10,000 simulations is very close to the nominal level of significance α = 0.05
(Fig. 2a). When we take a closer look at the figure (enlarged figure is also provided),
we see that empirical level are randomly distributed around the nominal level of
significance regardless of sample size (Fig. 2b). Most of the level values lie within the
95% confidence bands. The results are consistent for different values of p.

In evaluating the power of themoderated trace test, we considered 38 different para-
meter matrices under the alternative hypothesis. Out of the 38 B matrices considered,
19 have positive entries and are thus plotted on the right hand side of the null hypoth-
esis (B = 0) and the remaining 19 have exactly the same magnitude but had negative
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Fig. 1 Histogram of the null distribution of the moderated trace test when p = 25 for sample sizes a 5,
b 10, c 15 and d 20. a n = 5. b n = 10. c n = 15. d n = 20
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Fig. 2 Empirical level of the moderated test averaged over 10,000 simulations, three different sample sizes
are considered and p = 25. a a. b b
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Fig. 3 Empirical power of the moderated trace test for p = 25 and different B across n = 5, 10, 15.
a Using ordinal scale where each value on the x-axis represents a B, b continuous scale with Euclidean
distance of B from the null. a Ordinal scale. b Continuous scale

elements, and hence are plotted on the left of the null (Fig. 3a). The results show that
our test statistic is symmetric with respect to the parameter B, where the power of the
test depends only on distance from the null hypothesis (does not depend on direction).
Moreover, it can be seen, from Fig. 3 and Table 2, that the test is unbiased, where the
power of the test is always greater than the level of the test. The results also indicate
that the moderated test statistic is monotone with respect to the parameter matrix B
(with respect to the Euclidean distance) as well as sample size n.

We also investigated power for different covariance matrices. We generated the
variance covariance matrices from the Wishart distribution, where weak, moderate
and strong correlations were considered. The results indicate that the power curve for
weak correlation is uniformly higher than the power curves for moderate and strong
correlations, and power for moderate correlations is slightly higher than that of strong
correlations. This indicates that the power of the moderated trace test decreases for
higher correlations.

Closer look at the results from our simulation revealed that the monotonicity seems
to be disrupted as the sample size gets closer to p, where power values remain the same
or at times decrease when we approach singularity (when n ≈ p). We refer to this
interval as “near singularity”, and in order to further investigate the behaviour of our
test statistic in the near singularity zone, we performed simulations for fixed B values
across many sample sizes. Figure 4, for instance, shows power curve for 3 different B
values, p = 40 and acrossmany sample sizes ranging from n = 5 to n = 30. Note that,
here we used larger p value to allow consideration of more scenarios with different
sample sizes. However, the results (conclusions) are consistent for other values of p.
The results indeed confirmed that power starts to decrease in the near-singularity zone,
when sample size approaches p. This is consistent for all the scenarios we considered
(for different values of p, n, B and �). Further investigation revealed that the area,
where power starts to decline,maybe described as a function of then/p ratio regardless
of the correlation structure. However, more extensive simulations with special focus
on the near-singularity zone is required to formulate and evaluate this hypothesis.
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Table 2 Empirical power of the moderated trace test with respect to Euclidean distance of the alternative
from null for different values of n and p

Euclidean distance p = 25 p = 40

n = 5 n = 10 n = 15 n = 10 n = 20 n = 30

0 0.051 0.048 0.048 0.044 0.054 0.051

0.10 0.047 0.058 0.058 0.054 0.056 0.054

0.20 0.050 0.070 0.077 0.065 0.076 0.078

0.30 0.062 0.089 0.112 0.085 0.111 0.113

0.40 0.081 0.128 0.181 0.121 0.170 0.173

0.50 0.105 0.171 0.277 0.157 0.252 0.268

0.60 0.134 0.245 0.383 0.209 0.367 0.373

0.70 0.167 0.315 0.505 0.277 0.469 0.497

0.80 0.228 0.393 0.626 0.356 0.588 0.620

0.90 0.278 0.487 0.730 0.429 0.707 0.736

1.00 0.344 0.573 0.822 0.513 0.794 0.814

1.02 0.408 0.587 0.834 0.527 0.817 0.826

1.12 0.416 0.668 0.888 0.615 0.882 0.894

1.28 0.467 0.791 0.945 0.728 0.952 0.958

1.35 0.551 0.821 0.964 0.775 0.964 0.970

1.41 0.571 0.859 0.977 0.811 0.981 0.979

1.5 0.612 1.000 1.000 1.000 1.000 1.000

Fig. 4 Empirical power against
increasing sample size across
three different parameter
matrices for p = 40 and a fixed
covariance matrix, �
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In the simulations considered so far, we did not distinguish between the slope and
intercept parameters of the growth curves. However, while creating the different B
values for alternative hypotheses, during the investigation of power, we noticed that
the behaviour of the power curve behaved slightly differently for values of slopes
and intercepts. We, therefore, performed more simulations, where we fixed slopes to
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Fig. 5 Empirical power for a increasing intercept with fixed slope and b increasing slope with fixed
intercept, for p = 25 and different values of n. a Intercept. b Slope

Table 3 Power of the moderated test for increasing intercept, with slope being fixed

Euclidean distance p = 25 p = 40

n = 10 n = 15 n = 20 n = 10 n = 20 n = 30

0.85 0.442 0.634 0.696 0.388 0.652 0.678

0.94 0.526 0.757 0.780 0.467 0.734 0.765

1.02 0.592 0.794 0.847 0.522 0.814 0.831

1.17 0.716 0.900 0.923 0.653 0.907 0.910

1.41 0.866 0.965 0.980 0.809 0.980 0.978

1.50 0.905 0.989 0.990 0.853 0.988 0.989

1.56 0.923 0.989 0.993 0.888 0.992 0.994

1.70 0.956 0.997 0.997 0.923 0.997 0.997

1.84 0.974 0.998 1.000 0.958 0.999 0.999

investigate power for intercepts and vice versa. The results for these simulations are
presented in Fig. 5a, b and Tables 3 and 4.

The results show that power curves have similar general properties for slopes and
intercepts. For instance, the unbiasedness, symmetry as well as monotonicity with
respect to n and Euclidean distance of B, are satisfied in both. However, the results
indicate that the moderated trace test is slightly more sensitive (more powerful) in
detecting departure of the slope parameter from zero than that of the intercept. Never-
theless, the power of themoderated trace test for intercepts is also quite good, although
slightly smaller than the power for the slopes. Although the power curves in Fig. 5a, b,
placed side by side, look similar, it is important to observe the difference in range of
the Euclidean distances presented on the x-axis. Initially the same Euclidean distance
was considered for both the slope and intercept, but the resulting power values for the
slope were all 1. As a results, smaller values of the slop.

Finally, we would like to highlight that we have considered higher values of p along
with relatively smaller sample sizes in our simulations and the results are consistent,
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Table 4 Power of the moderated test for increasing slope, with intercept being fixed

Euclidean distance p = 25 p = 40

n = 10 n = 15 n = 20 n = 10 n = 20 n = 30

0.02 0.118 0.170 0.172 0.211 0.349 0.345

0.03 0.195 0.273 0.332 0.379 0.639 0.633

0.04 0.352 0.577 0.600 0.679 0.914 0.914

0.06 0.654 0.864 0.884 0.930 0.997 0.997

0.07 0.765 0.917 0.951 0.975 0.999 0.999

0.08 0.844 0.961 0.970 0.990 1.000 1.000

0.10 0.958 0.994 0.997 0.999 1.000 1.000

0.11 0.983 0.999 0.999 1.000 1.000 1.000

0.13 0.995 1.000 1.000 1.000 1.000 1.000

Fig. 6 Empirical power against
increasing sample size across 4
different parameter matrices for
p = 100
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where the test maintains its good properties: monotone, unbiased and symmetric. The
test has a level close to the nominal and has a reasonably good power for detecting a
relatively small departure from the null hypothesis. The power curves for p=100 are
presented in Fig. 6.
Simulation results for the MMLE

In this section, we illustrate the results of the empirical bias and MSE for the
moderated maximum likelihood estimator (MMLE) provided in (9). The parameter
matrices, B and t�, considered in these simulationswere the same as those considered
in the previous section.We considered p = 25 and p = 40, and the sample sizes 5, 10,
15, 20, 25, 35. Since we are investigating performance in high-dimensional situations,
we only considered scenarios where n < p. The results of the simulation are similar
for the different values of p and different covariance structures. We, therefore, provide
results for only p = 25 across multiple sample sizes. The bias and the MSE for the
MMLE are presented in Figs. 7 and 8, respectively.

Our results show that bias is randomly distributed around zero within a very small
range (0–0.015) of Euclidean distance. This indicates unbiasedness of the MMLE,
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Fig. 7 Euclidean distance of the empirical Bias matrix for p = 25, many scenarios of B and three different
sample sizes

Fig. 8 Euclidean distance of the
empirical MSE matrix for
p = 25, many scenarios of B
and three different sample sizes
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similar to what is previously established for the MLE in the non high-dimensional
cases. When we magnify the bias figure (as indicated in Fig. 7b), we can see that there
does not seem to be any systematic difference with the values of B or n. However,
the rate of fluctuation (variability) of bias seems to decrease slightly with increase in
sample size, but the difference is negligible. In Fig. 8, the Euclidean distance (from
zero) of the MSE matrix for the MMLE is provided. Similar to bias, the results show
that, for a fixed sample size, MSE is randomly distributed around zero and does not
seem to be affected by the magnitude or direction of the true parameter B. However,
unlike bias,MSE decreases monotonically with increasing sample size, indicating that
MMLE is a consistent estimator of B, similar to what is previously established for the
MLE in non high-dimensional cases.

5 Gene filtering using the moderated trace test

In gene expression microarry experiments, it has been indicated that the majority of
the genes (95%) are housekeeping (or noise) genes and only about 5% of the genes
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are often relevant. For cross-sectional gene expression data, traditionally, variance
or Inter quartile range (IQR) is used to filter noise genes, with the aim of identify-
ing relevant genes and reducing false discovery rates due to multiplicity. Genes that
have low variability (or IQR), below an adhoc cutoff value, are considered as noises
and removed from further analysis. However, in time course microarray experiments,
measurements are taken at different time points, consequently the observations are
correlated among each other. As a result univariate measures such as variance or IQR
may not be appropriate. Here, we use gene specific growth curve model to represent
expression profiles for each gene and test the hypothesis, H0 : B = 0 vs H1 : B �= 0
to identify noise genes. We used the moderated trace test proposed in the paper.

We use a publicly available data obtained from Gene Expression Omnibus (GEO)
under a series name GSE5339. The objective of the original study was to investigate
if exposure to chemicals, for individuals working in the petrochemical industry, is
susceptible to bronchitis and eventually to lung cancer. It was already established in
previous studies that exposure to V2O5 causes occupational bronchitis and occupa-
tional asthma among workers in the petrochemical industries (Levy 1984; Ingram
2003, 2007). The study was conducted to identify gene expression profiles among
cultured lung fibroblasts exposed to V2O5 and compare their expression with healthy
(normal) lung tissue. Data consists of 22,277 genes and gene expressionmeasurements
taken at five time points (p = 5: 1, 4, 8, 12, 24h) from n = 6 individuals (3 in each
group).

We assumed gene specific growth curve model (GCM) for all the 22,277 genes,
where the GCM was fitted to each of the 22,277 genes separately. For each gene, we
have an n = 6 by p = 5 matrix of longitudinal data representing the p = 5 repeated
measurements taken from n = 6 (3 from each group) individuals. The within and
between individual design matrices Z and X (same for all genes because of the nature
of the design) are as follows:

Z′ =
⎛

⎝

1 1 1 1 1
1 4 8 12 24
1 16 64 144 576

⎞

⎠ and X =
(

1 1 1 0 0 0
0 0 0 1 1 1

)

Note that, the within individual design matrix Z above shows that we assumed
quadratic curve to represent the gene specific growth profile. This choice was based
on previous clinical as well as statistical knowledge (Hamid and Beyene 2009). More-
over, we also performed preliminary graphical investigation, using profile plots at gene
level for some of the genes, to see how the gene expressions change over time. It is
worth mentioning, though, that we also worked with linear GCM for this data, to be
consistent with the simulations performed in the earlier sections. However, both the
quadratic and linear models yielded similar results with respect to gene ranking and
filtering indicating that the results are insensitive to model mis-specification.

We calculated the moderated trace test statistic for all the genes, and genes were
ranked according to the value of the test statistic. Since we are performing tens of
thousands of tests simultaneously, it is necessary to consider correction for multiple
testing in calculating the required critical (cut-off) value. Since the purpose here is
illustration of the proposed test statistic, we used the Bonferroni correction to adjust
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Fig. 9 Scatter plot of the test statistic value for all the genes from the real data, where the red line represents
the Bonferroni corrected critical value a scatter plot, b ordered test statistic

the p values. However, this approach may be too conservative in practice. Since the
purpose of gene filtering is mostly dimension reduction, researchers may want to relax
the level so that they do not miss genes that may be potentially relevant. They may
therefore use less conservative methods such as the false discovery rate (FDR). The
scatter plot and ordered scatter plot of the test statistic, with the Bonferroni cutoff
value, are provided in Fig. 9.

As we can see from the scatter plot in Fig. 9, most of the genes have similar test
statistic values with only a small proportion of the genes standing out of the bulk of
the data. This can be seen clearly in the plot of the ordered test statistic where the
top 7 genes can be seen to have a value which is much larger than the rest of the
genes. We were able to identify 1053 (4.73%) significant genes using the moderated
trace test, indicating that the majority of the genes were noises. This is in agreement
with biological and medical literature indicating that, in genomic experiments where
tens of thousands of genes are assayed at once, only a small fraction of the genes
(often less than 5%) are expressed and hence relevant to a given study. We annotated
the top 7 ranked genes and the results of the annotation are as presented in Table 5.
The annotation is done using the gene annotation web site, GeneAnnot (Chalifa-Caspi
2004; Ferrari 2007).

6 Discussion

In this study, we proposed a moderated test statistic for GMANOVA models that is
especially useful for analysing high-dimensional longitudinal data, i.e., when the sam-
ple size n is smaller or equal to the number of time points p. The test is particularly
useful in the analysis of time course genomic experiments. We considered an exist-
ing trace test proposed recently by Hamid et al. (2011) and modified the test using
the Moore–Penrose generalized inverse of the sample variance-covariance matrix to
overcome the singularity problem caused by the high-dimensional nature of the data.
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Table 5 Description of the top 7 ranked genes, ordered according to their ranks

Gene code/Name Description Location Comments References

RPS12 Ribosomal protein
S12

Chromosome 6 Differentially
expressed in lung
squamous cell
carcinomas

Liu (2007)

PSMB7 Proteasome (prosome,
macropain) subunit,
beta type, 7

Chromosome 9 Differentially
expressed in
small-cell lung
cancer cells

Yan, (2012)

FZD5 Frizzled family
receptors

Chromosome 2 Highly expressed
gene in Esophageal
and other cancers

Kimchi (2005)

MRPS14 Mitochondrial
ribosomal protein
S14

Chromosome 1 Up-regulated in lung
cancers

Jia (2011)

RPLP0 Ribosomal protein,
large P0

Chromosome 12 Expressed in non
small cell lung
cancer cell lines

Liu et al. (2005)

Z21967 Partial cDNA for
homologue of
mPOU homeobox
protein

Chromosome 12 Expressed in lung,
heart skeletal
muscle and brain

Wey et al. (1994)

SDCBP Syndecan binding
protein (Syntenin)

Chromosome 8 Expressed in gastric,
colon and breast
carcinomas

Koo (2002)

Empirical investigation using extensive simulations show that our proposed test
statistic performs very well, with the test yielding high power in detecting small dif-
ferences. The level of the test is always close to the nominal level α, where estimates
of the level are randomly distributed within a very tight interval around the nominal
level. Furthermore, the results indicate that themoderated trace test hasmany desirable
properties. The power of the test is always greater than the level of the test indicat-
ing unbiasedness. The test is also symmetric with respect to the matrix parameter B,
i.e., the test was able to detect both positive and negative deviations from the null
hypotheses with equal power. It is also shown to be monotone with respect to both
sample size and the true value of the parameter in the alternative hypothesis, the latter
monotonicity is established with respect to the Euclidean distance.

However, we would like to note that the moderated trace test does not perform very
well in the near singularity zone, when the number of time points p is close to n. In fact,
we performed further investigations and showed that the power initially increases with
n (where n << p) and starts to decrease as the sample size approaches p (n ≈ p),
and recovers back again when n > p, in the non-high-dimensional situations. We
observed that power drops in the near singularity zone regardless of p, n, B and� and
the results show that the point, where this drop in power occurs, might be a function
of the n/p ratio, the parameter matrix, B and the covariance matrix �. For instance,
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the drop point starts early for strong correlations compared to weak correlations. The
general optimal properties of the moderated test (such as unbiasedness, monotonicity
with respect to B and symmetry) are maintained in the near singularity zone. The
level of the test is also close to the nominal value. Further investigation is needed to
understand the property of the test in the near singularity zone and to see if something
is possible to improve power. We also hope to be able to define the near singularity
zone as a function of the correlation matrix, the parameter matrix, B and the n/p
ratio to be able to make sample size recommendations that may be useful in practical
applications.

Although the focus here is on testing hypothesis in high-dimensional longitudi-
nal problems using the GCM, we also considered the maximum likelihood estimates
(MLE) for the GCM and provided a moderated estimator, MMLE, for the matrix
parameter B, by using the Moore–Penrose generalized inverse. Extensive simulations
demonstrate that the Moore–Penrose generalized inverse is a very good alternative,
when the sample covariance matrix is singular, where the moderated estimator using
the Moore–Penrose inverse is shown to be empirically unbiased and consistent esti-
mator for the matrix parameter B. However, similar to the power analysis, an increase
in MSE is observed in the near singularity zone. Further investigation revealed that
bias remained low for any p and n, however, precision of the estimators increased
near singularity zone leading to an increase in MSE. Another improved approach is
needed to improve performance when p ≈ n.

We would like to mention that we have also considered Stein’s shrinkage estimator,
where we considered several shrinkage parameters and target covariance matrices
recommended by previous literature. However, the results from our simulation were
unstable, where power fluctuated highly. This was true for all the targets considered.

Although we considered the hypotheses H0 : B = 0 vs H1 : B �= 0, our
approach can be extended to include the general linear hypothesis (H0 : GBF = 0
vs H1 : GBF �= 0, where G and F are matrices of zeroes and ones). In this work,
we were interested in identifying noise genes that do not express in situations where a
time-course gene expression measurements are taken from individuals in one or more
groups. After removing noise genes and reducing the dimension of data, researchers
may be interested in identifying genes that have expression values that change over
time (slope different from zero) or identify differentially expressed genes (genes with
expression profiles that are different for different groups). Such hypotheses can be
formally expressed using the general linear hypothesis and a moderated test statistic
can be defined using a moderated version of the more general trace test. Work in these
directions is currently in progress and we hope to report these findings in a future
paper.

An important limitation of using the Moore–Penrose inverse is that the null distri-
bution is free of the unknown covariance matrix �, provided that S is � invariant, a
property which is difficult to show in practical applications. In high-dimensional situa-
tionswhere this property is not satisfied, re-sampling approaches such as bootstrapping
might be a simple alternative. However, this may be computationally intensive in stud-
ies requiring identification of differentially expressed genes, where statistical tests on
tens to hundreds of thousands of genes are make simultaneously. For gene ranking
and filtering, however, the computational requirements in implementing our method
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in practice is reasonably small. In our simulations, for instance, where we considered
more than 500 scenarios to establish properties of the test and evaluate performance.
These analyses took more than an estimated 15h. However, analysis of a single high-
dimensional data took under 2min (107.3 s); and this is what is required in real data
analysis. For the genetic data we provided as illustration in our paper, generating the
null distribution and calculating the critical value from a common variance-covariance
matrix took a little longer than 1min (66s) and an additional 16.6 s were required to
calculate the observed test statistic form all the 22,777 genes. Ranking the genes, there-
fore, required under 2min, indicating that gene filtering using our method requires a
very small computational time. We used the R statistical package and a computer with
Intel CoreT Mi3CPUM350@2.27 GHZ RAM 3GB. Nevertheless, we would like to
highlight that calculating the empirical p values based using re-sampling and deter-
mining statistical significance for such genomic data, involving tens of thousands of
genes, will require a much longer computational time. For instance, for the lung can-
cer data we used (22,777 genes), it will require us an additional 107h (17s for each
gene). Our approach is, therefore, recommended for gene ranking and selection based
on ordering of genes according to the test statistics. Further research is needed to
alleviate the financial burden required in identifying differentially expressed genes as
well as improve performance in the near singularity zone.
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