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Abstract The purpose of the study is to estimate the population size under a truncated
count model that accounts for heterogeneity. The proposed estimator is based on the
Conway–Maxwell–Poisson distribution. The benefit of using the Conway–Maxwell–
Poisson distribution is that it includes the Bernoulli, the Geometric and the Poisson
distributions as special cases and, furthermore, allows for heterogeneity. Parameter
estimates can be obtained by exploiting the ratios of successive frequency counts in
a weighted linear regression framework. The results of the comparisons with Tur-
ing’s, the maximum likelihood Poisson, Zelterman’s and Chao’s estimators reveal
that our proposal can be beneficially used. Furthermore, our proposal outperforms its
competitors under all heterogeneous settings. The empirical examples consider the
homogeneous case and several heterogeneous cases, each with its own features, and
provide interesting insights on the behavior of the estimators.
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1 Introduction

Capture–recapture (CR) methods have been adopted in a wide range of applications,
including ecology (Alunni-Fegatelli and Tardella 2013; Farcomeni 2011), epidemiol-
ogy (Böhning et al. 2005), criminal activity (van Der Heijden et al. 2003; Farcomeni
and Scacciatelli 2013), official statistics (Rocchetti et al. 2011; Gerritse et al. 2015)
and, in general, in the estimation of the size of hidden populations. A recent review
can be found in McCrea and Morgan (2014). CR analyses are based on the repeated
sampling from a population and, consequently, on the use of recapture information
to infer the number of uncaptured units. Throughout the paper, we consider the fol-
lowing CR setting. The target population is sampled over a certain number of capture
occasions, and for each occasion, captured units are counted only once. Moreover, we
consider a closed population, i.e. the unknown population size, say N , is assumed to
be constant (with no births/deaths during sampling stages), missclassification is not
allowed and all units act independently.

Formally, let Xi , i = 1, . . . , N denote the number of times unit i is captured over
them sampling occasions, and let px = Pr(Xi = x). Also let fx denote the frequency
of units captured exactly x times, x = 0, 1, . . . ,m. As Xi = 0 is not observed,
the corresponding f0 is unknown and might be replaced by its expected value Np0.
Nevertheless, p0 is usually unknown too and has to be estimated. As Xi takes only non-
negative integer values, the Poisson model with parameter λ may represent a natural
starting point. Clearly, this model is restrictive because it assumes a unit variance-to-
mean ratio. Hence, even if the Poisson distribution can be recognized as an important
tool to model count data, it may not be suitable for CR data, which are characterized by
overdispersion/underdispersion, i.e. the variance is grater/lower than the correspond-
ing sample mean, mainly due to unobserved heterogeneity (see e.g. Baksh et al. 2011).
To account for heterogeneity in the estimation of the population size, the Poisson para-
meter is often considered as an unobserved random variable with a latent distribution
λ(t) (Chao 1987). Accordingly, the marginal distribution is provided as

px (λ) =
∫ ∞

0

exp(−t)t x

x ! λ(t)dt (1)

where the mixing distribution density λ(t) is unknown. One way to model over-
dispersion is to consider the Gamma–Poisson mixture, where Poisson variables have
means that follow a Gamma distribution. This yields a Negative Binomial marginal
distribution. However, in the CR framework, the Negative Binomial distributionmight
not be appropriate as constraints on the dispersion parameter might lead to unrealistic
estimates of f0 and, moreover, it is limited to model over-dispersed data only, i.e. it
is unable to fit under-dispersed data. Thus, to mitigate the potential bias in population
size estimation due to heterogeneity, discrete (Pledger 2005; Bartolucci and Forcina
2006; Morgan and Ridout 2008) and continuous (Dorazio and Royle 2003; Niwitpong
et al. 2013; Rocchetti et al. 2014) mixing distributions have been used.
We wish to contribute extending this branch of literature by proposing a more gen-
eral count distribution that captures a wider range of dispersion settings than existing
distributions. In detail, we look at a two-parameter generalized form of the Poisson
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distribution, called the Conway–Maxwell–Poisson (CMP) distribution (Shmueli et al.
2005) to account for heterogeneity as it includes as special sub-models important dis-
tributions (i.e. the Poisson, the Bernoulli and geometric distributions) and generalizes
the Poisson distribution allowing for overdispersion as well as underdispersion.

In the following, we will exploit heterogeneity (in the number of times a unit is
captured) through a graphical device, namely the ratio-plot (Böhning et al. 2013). The
ratio-plot is a graphical method for identifying the form of the heterogeneity distribu-
tion in CR data. In particular, it assesses if the homogeneous Poisson is appropriate or
whether (or not) heterogeneity arises in the observed data. Furthermore, in thisworkwe
aim at extending the usefulness of the ratio-plot beyond its descriptive nature. Indeed,
we will use the ratio-plot as a tool to obtain the estimate of p0 (and, accordingly, of
f0 and N ) in a heterogeneous population. We introduce a regression estimator based
on the (log) ratio-plot which provides straightforward parameter estimates and derive
its asymptotic variance. Formally, we use the relationship between the (log) ratios of
successive capture probabilities to estimate model parameters through a (weighted)
linear regression approach.

We illustrate the proposal by a large-scale simulation study in order to investigate the
empirical behaviour of the proposed distributionwith respect to several factors, such as
the population size, the mixing distribution and the number of occasions (modelled by
varying the mean of the count variable). To show the practical usefulness of the CMP
regression, we compare its performance to a few alternative estimators, widely used
in the CR framework. Finally, we test the proposal by analysing several real datasets.
The outline of the paper is as follows. In Sect. 2, we specify the proposed model, along
with the ratio-plot and the computational aspects of the adopted maximum likelihood
regression-based algorithm. Properties of the proposed estimator are investigated in
depth, and its asymptotic variance is derived. Furthermore, we summarize alternative
population size estimators. In Sect. 3, we give a comparison of the performance of
several model specifications under different data generation schemes by means of a
simulation study. In Sect. 4, we present several real-data analyses. In Sect. 5, we point
out some remarks, along with drawbacks that may arise by adopting the proposed
methodology.

2 The Conway–Maxwell–Poisson distribution for capture–recapture
data

2.1 The Conway–Maxwell–Poisson distribution

TheCMPdistribution, as an extensionof thePoissondistribution, is aflexiblemodel for
analyzing count data, although it has been used less frequently as other generalizations.
As discussed by Shmueli et al. (2005), the CMP distribution generalized the Poisson
distribution allowing for under-dispersion as well as over-dispersion. Its probability
mass function CMP(λ, ν) is given by

px = λx

(x !)ν
1

z(λ, ν)
, x = 0, 1, 2, . . . ; λ > 0; ν ≥ 0
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where the normalizing constant

z(λ, ν) =
∞∑
j=0

λ j

( j !)ν

is a generalization of well-known infinite sums. The CMP distribution has been over-
looked for long time due to the complexity in dealing with the infinite sum z(λ, ν),
that is often approximated.

The case ν = 1 corresponds to the Poisson distribution, as z(λ, ν) = eλ. For
ν → ∞, the CMP distribution approaches the Bernoulli distribution with parameter
λ(1+λ)−1. We would like to point out that, with ν = 0 and 0 < λ < 1, z(λ, ν) = 1

1−λ
and, accordingly, the CMP distribution reduces to the geometric distribution with
parameter (1 − λ). At last, note that for ν = 0 and λ ≥ 1, z(λ, ν) does not converge,
leading to an undefined distribution.

To complete the description on the CMP distribution, let us specify its moments by
using an asymptotic approximation of z(λ, ν), as described in Shmueli et al. (2005),

E(X) ≈ λ1/ν + 1

2ν
− 1

2

V (X) ≈ 1

ν
λ1/ν.

Using the Guikema and Coffelt (2008) specification, the dispersion can be written
as

D(X) = V (X)

E(X)
≈

μ
ν

μ + 1
2ν − 1

2

≈ 1

ν
,

withμ = λ1/ν .When ν < 1, the variance can be shown to be greater than themean and
the dispersion >1. This is a result of overdispersed data. When ν = 1, and the mean
and variance are equal, the dispersion is equal to 1 (Poisson model). When ν > 1, the
variance is smaller than the mean and the dispersion is <1.

2.2 The ratio-plot

In this work, we avoid classical approaches to estimation of population size (see e.g.
Lindsay and Roeder 1987; Böhning et al. 2005; Bunge and Barger 2008) and propose
a method based on ratios of successive probability counts, namely,

rx = (x + 1)
px+1

px

which is a function of the observed count x .
In CR studies, the zero counts are truncated and, hence, the observed sample fre-

quencies f1, f2, . . . arise from the zero-truncated distribution px
1−p0

. However, the
ratio rx for the truncated and the untruncated distribution is identical
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rx = (x + 1)
px+1

px
= (x + 1)

px+1/(1 − p0)

px/(1 − p0)
.

This is an important result as it makes the ratio applicable into a CR framework. The
ratio for the CMP distribution has the following form

rx = (x + 1)
px+1

px
= (x + 1)

λx+1

{(x+1)!}ν
1

z(λ,ν)

λx

(x !)ν
1

z(λ,ν)

= λ(x + 1)1−ν (2)

and does not depend on the complex normalizing constant term z(λ, ν). Equation (2)
suggests a non-linear relation between the ratio of successive probabilities and the
count x . However, if we consider the ratio on the log-scale, we achieve a linear rela-
tionship. Accordingly,

log(rx ) = log

{
(x + 1)

px+1

px

}
= log{λ(x + 1)1−ν}

= log λ + (1 − ν) log(x + 1) = β0 + β1 log(x + 1). (3)

From (3), we have that λ = exp(β0) and ν = 1 − β1; however, due to ν ≥ 0 (or,
equivalently, 1 − ν ≤ 1), we must constrain β1 ≤ 1. There are no restrictions on β0,
λ > 0 implies β0 ∈ (−∞,+∞).

In practice, we approximate capture probabilities by relative frequencies, therefore
the ratio in (2) can be obtained by

r∗
x = (x + 1)

p̂x+1

p̂x
= (x + 1)

fx+1/N

fx/N
= (x + 1)

fx+1

fx
,

as well as the ratio in (3) can be computed as

log(r∗
x ) = log

{
(x + 1)

fx+1

fx

}
,

where fx is the frequency of count x and N =
∑m

x=0
fx .

By plotting log(r∗
x ) against log(x + 1), we derive a graphical diagnostic tool

for detecting the validity of Conway–Maxwell–Poisson model. The resulting plot
is known as the log-ratio plot (see Böhning et al. 2013 for further details). A log-ratio
plot showing a positive slope indicates for the presence of overdispersion with respect
to the Poisson distribution. On the other hand, in the case of underdispersion, the log-
ratio plot displays a straight line with a negative slope. Finally, when the log-ratio plot
displays a horizontal line, the equi-dispersion case is plausible, or, in other words, the
Poisson distribution can be used to fit the data.

Other distributions as theNegativeBinomial have been often considered to dealwith
heterogeneity. It has also a straight line behaviour when plotting ratios of successive
capture probabilities against x , but fitting parameters has frequently boundary issues.
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Taking log(r∗
x ) helps but this destroys the linear characteristic with respect to x . Hence

there are benefits of CMP distribution in comparison to the Negative Binomial as well.

2.3 Model inference

The use of the ratio in (3) goes beyond a simple graphical technique to check for
under/over-dispersion in CR data. Indeed, it can be used as a tool for estimating
model’s parameters. Thus, let us consider our basic Eq. (3), we fit the following model

log(r∗
x ) = β0 + β1 log(x + 1)︸ ︷︷ ︸

Systematic

+ εx︸︷︷︸
Random

, (4)

where β0 and and β1 are the intercept and the slope parameters respectively, and εx is
the error term.

Commonly, a least square estimation (LS)method is used to provide estimates of β0
andβ1.However,model (4) does not satisfy the classical linear regression assumptions.
In the first place, the response is discrete (although log-transformed), so we might
consider a generalized linear model. However, this is inadvisable since an appropriate
formulation as a generalized linearmodel leads to an autoregressive equation involving
log fx as an additional offset term in the linear predictor. These kinds of models
experience difficulties in terms of the definition of the likelihood as well as in carrying
out inference. Furthermore, CR frequencies often have f1 >> f2 > f3 > . . . , and,
additionally, heteroskedasticity might occur in heterogeneous population due to e.g.
unobserved information (see e.g. Rocchetti et al. 2014). All these issues are relevant
and should be accounted for. Thus, we address them by using weighted least squares
(WLS) techniques to estimate the regression parameters β0 and β1, and accordingly
λ and ν. These are obtained by minimising

m−1∑
x=1

Wx
[
log(r∗

x ) − β0 − β1 log(x + 1)
]2

,

where Wx denotes the x-th element of an appropriate weight matrix. In other words,
we take (

β̂0

β̂1

)
= (

X′WX
)−1 X′WY, (5)

where

Y =

⎛
⎜⎜⎜⎜⎝

log 2 f2
f1

log 3 f3
f2

...

log m fm
fm−1

⎞
⎟⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎝

1 log(2)
1 log(3)
...

...

1 log(m)

⎞
⎟⎟⎟⎠

and m is the maximum count used in the estimator.
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The application of weighted least square requires the specification of W ≈ cov(Y)−1

to reduce themean square error. FollowingMeurant (1992) and Rocchetti et al. (2011),
covariances between adjacent log-ratios do not play a large role in reducing mean
square error, and thus we suggest to drop the off-diagonal terms in cov(Y) in approx-
imating W, with little loss of efficiency. Accordingly

W =

⎡
⎢⎢⎢⎢⎣

1
f1

+ 1
f2

0 · · · 0

0 1
f2

+ 1
f3

· · · 0
...

...
. . .

...

0 0 0 1
fm−1

+ 1
fm

⎤
⎥⎥⎥⎥⎦

−1

. (6)

To see that (6) is the right choice, let Wx = [
Var{log(r∗

x )}
]−1, we have

Var
{
log(r∗

x )
} = Var

[
log

{
(x + 1)

p̂x+1

p̂x

}]

= Var
{
log(x + 1) + log( p̂x+1) − log( p̂x )

}
= Var

{
log( p̂x+1)

} + Var
{
log( p̂x )

}−2Cov
{
log( p̂x+1), log( p̂x )

}
.

Using the delta method

Var
{
log(r∗

x )
} ≈ 1

p2x+1

Var( p̂x+1) + 1

p̂2x
V ar( p̂x ) − 2Cov( p̂x+1, p̂x )

p̂x+1 p̂x

= 1

p2x+1

{
p̂x+1(1 − p̂x+1)

n

}
+ 1

p̂2x

{
p̂x (1 − p̂x )

n

}
+

2 p̂x+1 p̂x
n

p̂x+1 p̂x

= 1 − p̂x+1

n p̂x+1
+ 1 − p̂x

n p̂x
+ 2

n

= 1

n p̂x+1
− p̂x+1

n p̂x+1
+ 1

n p̂x
− p̂x

n p̂x
+ 2

n

where n is the number of observations from the target population.
Threrefore, the variance of log-ratio is given by

Var
{
log(r∗

x )
} ≈ 1

n p̂x+1
+ 1

n p̂x
.

In practice, p̂x+1 and p̂x can be estimated by relative observed frequency fx+1
n and

fx
n , respectively. Hence

̂Var
{
log(r∗

x )
} = 1

n fx
n

+ 1

n fx+1
n

= 1

fx
+ 1

fx+1
.
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Thus, we get β̂0 and β̂1 from (5), inwhichW is given by (6). Accordingly, the unknown
f0 can be then estimated by considering that

log

(
f1
f0

)
= β̂0

f1
f0

= exp (β̂0)

f̂0 = f1 exp (−β̂0),

where f̂0 is the unobserved frequency estimator. The linear regression estimator based
on the Conway–Maxwell–Poisson distribution (LCMP) of target population size can
be readily achieved as

N̂LCMP = n + f̂0 = n + f1 exp(−β̂0). (7)

We also obtain an estimated probability of the count to be zero (unobserved) as

p̂0 = f̂0/N̂LCMP .

We anticipate that N̂LCMP is asymptotically unbiased in the sense

E(N̂LCMP )

N
→N→∞ 1,

if the sample arises from a Conway–Maxwell–Poisson distribution. The rationale for
this is as follows. Suppose that β0 would be known, then

N̂LCMP = n + f0 = n + f1 exp(−β0) (8)

is unbiased as

E(N̂LCMP ) = N (1 − p0) + p1N exp(−β0) = N [(1 − p0) + p1/λ]
= N [(1 − p0) + p0] = N .

For any matrix W, the weighted least squares estimate in (5) is unbiased if W is
non-random, as

E

(
β̂0

β̂1

)
= (

X′WX
)−1 X′WX

(
β0
β1

)
=
(

β0
β1

)
.

However, an efficient estimator is achieved only if W = Σ−1, where Σ is the true
variance-covariance matrix of Y. If an estimator Σ̂ of Σ is used (as it is often the
case in practice and also in our situation), efficiency is usually lost, but not asymptotic
unbiasedness. For the latter, only a consistent estimate ofΣ is needed. This is the case
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for our situation. It is shown in Rocchetti et al. (2011) that using the weight-matrix in
(6) leads to a gain in efficiency in comparison with the unweighted unbiased estimate

(
β̂0

β̂1

)
= (

X′X
)−1 X′Y.

Hence, we prefer to use (5) with weight matrix (6).
It is clear that some attention has to be paid to the fact that weights are estimated in

reality and this is further addressed in the simulation study. We point out here that the
Conway–Maxwell–Poisson distribution includes as a special case the geometric (ν =
0) so that an associated weighted least-squares estimator is available for the geometric.

It has the simple form ̂log λ =
(∑m−1

x=1 Wx log
fx+1
fx

)/(∑m−1
x=1 Wx

)
, whereWx is the

x−th diagonal element of (6).

2.4 Variance estimation and confidence interval

Let N̂ be the population size estimator, according to Böhning (2008), the variance of

N̂LCMP = n + f1e−β̂0 arises from two sources; these are influenced by the random
variable n and the estimator f̂0. Using conditional moment techniques, a formula for
the variance of population size estimator is given as:

Var(N̂ ) = Varn{E(N̂ |n} + En{Var(N̂ |n)}, (9)

where En andVarn refer to the first and the secondmoment of themarginal distribution
under observed data n. It is

E(N̂ |n) ≈ n + f̂0,

with f̂0 non random, so that

Varn{E(N̂ |n)} = ̂Varn{n + f̂0} = ̂Varn{n} = N (1 − p0)p0, (10)

where the latter follows from the fact that n ∼ Binomial(N , 1 − p0).

Since E(n) = N (1− p0) and p0 = E( f0/N ), leading to p̂0 = f̂0
n+ f̂0

, we have that

(10) can be estimated by

̂Varn{E(N̂ |n)} = n f̂0

n + f̂0
= n f1e−β̂0

n + f1e−β̂0
. (11)

Also, we assume as En{Var(N̂ |n)} can be estimated by Var(N̂ |n) = Var( f̂0) =
Var{ f1e(−β̂0)}, hence we have that

En{Var(N̂ |n)} = ̂Var{ f1e(−β̂0)}. (12)
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By the conditional technique,

Var( f1e
−β̂0) = Var f1{E( f1e

−β̂0)| f1} + E f1{Var( f1e
−β̂0)| f1}, (13)

thus

Var f1{E( f1e
−β̂0)| f1} ≈ Var( f1e

−β̂0) = (e−β̂0)2Var( f1)

= (e−β̂0)2Np1(1 − p1) = (e−β̂0)2 f1

(
1 − f1

N

)
, (14)

as well as, E f1{Var( f1e−β̂0)| f1} can be estimated by Var{( f1e−β̂0)| f1}, so that

E f1{Var( f1e
−β̂0)| f1} ≈ Var{( f1e−β̂0)| f1} = f1Var(e−β̂0). (15)

Using the delta method, we achieved that Var(e−β̂0) = (e−β̂0)2Var(β̂0). Hence

E f1{Var( f1e−β̂0)| f1} ≈ f 21 (e−β̂0)2Var(β̂0), where Var(β̂0) comes from the linear
regression process. The approximated expression for the variance of the new estimator
N̂LCMP is given as

̂Var(N̂LCMP ) = n f1e−β̂0

n + f1e−β̂0
+(e−β̂0)2 f1

(
1 − f1

N

)
+ f 21 (e−β̂0)2Var(β̂0). (16)

Finally, when N is large, the asymptotic variance estimator of N̂LCMP is

̂Var(N̂LCMP ) = n f1e−β̂0

n + f1e−β̂0
+ (e−β̂0)2 f1[1 + f1Var(β̂0)]. (17)

A confidence level refers to the percentage of all possible samples that can be expected
to include the true value of population size N . We used 95% confidence level to
imply 95% of the confidence intervals, including the true population size estimator.
It is simply to construct 95% confidence interval of N under the assumption that
population distribution be approximately normal as:

N̂ ± z0.975SE(N̂ ), (18)

where SE(N̂ ) denotes the standard error of N̂ , approximated by the asymptotic stan-

dard error; ŜE(N̂ ) =
√

̂Var(N̂ ), and z0.975 = 1.96.

2.5 Alternative estimators

Several estimators have been applied to estimate population size in CR data. This
section focuses on well-known estimators based on homogeneous Poisson and het-
erogeneous models. Turing’s estimator and the maximum likelihood estimator under
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a Poisson model are considered as estimators in the homogeneous case. Estimators for
heterogeneous populations as the Zelterman’s estimator and the Chao’s lower bound
estimator are considered as well. In the simulation study and in the application sec-
tion, estimator performances are compared with the LCMP estimator under several
settings.

2.5.1 Turing’s estimator

The application of Turing’s estimator can be used under a homogeneous Poisson
distribution. Then in terms of a homogeneous Poisson distribution with parameter λ

we have

p0 = e−λ = λe−λ

λ
= p1

E(X)
= E( f1)/N

E(S)/N
= E( f1)

E(S)
, (19)

where p1 = λe−λ and S = ∑m
x=1 fx . Replacing these expected values by their

observed quantities we have

p̂0 = f1
S

. (20)

We achieve Turing’s estimator as

N̂T uring = n

1 − f1/S
. (21)

The variance for Turing estimation (Lerdsuwansri 2012) is given by

̂Var(N̂T uring) = n f1
S

(1 + f1
S )2

+ n2

(1 + f1
S )4

⎡
⎣ f1(1 − f1

N̂
)

S2
+ f 21

S3

⎤
⎦ . (22)

The benefits of Turing’s estimator are that it is easy to calculate, its value can be
obtained in a straightforward way, and there is no need for an iterative procedure. In
addition, it uses all the information in the sample by means of S and f1, the latter
being usually large.

2.5.2 Maximum likelihood estimator under the zero-truncated Poisson distribution

Let us assume that the capture–recapture count data X can be modelled as a zero-
truncated Poisson distribution. Thus, population size can be estimated as

N̂MLE = n

1 − exp(−λ̂MLE )
, (23)

The maximum likelihood estimator λ̂MLE can be obtained by using the EM-algorithm
technique under the zero-truncated Poisson distribution (see Böhning et al. 2005). A
simple variance estimate of (23) is given as
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̂Var(N̂MLE ) = N̂MLE{
exp

(∑m
x=1 x fx
N̂MLE

)
−

∑m
x=1 x fx
N̂MLE

− 1
} . (24)

2.5.3 Zelterman’s estimator

Zelterman (1988) suggested an estimator under a truncated Poisson sampling estima-
tor. This is a well-known robust estimator under potential unobserved heterogeneity.
Zelterman suggests using λ̂1 = 2 f2

f1
. As Kuhnert and Böhning (2009) pointed out,

there are two reasons for choosing λ̂1 in Zelterman’s parameter. Firstly, the majority
of frequency count units are usually represented in terms of counts of once and twice
( f1 and f2 are used), so that count data greater than two are likely to have little effect
on this estimator. Secondly, λ̂1 is the closest neighbour of the target point of estimation
f0. The Zelterman estimator of population size is ultimately provided as

N̂Zel = n

1 − exp
(
− 2 f2

f1

) . (25)

Zelterman’s estimator has been widely used since it is easy to understand, and it is a
robust estimator because it uses only thefirst and secondorder of frequencies.However,
it might be not a good estimator for long tail count data (Lanumteang 2011). Also, it
can overestimate the population size under heterogeneity (Böhning and Schön 2005).
The Variance of the Zelterman’s Estimator is

̂Var(N̂Zel) = nG(λ̂)

[
1 + nG(λ̂)λ̂2

(
1

f1
+ 1

f2

)]
(26)

where G(λ̂) = exp(−λ̂)

{1−exp(−λ̂)}2 and λ̂ = 2 f2
f1

(see Böhning 2008).

2.5.4 Chao’s lower bound estimator

Chao (1987, 1989) introduced an alternative estimator of population size under
unobserved heterogeneity of the Poisson parameter. Counts are assumed to be gen-
erated from a mixed Poisson model with arbitrary mixing density g(λ); px =∫∞
0

e−λλx

x ! g(λ)dλ where x = 0, 1, 2, . . .. Based on the Cauchy-Schwarz inequality,

we achieve a lower bound for p0 as:
p21
2p2

≤ p0, multiplying those probabilities by N

leads to (Np1)2

2(Np2)
≤ Np0. Hence replacing Np1 and Np2 with the observed frequencies

f1 and f2 leads to the lower bound estimator
f 21
2 f2

, that is

f̂0 = f 21
2 f2

(27)

and

N̂Chao = n + f 21
2 f2

. (28)
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Note that only f1 and f2 are used in Chao’s lower bound estimator. An important
lower bound for estimating the population size is given.

An estimate of the variance of the Chao’s estimator is given by

̂Var(N̂Chao) = 1

4

f 41
f 32

+ f 31
f 22

+ 1

2

f 21
f2

− 1

4

f 41
(n f 22 )

− 1

2

f 41
f2(2n f2 + f 21 )

(29)

(see Böhning 2008). An extended version of the Chao’s estimator has been recently
proposed in Chiu et al. (2014). It also contains a variance estimate for Chao’s estimator
as well as a confidence interval construction based upon the log-normal distribution.

3 Simulation study

This section provides a comprehensive assessment of population size estimator
performance. We compare the LCMP estimator proposed in this work with other
well-established estimators highlighted in the previous section. We plan the simu-
lation study to cover schemes with different underlying null models, with varying
population size N = 100; 1000; 10, 000 and levels of heterogeneity.

In detail, we consider the following data generation settings

(i) The Poisson distribution: counts are generated from the Poisson distribution with
parameters

λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}

(ii) The geometric distribution: counts are generated from the geometric distribution
with parameters

λ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

where λ = 1 − p, and p is a probability of success.
(iii) The Conway–Maxwell–Poisson distribution: counts are generated from

Conway–Maxwell–Poisson distribution with parameters

λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
ν ∈ {0.4, 0.6, 0.8}

(iv) The Negative Binomial distribution: counts are generated from a Negative Bino-
mial distribution

px = Γ (x + k)

Γ (x + 1)Γ (k)
(1 − λ)kλx ,

with parameters

λ ∈ {0.2, 0.4, 0.6, 0.8},
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dispersion parameters

k ∈ {2, 4, 6},

expected value and variance given respectively by

E(X) = kλ

1 − λ
= μ

and

Var(X) = kλ

(1 − λ)2
= μ + 1

k
μ2.

As the settings (i)–(ii)–(iii) covers situations where the data generation is from a spe-
cial case of the CMP distribution, we include setting (iv) to investigate what happens
if we leave the family, e.g. if we sample from a Negative Binomial distribution. We
draw B = 1000 samples from each null model. Any occurrences of zero counts were
truncated, and five estimators of population size were compared: the Turing’s esti-
mator (Turing), the maximum likelihood estimation under the zero-truncated Poisson
model (MLEPoi), Chao’s lower bound estimator (Chao), Zelterman’s estimator (Zel)
and weighted linear regression estimator under the zero-truncated Conway–Maxwell–
Poisson model (LCMP).

Let N̂(b) denotes the estimated value of the population size at replication bth where
b = 1, 2, 3, . . . , B, we evaluate estimators performance in terms of relative bias

RBias(N̂ ) = 1

N

[
E(N̂ ) − N

]
= 1

N
bias(N̂ ), (30)

relative variance

RVar(N̂ ) = 1

N 2

{
1

B

B∑
b=1

(
N̂b − E[N̂ ]

)2}
(31)

and relative root mean square error

RRMSE{N̂ } = 1

N

√
Var{N̂ } + {bias(N̂ )}2. (32)

When the data generation process follows a Poisson distribution, all estimators are
asymptotically unbiased with respect to the population size N (see Figs. 1, 2, 3).
Sensible differences can be detected for small population sizes (e.g. N = 100). The
estimators allowing for heterogeneity (i.e. Zel and Chao) are persistently biased and
show the highest RRMSE values. On the other hand, the LCMP estimator performs
in line with the homogeneous, Poisson-based estimators (i.e. Turing and MLEPoi).
This is an expected result, as the Poisson distribution is a special case of the CMP one,
which is however more general and may be suitable under different data generation
settings, far from the Poisson case.
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Fig. 1 Relative bias of five estimators for counts drawn from Poi(λ)
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Fig. 2 Relative variance of five estimators of seven estimators for counts drawn from Poi(λ)

Indeed, by considering a geometric data generation process, the performance of all
competing estimators is dramatically poor, no matter of the population size, with the
exception of the LCMP estimator proposed in this work (see Figs. 4, 5, 6). The LCMP
estimator provides unbiased estimates as the population size increases, at the price of a
slightly higher variability, with respect to its competitors. Overall, the LCMP estimator
clearly outperforms all the other estimators. Again, this is somehow expected, as the
geometric distribution is a specific case nested in the CMP distribution. A comparable
performance is reached by the Zelterman estimator for increasing values of λ.
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Fig. 3 Relative root mean square error of five estimators for counts drawn from Poi(λ)
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Fig. 4 Relative bias of five estimators for counts drawn from Geo(λ); λ = 1 − p

We further test estimators performance under overdispersion and underdispersion,
by generating data from a CMP distribution. We expect that the LCMP estimator,
as well as Chao and Zelterman estimators, outperforms Turing and MLEPoi esti-
mators under heterogeneous schemes. Results are displayed in Figs. 7, 8 and 9.
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Fig. 5 Relative variance of five estimators for counts drawn from Geo(λ); λ = 1 − p
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Fig. 6 Relative root mean square of five estimators for counts drawn from Geo(λ); λ = 1 − p

Overall, it can be seen that the LCMP has the best performance when the popula-
tion size is medium or large, whereas Turing and MLEPoi estimators underestimate
the population size. Even the other heterogeneous estimators tend to underestimate
the population size, providing reasonable results for N = 10, 000 only. Indeed, the
CMP distribution is a very general one and accounts for many (possible) data fea-
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Fig. 7 Relative bias of five estimators for counts drawn from CMP(λ, ν)

ture, that may not be captured by existing estimators. To corroborate the simulation
results on the LCMP estimator, we provide plots to show convergence to normality
under the CMP data generation process for λ = 0.5; 1.0 and ν = 0.4, ; 0.6; 0.8 (see
Fig. 10).

At last, it can be said that under a Negative-Binomial the MLEPoi and Turing’s
estimators show a clear underestimation of population size, as well as Chao’s, whereas
Zelterman’s estimator does not have a clear path. Similar results can be found in
Lanumteang and Böhning (2011). The new estimator performs much better than its
competitors, although it tends to overestimate for a small population size and low
values of λ. Such an effect disappears as λ and/or k increase (see Figs. 11, 12, 13). To
conclude the simulation study, the proposed LCMP estimator can be used even under
a Negative Binomial data generation process.

4 Real data examples

In this section we apply different estimators to real data examples. We consider the
following benchmark datasets: the cholera data (McKendrick 1926); the golf tees
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Fig. 8 Relative variance of five estimators for counts drawn from CMP(λ, ν)

data (Borchers and Buckland 2002); artificial data used by Link (2003); drug users in
Bangkok (Viwatwongkasem et al. 2008). Obtained results under different estimators
are also compared to provide an overview of differences in estimating population size
in CR data. Furthermore, we provide results for the standard error of the population
size by using the asymptotic approximation computed in Sect. 2.4. Goodness-of-fit is
investigated throughplots and a chi-square goodness of fit test under the null hypothesis
of a homogeneous zero-truncated Poisson data is computed. The maximum likelihood
estimator under the geometric distribution (Niwitpong et al. 2013) is further considered
to see difference with our proposals in terms of model fitting.

4.1 Cholera epidemic in India

The example stems from Mao and Lindsay (2003) and has been discussed previously
in Blumenthal et al. (1978), Scollnik (1997), and others. A cholera epidemic affected
a village with 223 households in India. Originally, the data were presented by McK-
endrick (1926) in his paper presentation to the Edinburgh Mathematical Society. Data
are provided in Table 1.
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Fig. 9 Relative root mean square error of five estimators for counts drawn from CMP(λ, ν)

Table 2 presents the various estimates of the total number and their associated 95%
confidence intervals. For the cholera epidemic data evidence has been provided for
homogeneity (see Fig. 14). Accordingly, estimates do not differ much; neither do their
confidence intervals with the exception of Zelterman which has a large confidence
interval. The LCMP approaches the Poisson distribution, as λ̂ = 1.01 and ν̂ = 1,
i.e. the proposed estimator can be used even if homogeneity is ensured and produces
comparable results with homogeneous estimators (e.g. Turing) often used under the
homogeneous population setting. This is also confirmed by the formal chi-squared
test indicated that the cholera data follow homogeneity of a zero-truncated Poisson
distribution with p value of 0.85. The graphical representation of estimated versus
observed frequencies, provided in Fig. 18, supports this conclusion.

4.2 Golf-tees data

In a field experiment, N = 250 groups of golf tees were placed in a survey region,
either exposed above the surrounding grass or hidden by it. They were surveyed by the
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Fig. 10 Normality plot for LCMP estimator under the CMP distribution
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Fig. 11 Relative bias of five estimators for counts drawn from N B(λ, k)

1999 statistics honor class at theUniversity of StAndrews (Scotland), seeBorchers and
Buckland (2002). A total of n = 162 groups of tees were observed, but a (potentially
unknown) number is missed and needs to be estimated. Table 3 shows the correspond-
ing frequency distribution. Figure 15 provides a plot of the log-ratios of successive
frequencies and the count distribution.

It is clear that the log-ratio plot displays a linear relationship between log-ratios
and log-counts, with a positive slope. It is reasonable to assume that a heterogeneous
model would be suited to estimate population size, such as the LCMP estimator so
far proposed. The chi-squared test reject the null hypothesis that the data follow a
truncated Poisson with a p value<0.001. Moreover, f1 is greater than f2 and so
on, leading to increased variance by increasing x values. Thus, the weighted least
square model might be more suitable than the least square. The estimated regres-
sion parameter estimates are β̂0 = −0.268 and β̂1 = 1, i.e. β̂1 is on the boundary
of the parameter space. Accordingly, the parameters of the zero-truncated Conway–
Maxwell–Poisson model are λ̂ = 0.765 and ν̂ = 0, i.e. the geometric distribution
is obtained. Zelterman’s estimator shows the highest degree of accuracy in terms of
having the smallest bias, followed by LCMP. Turing and MLEPoi provide the least
accuracy since they show a very large bias, as expected as the log-ratio plot suggests
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Fig. 12 Relative variance of five estimators for counts drawn from N B(λ, k)

to avoid any estimator based on a homogeneous model. We would remark that the
imposed (and necessary) constraint on β̂1 may limit the capacity of the LCMP esti-
mator to recover the true population size if the underlying count distribution is far
from being geometrically-distributed. However, as the LCMP-based estimator allows
for heterogeneity, it provides better estimates than homogeneous population-based
estimators. In Fig. 18 we compare estimated frequencies under the LCMP estimator
with the homogeneous MLEPoi one and, furthermore, we add estimated frequen-
cies according the MLE under the Geometric distribution. It is even more clear
from the graph that the truncated Poisson distribution is not suitable for these data
(Table 4).

4.3 Link (2003) data

Her we refer to an artificial dataset considered in Link (2003), see Table 5. These data
are of particular interest as they show substantial heterogeneity (see Fig. 16) with a
large number of maximum recaptures. Thus, we expect that all the considered estim
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Fig. 13 Relative root mean square error of five estimators for counts drawn from N B(λ, k)

Table 1 Frequency distribution
of the cholera epidemic data

x 1 2 3 4 n

fx 32 16 6 1 55

Table 2 Cholera data:
population size estimates Model N̂ ̂SE(N̂ ) 95%C I

Homogeneous Poisson

Turing 88 11.69 66–111

MLEPoi 89 11.59 67–112

Heterogeneous structure

Chao 87 13.28 61–114

Zelterman 88 17.05 55–122

LCMP 87 7.59 73–102

(λ̂ = 1.01 and ν̂ = 1)

ators, but the LCMP one, underestimate the population size. Indeed, the long tail of
the count variable may lead to biased estimates even for the Zelterman’s estimator.
Population size estimates are displayed in Table 6 and provide contradictory inference
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Fig. 14 Cholera data: the log-ratio plot of log
{
(x + 1)

fx+1
fx

}
versus log(x + 1)

Table 3 Frequency distribution
of golf-tees groups detected by
eight observers

x 0 1 2 3 4 5 6 7 8 N

fx 88 46 28 21 13 23 14 6 11 250

about N . Homogeneous population-based estimators shows very low estimates for
N̂ with small standard errors (a similar behavior was found in the simulation study),
and the corresponding 95% confidence intervals do not overlap with those obtained
accounting for heterogeneity. Chao’s estimator provides a lower bound for N in pres-
ence of heterogeneity, and Zelterman’s estimator does not differ too much, but shows
a very large standard error (as expected). The LCMP-based estimator seems to fit well
the data, and provides an estimate of N in line with the values obtained in Link (2003)
under other parametric distributions accounting for heterogeneity. Figure 18 shows
the inability of the homogeneous truncated Poisson distribution to fit the data and the
close performance of the LCMP and the Geometric MLE. This is not surprising as
we estimate ν = 0.0856, and, as ν approaches zero, the LCMP approaches the MLE
under the geometric distribution.

4.4 Heroin drug users in Bangkok

The study used all data on drug use from 61 health treatment centers in the Bangkok
metropolitan region collected by the Office of the Narcotics Control Board (ONCB),
Ministry of the Prime Minister, which occurred from 1, October to 31, December in
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Fig. 15 Golf tees data: the log-ratio plot of log
{
(x + 1)

fx+1
fx

}
versus log(x + 1)

Table 4 Golf tees data:
population size estimates
(N=250)

Model N̂ Bias ̂SE(N̂ ) 95%C I

Homogeneous Poisson

Turing 177 −73 4.59 169–186

MLEPoi 169 −81 2.83 164–175

Heterogeneous structure

Chao 200 −50 13.0 175–226

Zelterman 231 −19 29.83 173–290

LCMP 223 −27 33.09 159–288

(λ̂ = 0.765 and ν̂ = 0)

Table 5 Frequency distribution
of Link (2003) data

x 1 2 3 4 5 6 7 8 9 10

fx 679 531 379 272 198 143 99 67 46 32

x 11 12 13 14 15 16 n

fx 22 14 9 5 3 1 2500

2001.Data are presented in Table 7. FromFig. 17, the log-ratio plot suggests for the use
of a heterogeneous model and the LCMP approach seems to fit the data well. A formal
test reject the null hypothesis of homogeneity at with a p value<0.001. Accordingly,
we look at the estimates of the population size under different assumptions. Results are
displayed in Table 8. As in the Golf-tees data, the geometric distribution is obtained
as a special case of the LCMP, i.e ν = 0. The Zelterman’s estimator does differ too
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Fig. 16 Link (2003) data: the log-ratio plot of log
{
(x + 1)

fx+1
fx

}
versus log(x + 1)

Table 6 Link (2003) data: population size estimates

Model N̂ ̂SE(N̂ ) 95% C I

Homogeneous Poisson

Turing 2719 17.53 2685–2754

MLEPoi 2602 11.04 2602–2581

Heterogeneous structure

Chao 2935 37.34 2935–2862

Zelterman 3162 81.15 3003–3322

LCMP 3333 45.21 3245–3422

(λ̂ = 0.816 and ν̂ = 0.086)

Table 7 Frequency distribution of heroin users in Bangkok

x 1 2 3 4 5 6 7 8 9 10

fx 2176 1600 1278 976 748 570 455 368 281 254

x 11 12 13 14 15 16 17 18 19 20 21

fx 188 138 99 67 44 34 17 3 3 2 1

much from the LCMP estimator (with almost overlapping confidence intervals), whilst
all the homogeneous estimators provide smaller sample sizes. Again, the LCMP and
the MLE under the geometric distributions are equivalent in terms of model fit (see
Fig. 18).
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Fig. 17 Heroin users in Bangkok: the log-ratio plot of log
{
(x + 1)

fx+1
fx

}
versus log(x + 1)

Table 8 Heroin users in Bangkok data: population size estimates

Model N̂ ̂SE(N̂ ) 95% C I

Homogeneous Poisson

Turing 9850 26.65 9798–9850

MLEPoi 9454 12.84 9429–9479

Heterogeneous structure

Chao 10,782 71.86 10,641–10,923

Zelterman 12,077 184.54 11,715–12,439

LCMP 12,141 210.24 11,729–12,554

(λ̂ = 0.77 and ν̂ = 0)

5 Conclusion

A diversity of estimators in the capture–recapture field exists, being widely applied
in many areas of interest. Here, we have introduced a new method of estimating the
population size under a specific formof heterogeneity based on theConway–Maxwell–
Poissondistribution.Wehave also been able to see howaccurate andprecise themethod
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Fig. 18 Real data examples: estimated versus observed frequencies

is performing when it is compared to other frequently used estimators. Overall, the
proposed estimator is more accurate as well as providing small bias in the homoge-
neous Poisson case which asymptotically disappears. It is also found that the new
estimator performs well under different heterogeneous data generation processes (i.e.
Geometric, Negative Binomial); hence, it improves existing heterogeneous estimators
(e.g. Chao’s and Zelterman’s estimators). Although the proposed estimator showed a
better performance in terms of accuracy, it evidently gave also the largest variation;
nonetheless, the variation of the new estimator considerably decreases for large pop-
ulation size (1000 and more), as often in real-world applications. We also provided a
formula of variance approximation of the new estimator. This variance formula is not
only useful to determine the efficiency of estimating, but it can be also used to construct
confidence intervals. In short, the new estimator can be an alternative form of pop-
ulation size estimation especially for large populations and heterogeneous capturing
probabilities.

The use of the ratio plot allows us to avoid computational issues related to CMP
distribution. Furthermore, by using the ratio plot, formal tests can be conducted on null
hypotheses of zero-truncated Poisson, i.e. H0 : β1 = 0, or geometric, i.e. H0 : β1 = 1,
data. The proposed LCMP estimator performs equivalently as the MLE under the
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Poisson and the geometric distribution, supporting that the use of the ratio plot, instead
of computing theMLE under the CMP distribution, does not affect estimates.We have
not reported these results, but they are available upon request.
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