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Abstract The aim of this paper is to study the asymptotic properties of a class of
kernel conditional mode estimates whenever functional stationary ergodic data are
considered. To be more precise on the matter, in the ergodic data setting, we consider
a random elements (X, Z) taking values in some semi-metric abstract space E × F .
For a real function ϕ defined on the space F and x ∈ E , we consider the conditional
mode of the real random variable ϕ(Z) given the event “X = x”. While estimating
the conditional mode function, say θϕ(x), using the well-known kernel estimator, we
establish the strong consistency with rate of this estimate uniformly over Vapnik–
Chervonenkis classes of functions ϕ. Notice that the ergodic setting offers a more
general framework than the usual mixing structure. Two applications to energy data
are provided to illustrate some examples of the proposed approach in time series
forecasting framework. The first one consists in forecasting the daily peak of electricity
demand in France (measured in Giga-Watt). Whereas the second one deals with the
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short-term forecasting of the electrical energy (measured in Giga-Watt per Hour) that
may be consumed over some time intervals that cover the peak demand.

Keywords Conditional mode estimation · Energy data · Entropy · Ergodic processes ·
Functional data · Martingale difference · Peak load · Strong consistency · Time series
forecasting · VC-classes

1 Introduction

Let (X, Z) be a E × F-valued random elements, where E and F are some semi-
metric abstract spaces. Denote by dE and dF semi-metrics associated to spaces E
and F respectively. Let C be a class of real functions defined upon F . Obviously, for
any ϕ ∈ C, ϕ(Z) is a real random variable. Suppose now that we observe a sequence
(Xi , Zi )i≥1 of copies of (X, Z) that we assume to be stationary and ergodic. For any
x ∈ E and any ϕ ∈ C, let gϕ(.|x) be the conditional density of ϕ(Z) given X = x . We
assume that gϕ(.|x) is unimodal on some compact Sϕ ⊂ R. The conditional mode is
defined, for any fixed x ∈ E , by

Θϕ(x) = arg sup
y∈Sϕ

gϕ(y|x).

Note that, if there exists ξ > 0 such that for any ϕ ∈ C

gϕ(.|x) ↑ on (Θϕ(x) − ξ, Θϕ(x)) and gϕ(.|x) ↓ on (Θϕ(x), Θϕ(x) + ξ), (1)

and if we choose Sϕ = [Θϕ(x) − ξ, Θϕ(x) + ξ ], then the mode Θϕ(x) is uniquely
defined for any ϕ. The kernel estimator, say Θ̂ϕ,n(x), of Θϕ(x) may be defined as the
value maximizing the kernel estimator gϕ,n(y|x) of gϕ(y|x), that is,

gϕ,n

(
Θ̂ϕ,n(x)|x

)
= sup

y∈Sϕ

gϕ,n(y|x). (2)

Here,

gϕ,n(y|x) = fϕ,n(x, y)

ln(x)
,

where

fϕ,n(x, y) = 1

nhHE[Δ1(x)]
n∑

i=1

[
Δi (x)H

(
y − ϕ(Zi )

hH

)]
,

ln(x) = 1

nE[Δ1(x)]
n∑

i=1

Δi (x)
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and Δi (x) = K

(
d(x, Xi )

hK

)
, with K and H are two real valued kernels and

(hK , hH ) := (hK ,n, hH,n) a sequence of positive real numbers tending to zero as
n → ∞.

The aim of this paper is to establish the uniform consistency, with respect to the
function parameter ϕ ∈ C, of the conditional mode estimator Θ̂ϕ,n(x) when data are
assumed to be sampled from a stationary and ergodic process. More precisely, under
suitable conditions upon the entropy of the class C and the rate of convergence of the
smoothing parameters hK and hH together with some regularity conditions on the
distribution of the random element (X, Z), we obtain results of type

sup
ϕ∈C

|Θ̂ϕ,n(x) − Θϕ(x)| = O(αn), a.s.

where αn is a quantity to be specified later on. Notice that, besides the infinite dimen-
sional character of the data, the ergodic framework avoid thewidely used strongmixing
condition and its variants to measure the dependency and the very involved probabilis-
tic calculations that it implies [see, for instance, Masry (2005)]. Further motivations
to consider ergodic data are discussed in Laïb (2005) and Laïb and Louani (2010)
where details defining the ergodic property of processes together with examples of
such processes are also given.

Indexing by a function ϕ allows to consider simultaneously various situations
related to model fitting and time series forecasting. Whenever Z := {Z(t) : t ∈ T }
denotes a process defined on some real set T , onemay consider the following function-
als ϕ1(Z) = supt∈T Z(t) and ϕ2(Z) = inf t∈T Z(t) giving extremes of the process Z
that are of interest in various domains as, for example, the finance, hydraulics and the
weather forecasting. For some weight function W defined on T and some p > 0, one
may consider the functional ϕp,W defined by ϕp,W (Z) = ∫

T W (t)Z p(t)dt . Further
situation is to consider, for some subset A of T , the functional Z → ϕρ(Z) = inf{t ∈
A : Z(t) ≥ ρ} for some threshold ρ. Such a case is very useful in threshold and barrier
crossing problems encountered in various domains as finance, physical chemistry and
hydraulics. Moreover, indexing by a class of functions C is a step towards modelling
a functional response random variable. Indeed, the quantity Z(ϕ) := {ϕ(Z) : ϕ ∈ C}
may be viewed as a functional random variable offering, in this respect, a device for
such investigations.

The modelization of the functional variable is becoming more and more popular
since the publication of themonograph of Ramsay and Silverman (1997) on functional
data analysis. Note however that the first results dealing with nonparametric models
(mainly the regression function) were obtained by Ferraty and Vieu (2000). Since
then, an increasing number of papers on this topic has been published. One may refer
to the monograph by Ferraty and Vieu (2006) for an overview on the subject and the
references therein. Extensions to other regression issues as the time series prediction
have been carried out in a number of publications, see for instance Delsol (2009).
The general framework of ergodic functional data has been considered by Laïb and
Louani (2010, 2011) who stated consistencies with rates together with the asymptotic
normality of the regression function estimate.
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Asymptotic properties of the conditional mode estimator have been investigated in
various situations throughout the literature. Ferraty et al. (2006) studied asymptotic
properties of kernel-type estimators of some characteristics of the conditional cumu-
lative distribution with particular applications to the conditional mode and conditional
quantiles. Ezzahrioui and Ould-Saïd (2008), Ezzahrioui and Ould-Saïd (2010) estab-
lished the asymptotic normality of the kernel conditional mode estimator in both i.i.d.
and strong mixing cases. Dabo-Niang and Laksaci (2007) provided a convergence
rate in L p norm sense of the kernel conditional mode estimator whenever functional
α-mixing observations are considered. Demongeot et al. (2010) have established the
pointwise and uniform almost complete convergenceswith rates of the local linear esti-
mator of the conditional density. They used their results to deduce some asymptotic
properties of the local linear estimator of the conditional mode. Attaoui et al. (2011)
have established the pointwise and uniform almost complete convergence, with rates,
of the kernel estimate of the conditional density when the observations are linked
with a single-index structure. They applied their results to the prediction problem via
the conditional mode estimate. Notice also that, considering a scalar response vari-
able Y with a covariate X taking values in a semi-metric space, Ferraty et al. (2010)
studied, in the i.i.d. case, the nonparametric estimation of some functionals of the
conditional distribution including the regression function, the conditional cumulative
distribution, the conditional density together with the conditional mode. They estab-
lished the uniform almost complete convergence, with rates, of kernel estimators of
these quantities.

It is well-known that the conditional mode provides an alternative predic-
tion method to the classical approach based on the usual regression function.
Since there exist cases where the conditional density is such that the regression
function vanishes everywhere, then it makes no sense to use this approach in
problems involving prediction. An example in a finite-dimensional space is given
in Ould Saïd (1997) to illustrate this situation. Moreover, a simulation study in
infinite-dimensional spaces carried out by Ferraty et al. (2006), shows that the
conditional mode approach gives slightly better results than the usual regression
approach.

In this paper, two applications to energy data are provided to illustrate some exam-
ples of the proposed approach in time series forecasting framework. The first real case
consists in forecasting the daily peak of electricity demand in France (measured in
Giga-Watt). Let us denote by (Zi (t))t∈[0,T ] the curve of electricity demand (called
also load curve) measured over an interval [0,T]. If we have hourly (reps. half-hour)
measures then T = 24 (resp. T = 48). The peak demand observed for any day i is
defined as Pi = supt∈[0,T ] Zi (t). In such case ϕ(·) is fixed to be the supremum func-
tion, over [0, T ], of the function Z(t). Accurate prediction of daily peak load demand
is very important for decision in the energy sector. In fact, short-term load forecasts
enable effective load shifting between transmission substations, scheduling of startup
times of peak stations, load flow analysis and power system security studies. Figure 1
provides a sample of seven daily load curves (from 07/01/2002 to 13/01/2002). Ver-
tical dotted lines separate days and the star points correspond to the peak demand for
each day.
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Fig. 1 Half hour electricity consumption in France from 07/01/2002 to 13/01/2002 (7days). The vertical
dotted lines separate days and the star points correspond to the peak demand for each day (in Giga-Watt)

Fig. 2 Half hour daily load curve in solid line and the grey surface corresponds to the electrical energy (in
Giga-Watt per Hour) consumed over an interval of 3h around the peak

It is well-known that, in addition to peak demand, some other characteristics of the
load curvemay be of interest from an operational point of view. In fact the prediction of
the electrical energy (measured in Giga-Watt per Hour) consumed over an interval of
3h around the peak demand may helps in the determination of consistent and reliable
supply schedules during peak period. Therefore, the second application in this paper
deals with the short-term forecasting of the electrical energy that may be consumed
between 6 p.m. and 9 p.m. in winter and between 12 a.m. and 3 p.m. in summer. Those
time intervals cover the peak demand which happens around 7pm in winter and 2pm in
summer. Formally, if we consider Zi (t) the load curve of some day i , then the electrical
energy consumed between two instants t1 and t2 is defined as Ei = ∫ t2

t1
Zi (t)dt . In this

case, ϕ(·) is the integral function. An example of half hour daily load curve is plotted
in Fig. 2. Solid line is the daily load curve and the grey surface corresponds to the
electrical energy consumed over an interval of 3h around the peak.
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2 Results

In order to state our results, we introduce some notations. Let Fi be the σ -field
generated by ((X1, Z1), . . . , (Xi , Zi )) and Gi the one generated by ((X1, Z1), . . . ,

(Xi , Zi ), Xi+1). Let B(x, u) be a ball centered at x ∈ E with radius u. Let Di (x) :=
d(x, Xi ) so that Di (x) is a nonnegative real-valued random variable. Working on the
probability space (Ω,A,P), let Fx (u) = P(Di (x) ≤ u) := P(Xi ∈ B(x, u)) and

FFi−1
x (u) = P(Di (x) ≤ u |Fi−1) = P(Xi ∈ B(x, u) |Fi−1) be the distribution func-

tion and the conditional distribution function, given the σ -field Fi−1, of (Di (x))i≥1
respectively. Denote by oa.s.(u) a real random function l such that l(u)/u converges
to zero almost surely as u → 0. Similarly, define Oa.s.(u) as a real random function
l such that l(u)/u is almost surely bounded.

Our results are stated under some assumptions we gather hereafter for easy
reference.

A1 For x ∈ E , there exist a sequence of nonnegative random functional ( fi,1)i≥1
almost surely bounded by a sequence of deterministic quantities (bi (x))i≥1
accordingly, a sequence of random functions (ψi,x )i≥1, a deterministic nonneg-
ative bounded functional f1 and a nonnegative nondecreasing real function φ

tending to zero as its argument goes to zero, such that
(i) Fx (u) = φ(u) f1(x) + o(φ(u)), as u → 0,
(ii) For any i ∈ N, FFi−1

x (u) = φ(u) fi,1(x) + ψi,x (u)withψi,x (u) = oa.s.(φ(u))

as u → 0,
ψi,x (u)

φ(u)
is almost surely bounded and

1

n

n∑
i=1

ψi,x (u) = oa.s.(φ(u))

as n → ∞, u → 0.

(iii) n−1
n∑

i=1

fi,1(x) → f1(x) almost surely as n → ∞.

(iv) There exists a nondecreasing bounded function τ0 such that, uniformly in
u ∈ [0, 1],
φ(hK u)

φ(hK )
=τ0(u)+o(1), as h ↓ 0 and, for 1≤ j ≤2,

∫ 1

0
(K j (u))′τ0(u)du <∞.

(v) n−1∑n
i=1 bi (x) → D(x)<∞ as n → ∞.

A2 K is a nonnegative bounded kernel of class C1 over its support [0, 1], with K (1) >

0 and the derivative K ′ is such that K ′(t) < 0, for any t ∈ [0, 1].
A3 (i) For any ε > 0, there exists η > 0 such that for any (ϕ1, ϕ2) ∈ C × C,

dC(ϕ1, ϕ2) < η implies that |Θϕ1(x) − Θϕ2(x)| < ε.
(ii) Uniformly in ϕ ∈ C, gϕ(.|x) is uniformly continuous on Sϕ .
(iii) gϕ(.|x) is differentiable up to order 2 and limn→∞ sup

ϕ∈C
|g(2)

ϕ (Θ̂ϕ,n(x)|x)| :=
Φ(x) �= 0.

(iv) For any x ∈ E , there exist V (x) a neighborhood of x , some constants Cx > 0,
β > 0 and ν ∈ (0, 1], independent of ϕ, such that for any ϕ ∈ C, we have
∀ (y1, y2) ∈ Sϕ × Sϕ , ∀(x1, x2) ∈ V (x) × V (x),
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|g( j)
ϕ (y1|x1) − g( j)

ϕ (y2|x2)| ≤ Cx (|y1 − y2|ν + d(x1, x2)β), j = 0, 2.

A4 Consider the space of functions D = {ψ = t − ϕ where t ∈ R and ϕ ∈ C}
on which we define the distance ρ given, for any (t1 − ϕ1, t2 − ϕ2) ∈ D2 by,
ρ(t1 − ϕ1, t2 − ϕ2) = |t2 − t1| + dC(ϕ1, ϕ2). The kernel H is such that

(i)
∫

R

|t |ν H(t)dt < ∞ and
∫

R

t H(t)dt = 0,

(ii) For all (t1 − ϕ1, t2 − ϕ2) ∈ D2 and ∀z ∈ F,

|H(t1 − ϕ1(z)) − H(t2 − ϕ2(z))| ≤ CH ρ(t1 − ϕ1, t2 − ϕ2),

where CH is a positive constant.
A5 For j = 0, 1, 2 and any ϕ ∈ C,

E

[
H ( j)

(
y − ϕ(Zi )

hH

)
| Gi−1

]
= E

[
H ( j)

(
y − ϕ(Zi )

hH

)
| Xi

]
.

Comments on the hypotheses As to discuss the conditions A1, it is worth noticing that
the fundamental hypothesis A1(ii) involves the functional nature of the data together
with their dependency. As usually in such a framework, small balls techniques are used
to handle the probabilities on infinite dimension spaces where the Lebesgue measure
does not exist. Several examples of processes fulfilling this condition are given in
Laïb and Louani (2011). Note that the hypothesis A1(i) stands as a particular case
of A1(ii) while conditioning by the trivial σ -field. A number of processes satisfying
this condition are given through out the literature, see, for instance, Ferraty and Vieu
(2006). Conditions A1(iii) and A1(v) are set basically to meet the ergodic Theorem
which may be expressed as the classical law of large numbers. Conditions A2 and
A4 impose some regularity conditions upon the kernels used in our estimates. When
indexing by a class of functions C, it is natural to consider regularity conditions as the
continuity of the mode with respect to the index function ϕ assumed inA3(i). Defined
as an argmax and, furthermore, indexed by the classC, the conditionalmode is sensitive
to fluctuations. The differentiability of the conditional density gϕ with some kind of
smoothness of its derivatives is needed to reach the rates of the convergence obtained
in our results. All these conditions are summarised in the assumption A3. Hypothesis
A5 is of Markov’s nature.

Remark 1 In order to check the condition (A4)(ii), let T be an index set and d a
distance over T . Suppose that C = {ϕu : u ∈ T } is a class of functions defined on F ,
that are Lipschitz with respect to the index parameter u in the sense that for any z ∈ F

|ϕu(z) − ϕv(z)| ≤ d(u, v)κ(z),

where κ is a function defined on F such that
∫

F κ2(z)dP(z) < ∞. Let dC be the
L2-distance defined on C by

dC(ϕu, ϕv) :=
[∫

F
(ϕu(z) − ϕv(z))

2dP(z)

]1/2
.
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26 M. Chaouch et al.

Then, taking d(·, ·) as the absolute distance, we have

dC(ϕu, ϕv) ≤ d(u, v)

[∫

F
κ2(z)dP(z)

]1/2
:= c0|u − v|.

Therefore, taking H the Epanechnikov kernel given by H(u) = 3
4 (1 − u2)1[−1,1](u)

and using the condition A4(ii), we obtain

|H(t1 − ϕu(z)) − H(t2 − ϕv(z))| ≤ 3

2
(|t1 − t2| + c0|u − v|).

Before establishing the uniform convergence with rate, with respect to the class of
functions C, of the conditional mode estimator, we introduce the following notation.
For any ε > 0, set

N (ε, C, dC) = min{n : there exist c1 · · · , cn in C such that ∀ ϕ ∈ C
there exists 1 ≤ k ≤ n such that dC(ϕ, ck) < ε}.

This number measures how full is the class C. Obviously, conditions upon the number
N (ε, C, dC) have to be set to state uniform over the class C results.

The following proposition establishes the uniform asymptotic behavior (with rate)
of the conditional density estimator g(y|x) with respect to y and the function ϕ ∈ C.
This proposition which is of interest by itself may be used, as an intermediate result,
to state uniform results over the class C.

Proposition 1 Assume that the conditions A1–A5 hold true and that

lim
n→∞

log(n)

nφ(hK )
= 0. (3)

Furthermore, for a sequence of positive real numbers λn tending to zero, as n → ∞,
and for η := ηn, suppose that

(i) lim
n→∞

logN (η, C, dC)

ηλ2nnhH φ(hK )
= 0 and (i i)

∑
n≥1

exp{−λ2n O(nhH φ(hK ))} < ∞, (4)

we have

sup
ϕ∈C

sup
y∈Sϕ

|gϕ,n(y|x) − gϕ(y|x)| = Oa.s(h
β
K + hH

ν) + Oa.s.

(
ηhH

−2
)

+ Oa.s. (λn)

+ Oa.s

((
log n

nφ(hK )

)1/2
)

.

Comment In the statement (7), the deviation between gϕ,n(·|·) and gϕ(·|·) is decom-
posed as to introduce the conditional bias Bϕ,n(·, ·) and the pseudo-variances Rϕ,n(·, ·)
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and Qϕ,n(·, ·). The first element on the right hand side of the result of Proposition 1
corresponds to the rate of convergence of Bϕ,n(·, ·)while the three following ones give
the convergence rate of Qϕ,n(·, ·). Notice that the element Rϕ,n(·, ·) is negligible.

Our principal result considers the pointwise in x ∈ E and uniform over the class C
convergence of the kernel estimate Θ̂ϕ,n(x) of the conditional mode Θϕ(x).

Theorem 1 Under the same conditions of Proposition 1, we have

sup
ϕ∈C

|Θ̂ϕ,n(x) − Θϕ(x)| = Oa.s(h
β/2
K + hH

ν/2) + Oa.s

(
λ

1
2
n

)
+ Oa.s

(
η1/2h−1

H

)

+ Oa.s

((
log n

nφ(hK )

)1/4
)

.

Remark 2 Replacing the condition (4)(i) by lim
n→∞

logN (η, C, dC)

ηλ2nnhH φ(hK )
= δ, for some

δ > 0 small enough, with λn = O

((
log n

nhH φ(hK )

) 1
2
)
, the condition (4)(ii) is clearly

satisfied inducing the uniform consistency, with respect to ϕ ∈ C, of Θ̂ϕ,n(x) with the
rate

Oa.s.
(

hβ/2
K + hH

ν/2
)

+ Oa.s

(
η1/2h−1

H

)
+ Oa.s.

((
log n

nhH φ(hK )

) 1
4
)

.

Remark 3 Note, whenever η = O(hH
2+ν) and λ−1

n = O((nhH
5+2νφ(hK ))

1
2 ), that

the condition (4)(i) takes the form

lim
η→0

η logN (η, C, dC) = 0. (5)

The condition (5) is very usual in defining Vapnik–Chervonenkis classes. Examples of
classes fulfilling the condition (5) are given throughout the literature, see, for instance,
Laïb and Louani (2011) and Vaart and Wellner (1996).

The main application of Theorem 1 is devoted to prediction of time series when
considering the conditional mode estimates.

For n ∈ N
�, let Zi (t) and Xi (t), i = 1, . . . , n, be two functional random variables

with t ∈ [0, T ). For each curve Xi (t) (the covariate), we have a real response Yϕ,i =
ϕ(Zi (t)), a transformation of some functional variable Zi (t). Given a new curve
Xn+1 = xnew, our purpose is to predict the corresponding response yϕ,new :=
Θϕ(xnew) using as predictor the conditional mode, say ŷϕ,new := Θ̂ϕ,n(xnew). The
following Corollary based on Theorem 1 gives the asymptotic behavior with rate of
the empirical error prediction.
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Corollary 1 Assume that conditions of Theorem 1 hold. Then we have

∣∣∣̂yϕ,new − yϕ,new
∣∣∣ = Oa.s

(
hβ/2

K + hν/2
H

)
+ Oa.s

(
λ

1
2
n

)
+ Oa.s

((
log n

nφ(hK )

)1/4
)

.

Proof The proof of Corollary 1 is a direct consequence of Theorem 1.

3 Application to real data

The data-set analyzed in this paper contains half hourly observations of a stochastic
process ξ(t), t ∈ R

+. Here ξ(t) represents the electricity demand at time t in France.
This process has been observed at each half hour from01 January 2002 to 31December
2005 (which corresponds to a total of 1461days). Figure 3 shows the evolution of the
process ξ(t) over time. One can easily see a high seasonality since the variation of the
electricity consumption is due to the climatic conditions in France. In fact, the winter
and autumn are rather cold, whereas the climate in summer and spring is relatively
warm. This remark is confirmed by Fig. 4 which displays the half hourly electricity
consumption in France in four selected weeks. We can clearly mark out the intra-daily
periodical pattern and can note also the difference in terms of level of consumption
from a one season to another. The repetitiveness of the daily shape is due some inertia
in the demand that reflects the aggregated behavior of consumers. The evolution of
the energy data described by the process ξ(t). In order now to construct our functional
data Z(t) and to get its transformation ϕ(Z(t)), we proceed by slicing the original
process ξ(t) into segments of similar length. Since our target is a day-ahead short
term forecasting, we divide the observed original time series (ξ(t)) of half hourly
electricity consumption into n = 1461 segments (Z(t)) of length 48 which correspond
to the functional observations. Each segment coincide with a specific daily load curve.
Formally, let [0, T ] be the time interval on which the process ξ(t) is observed. We
divide this interval into subintervals of length 48, say [� × 48, (� + 1) × 48], � =

Fig. 3 Half hour electricity consumption in France from 07/01/2002 to 31/12/2005 generated according
to the process ξ(t)
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Fig. 4 Half hour electricity demand in four selected weeks (the panel contains 1week data from January,
April, August and October 2004)

Fig. 5 A sample of 20 daily load curves randomly chosen generated according to the process Z(t)

0, 1, . . . , n − 1, with n = T/48 = 1461. Denoting by Zi (t) the functional-valued
discrete-time stochastic process defined by

Zi (t) = ξ(t + (i − 1) × 48); i = 1, . . . , n, ∀t ∈ [0, 48). (6)

Figure 5 shows a randomly chosen sample of 20 realizations of the functional random
variable (Z(t))t∈[0,48) which corresponds to a daily load curves.
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30 M. Chaouch et al.

Once the original time series is transformed into functional data-type, as explained
in the introduction, we can start to deal with the short term forecasting of the daily
peak demand and the electrical energy consumed over an interval using the conditional
mode as a predictor.

3.1 Short-term daily peak load forecasting

Let us now consider the observed daily peak of the electricity consumption defined,
for any day i = 1, . . . , n, as

Pi = sup
t∈[0,48)

Zi (t).

The goal of this subsection is to forecast the peak Pi on the basis of the load curve
of the previous day, Zi−1(t). Forecasting peak load demand is one of the most relevant
issues in electricity companies. In fact, the electricity market is more and more open to
competition and companies take care on the quality of their services in order to increase
the number of their customers. On the other hand, because of the electrification of
appliances (e.g. electric heating, air conditioning, …) and mobility applications (e.g.
electric vehicle, …), the peak demand is increasing which can lead to a serious issue
in the electric network. It is important, therefore, to produce very accurate short-term
peak demand forecasts for the day-to-day operation, scheduling and load-shedding
plans of power utilities. Forecasting peak load toke a lot of interest in the statistical
literature. For instance Goia et al. (2010) used a functional linear regression model
and Sigauke and Chikobvu (2010) a multivariate adaptive regression splines model.
These methods are based on the regression function as a predictor. We propose here
the mode regression as an alternative.

In this paper, we compare two predictors based on different choices of the covari-
able X (t). Since the peak electricity demand is highly correlated to the electricity
consumption of the previous day and also to the temperature measures, we have then
two possibilities to chose the covariable X (t):

(a) Xi (t) = Zi−1(t), the curve of electricity consumption of the previous day
(Prev.Day) and

(b) Xi (t) = T̂i (t), the predicted half hourly temperature curve of the target day
(Pred.Temp.).

To evaluate the proposed approach, we split the sample of n = 1461 days into:

– learning sample, sayL = {(Zi−1(t),Pi )}i=2,...,1096, containing the first 1096days
(corresponding to the period from 01/01/2002 to 31/12/2004) and,

– test sample, say T = {(Zi−1(t),Pi )}1,...,365, with the last 365days (corresponding
to the period between 01/01/2005 and 31/12/2005).

Remark 4 When the functional covariate is fixed to be the predicted temperature curve,
say T̂ (t), the notations for the learning and test sample can be changed as follow:
L = {(T̂i (t),Pi )}i=1,...,1096 and T = {(T̂i (t),Pi )}1,...,365.
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The learning sample is used to build the proposed estimator given by (2) and to find
the “optimal” smoothing parameter. To estimate the conditional mode, some tuning
parameters should be fixed. For both the covariate and the response variable, the
quadratic kernel function defined by K (u) = H(u) := 1.5(1−u2)1[0,1] is considered.
It is proved in the nonparametric estimation literature that the choice of the kernel does
not significantly impact the accuracy of estimation.

Another important tuning parameter, that ensures a good behavior of the functional
nonparametric estimation, is the semi-metric d(·, ·). Several possible choices of semi-
metric have been discussed in Ferraty andVieu (2006), p. 28. Usually, the choice of the
semi-metric ismotivated by the shape of the curves. Here, it is clear that the load curves
of the previous day as well as the temperature curves are smooth. Consequently, the
L2-distance between the second derivative of the curves seems to be the appropriate
choice of the semi-metric d(·, ·).

In contrast to the kernel, an optimal choice of the smoothing parameters hK and hH

is crucial. Here, we adopt the local cross-validationmethod on the κ-nearest neighbors
introduced in Ferraty and Vieu (2006), p. 116. Explicitly, for each curve Xi in the test
sample,

Θ̂n(hK , hH , Xi ) = argmin
y

gn,hi,�
K ,hi,�

H
(y|X�

i ),

where X�
i = argminX j ∈learning sample d(Xi , X j ) and

(
hi,�

K , hi,�
H

)
= arg min

(hK ,h H )∈Hn(X�
i ,y)

|Y �
i − Θ̂n(hK , hH , X�

i )|,

where Hn(x, y) is the set of pairs (hK (x), hH (y)) such that, forhK (x) (respectively, for
hH (y)) the ball centred at x (respectively, the interval centred at y) with radius hK (x)

(respectively, with radius hH (y)) contains exactly κ neighbors of x (respectively, of y).
Here, the Ferraty and Vieu’s R-routine called funopare.mode.lcv1 is used to compute
the conditional mode.

The test sample will be used to compare our forecasts to the observed daily peak
electricity demand for the year 2005. Figure 6a (resp. (b)) displays the observed and
the predicted values of the daily peak electricity demand using as covariable the load
curve of the previous day (resp. the predicted temperature curve). Since cross-points,
(P̂i ,Pi )i=1,...,365, represented in Fig. 6a are more concentrated on the diagonal line
than those in Fig. 6b, one can deduce that the first approach provides better results
than the second one. Moreover, Table 1 provides a numerical summary of the RAE
obtained by using as covariate the predicted temperature curve or the last observed
daily load curve. One can observe that monthly errors obtained by the second approach
are usually less than those given by the first one. Therefore, one can conclude that the
peak electricity demand might be better modelized by the previous daily load curve
rather than by the predicted temperature curve.

1 Available on the website: “www.lsp.ups-tlse.fr/staph/npfda”.
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Fig. 6 Results for 1year day-ahead forecasting of the daily peak electricity demand using as predictor the
mode regression and as functional covariate: a the curve of electricity consumption of the previous day
(Prev.Day), b the predicted half hourly temperature curve of the target day (Pred.Temp.)

Table 1 Distribution (by month) of the RAE of the peak load obtained by using as predictor the conditional
mode and as covariate the previous day Prev.Day and predicted temperature Pred.Temp

Prev.Day (%) Pred.Temp. (%)

MAPEm Q0.25 Q0.5 Q0.75 MAPEm Q0.25 Q0.5 Q0.75

Jan. 4.2 1.4 3.1 5.2 9.5 5.4 9.4 14.2

Feb. 5.4 1.9 4.0 8.3 6.9 1.3 6.3 10.2

Mar. 6.1 2.0 3.7 8.0 9.0 3.5 6.5 13.3

Apr. 6.7 2.6 4.9 9.4 11.9 6.0 11.4 18.2

May 4.7 0.5 1.5 9.5 9.9 3.2 8.0 14.1

Jun. 2.4 0.7 1.2 2.2 9.3 3.5 7.7 15.5

Jul. 3.1 0.5 1.5 3.2 8.3 2.2 7.4 11.2

Aug. 3.0 0.6 1.3 3.6 11.1 4.6 8.0 14.2

Sep. 2.5 0.3 0.8 1.7 10.9 4.0 9.5 18.7

Oct. 4.0 0.9 2.3 4.4 11.0 4.5 9.9 17.5

Nov. 5.4 2.0 3.9 7.1 8.9 3.7 6.8 14.1

Dec. 5.9 2.2 5.5 8.2 7.1 3.2 5.8 9.3

Following the above analysis, the last observed daily load curve will be consid-
ered as the suitable covariate to forecast the peak demand in the remainder of this
section. Our goal, now, consists in comparing the conditional mode predictor to the
conditional median and the regression function (conditional mean) [see Ferraty and
Vieu (2006) for more details about the properties of these last two predictors]. Let us
mention here that for the nonparametric estimation of the regression operator (respec-
tively, the conditional median), the same semi-metric and the optimal bandwidth, hK

(respectively, hK and hH ) are chosen using the same arguments as for the conditional
mode estimation (see details above). Moreover, to estimate the regression operator,
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Fig. 7 Examples of daily peak load forecast using conditional mode, conditional median and regression
function for eight consecutive days

only the quadratic kernel function K (·) is used. For the conditional median model,
notice that the quadratic kernel is used to smooth the covariate variable X while the
distribution function

∫ x
−∞

3
4 (1− t2)1[−1,1](t)dt is considered to smooth the response

Y . The computation devoted to the regression operator (respectively, the conditional
median) is performed through the R-routine funopare.knn.lcv2 (respectively, funo-
pare.quantile.lcv).

For a deeper analysis and evaluation of the accuracy of the proposed approach, we
use the Relative Absolute Errors (RAE) and the monthly Mean Absolute Prediction
Error (MAPEm) as validation criteria. They are defined in the test sample, for any day
i = 1, . . . , 365, respectively by

RAEi = |Pi − P̂i |
Pi

and MAPEm = 1

Nm

Nm∑
i=1

RAEi ,

where Nm is a number of days for a given month m ∈ {1, . . . , 12} and P̂i is the
predicted value of the daily peak obtained by the conditionalmode, conditionalmedian
or regression function.

Figure 8 shows examples of peak load forecasts for eight consecutive days. One
can see that conditional mode provides more accurate predictions than the two other
methods. In Fig. 7, the 365 forecasted daily peak load are plotted against the observed
ones. Clearly, one can observe that conditional mode performs well the forecasts while
conditional median and regression function under-predict peaks in the cold season and
over-predict it in hot season.

Figure 9 provides the distribution of the daily RAE for eachmonth in 2005, obtained
using the three prediction methods. One can observe that the conditional mode-based

2 Available on the website: “www.lsp.ups-tlse.fr/staph/npfda”.
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Fig. 8 Observed daily peak load versus the predicted one obtained by the three forecast methods

Fig. 9 Distribution (by month) of the daily RAE of the peak load

approach is muchmore efficient in winter as well as in summer than the other methods.
Accurate forecasts inwinter are of particular interest since the electricity demandmight
exceed the supply capacity in this period. Therefore, an efficient energy management
in the electrical grid is highly required.

A numerical summary of Fig. 9 is detailed in Table 2 where the monthly MAPEm ,
the first quartile Q0.25, the median Q0.5 and the third quartile Q0.75, of the RAE, are
provided for the three used methods. One can see that the conditional mode approach
performs better the forecasts almost over all the year.

3.2 Electrical energy consumption forecasting for battery storage management

The electrical grid in most of the developed countries is expected to be under a large
amount of strain in the future due to changes in demand behavior, the electrifica-
tion of transport, heating and an increased penetration of distributed generation. The
current electrical grids infrastructure may not be able to endure these changes and
storage of energy produced by solar and wind power generations. One of the most
used approaches to solve this technical issue consists in the storage in batteries of the
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Table 2 Distribution (bymonth) of theRAE of the peak load obtained by using as covariate the previous day
Prev.Day and as prediction methods the conditional mode, conditional median and regression function
respectively

Mode (%) Median (%) Reg. (%)

MAPEm Q0.25 Q0.5 Q0.75 MAPEm Q0.25 Q0.5 Q0.75 MAPEm Q0.25 Q0.5 Q0.75

Jan. 4.2 1.4 3.1 5.2 5.8 1.5 4.3 7.9 5.1 1.8 4.7 7.7

Feb. 5.4 1.9 4.0 8.3 5.9 3.3 4.9 7.8 6.4 3.1 5.4 9.0

Mar. 6.1 2.0 3.7 8.0 5.6 1.9 4.1 8.1 6.0 2.7 4.3 8.5

Apr. 6.7 2.6 4.9 9.4 5.9 2.5 4.1 8.4 4.1 1.5 2.6 5.2

May 4.7 0.5 1.5 9.5 4.6 1.1 2.4 7.8 4.5 1.2 2.8 5.6

Jun. 2.4 0.7 1.2 2.2 3.7 1.2 2.2 5.2 2.9 0.8 2.1 3.0

Jul. 3.1 0.5 1.5 3.2 4.5 1.6 2.5 3.5 2.9 0.6 1.1 2.8

Aug. 3.0 0.6 1.3 3.6 4.0 0.8 2.8 7.3 5.8 1.4 5.6 8.1

Sep. 2.5 0.3 0.8 1.7 3.0 0.5 1.6 2.3 2.7 0.4 0.9 3.1

Oct. 4.0 0.9 2.3 4.4 4.2 1.4 2.4 5.9 3.4 1.3 2.0 4.3

Nov. 5.4 2.0 3.9 7.1 6.8 3.1 5.4 7.1 5.3 2.8 4.3 8.3

Dec. 5.9 2.2 5.5 8.2 6.6 3.1 6.2 9.1 5.4 2.6 4.7 6.1

energy coming from the traditional energy plants (e.g. nuclear, hydraulic,…) and from
renewable energy resources (e.g. solar and wind) during the day and then use it at the
evening and especially over the 3h around the peak (around 7 p.m. in winter and 2 p.m.
in summer). Therefore, an accurate forecast of the energy that will be consumed in the
evening allows to optimize the capacity of the storage and consequently to increase
the batteries life.

In this subsection, we suggest to solve this forecasting issue by using the mode
regression (Fig. 10). Regarding to the discussion made in the previous subsection, we
use as covariate the load curve of the previous day. Formally, if we consider Zi (t) the
load curve of some day i , then the electrical energy consumed between t1 = 17:30
and t2 = 20:30 (respectively t1 = 12:30 and t2 = 15:30) in winter (respectively, in
summer) is defined as Ei = ∫ t2

t1
Zi (t)dt and measured in Giga-Watt per Hour (GWH).

Therefore, here ϕ(·) is the integral function. As in the previous subsection, the same
data sets and the same evaluation procedures used here.As for the peak load forecasting
(see details in Sect. 3.1), the same choices for the tuning parameters (K , H , d(·, ·),
hK and hH ) are used. As mentioned before, the functional covariable is supposed to
be the last observed daily load curve. Figures 11 and 12 show that conditional mode
approach performs well energy forecasts and that conditional median, as well as,
regression function, under-predict energy for cold days and over-predict it in hot ones.
Figure 13 provides the distribution by month of the daily RAE. We can observe that
accurate results are obtained with the conditional mode predictor. Numerical details,
namely monthly MAPE, first quartile Q0.25, the median Q0.5 and the third quartile
Q0.75, of the obtained errors are given in Table 3. We can see again that conditional
mode performs better the forecasts of the consumed energy.
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Fig. 10 Observed daily consumed energy in 2005 versus its predicted values

Fig. 11 Examples of energy demand forecast using conditional mode, conditional median and regression
function for eight consecutive days

4 Proofs

In order to prove our results, we introduce some further notation. Let

f̄ϕ,n(x, y) = 1

nhHE[Δ1(x)]
n∑

i=1

E

[
Δi (x)H

(
y − ϕ(Zi )

hH

)
| Fi−1

]
.

and

l̄n(x) = 1

nE(Δ1(x))

n∑
i=1

E (Δi (x)|Fi−1) .

Define the conditional bias of the conditional density estimate ofϕ(Zi ) given X = x
as
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Fig. 12 Observed daily consumed energy in 2005 versus its predicted values

Fig. 13 Distribution (by month) of the daily RAE of the consumed energy

Bϕ,n(x, y) = f̄ϕ,n(x, y)

l̄n(x)
− gϕ(y|x).

Consider now the following quantities

Rϕ,n(x, y) = −Bϕ,n(x, y)(ln(x) − l̄n(x)),

and

Qϕ,n(x, y) = ( fϕ,n(x, y) − f̄ϕ,n(x, y)) − gϕ(y|x)(ln(x) − l̄n(x)).

It is then clear that the following decomposition holds

gϕ,n(y|x) − gϕ(y|x) = Bϕ,n(x, y) + Rϕ,n(x, y) + Qϕ,n(x, y)

ln(x)
. (7)
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Table 3 Distribution (by month) of the relative absolute errors of the energy consumed obtained by using
as covariate the previous day Prev.Day and as prediction methods the conditional mode, conditional
median and regression function respectively

Mode (%) Median (%) Reg. (%)

MAPEm Q0.25 Q0.5 Q0.75 MAPEm Q0.25 Q0.5 Q0.75 MAPEm Q0.25 Q0.5 Q0.75

Jan. 4.3 1.3 3.4 5.9 5.7 1.6 4.5 8.1 5.4 2.2 4.8 8.2

Feb. 5.0 2.6 4.0 5.0 5.7 2.7 5.0 6.9 6.2 2.6 6.1 8.2

Mar. 8.6 2.4 3.8 10.9 6.3 2.0 4.7 8.6 6.6 2.0 5.6 9.0

Apr. 6.8 3.0 5.2 8.8 6.4 1.3 4.3 10.3 4.7 1.1 2.6 5.5

May 6.4 1.8 3.9 10.6 5.2 0.6 2.7 9.1 5.7 1.5 3.9 8.2

Jun. 3.6 1.1 2.0 3.5 4.0 1.1 2.6 4.7 3.5 1.2 2.1 3.9

Jul. 3.9 0.9 2.2 4.4 4.8 1.1 2.6 6.0 4.0 1.2 1.9 4.3

Aug. 3.2 0.5 2.2 4.3 4.6 0.9 2.2 8.2 6.9 2.7 6.9 9.3

Sep. 2.5 0.3 1.0 1.7 4.4 2.1 3.6 4.5 3.3 1.1 1.6 3.5

Oct. 4.5 1.2 3.8 6.1 5.5 2.9 5.1 8.6 3.7 1.1 2.5 4.9

Nov. 5.2 2.1 3.8 7.7 7.6 3.7 6.0 7.7 5.3 2.2 3.7 8.4

Dec. 5.8 2.2 4.8 8.7 6.5 2.7 5.7 9.0 5.4 3.0 4.8 7.0

The proofs of our results need the following lemmas as tools for which details of
their proofs may be found in Laïb and Louani (2011).

Lemma 1 Let (Xn)n≥1 be a sequence of martingale differences with respect to the
sequence of σ -fields (Fn = σ(X1, · · · , Xn))n≥1, where σ(X1, · · · , Xn) is the σ -
field generated by the random variables X1, · · · , Xn. Set Sn = ∑n

i=1 Xi . Suppose
that the random variables (Xi )i≥1 are bounded by a constant M > 0, i.e., for any
i ≥ 1, |Xi | ≤ M almost surely, and E(X2

i |Fi−1) ≤ d2
i almost surely. Then we have,

for any λ > 0, that

P(|Sn| > λ) ≤ 2 exp

{
− λ2

4Dn + 2Mλ

}
,

where Dn = ∑n
i=1 d2

i .

Lemma 2 Assume that conditions A1 ((i), (ii), (iv)) and A2 hold true. For 1 ≤ j ≤
2 + δ for some δ > 0, we have

(i)
1

φ(hK )
E[Δ j

i (x)|Fi−1] = M j fi,1(x) + Oa.s

(
ψi,x (hK )

φ(hK )

)
,

(i i)
1

φ(hK )
E[Δ j

1(x)] = M j f1(x) + o(1),

where M j = K j (1) −
∫ 1

0
(K j )′τ0(u)du.
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Proof of Proposition 1 Considering the decomposition (7), the proof follows from
Lemmas 3, 4, 5 and 6 given hereafter, establishing respectively the convergence of
ln(x) to 1 together with the rate convergence of ln(x)− l̄n(x) to zero and the orders of
terms Bϕ,n(x, y), Rϕ,n(x, y) and Qϕ,n(x, y). Note that, due to the condition (3), the
term Rϕ,n(x, y) is negligible as compared to the term Bϕ,n(x, y). 
�
Lemma 3 Under assumptions A1 and A2, we have

(i) ln(x) − l̄n(x) = Oa.s

(√
log(n)

nφ(hK )

)
,

(ii) limn→∞ ln(x) = limn→∞ l̄n(x) = 1, a.s.

Proof of Lemma 3 The results follow by making use of Lemma 1 and Lemma 2 in
Laïb and Louani (2011). Details of the proof may be found in Laïb and Louani (2010).


�
Lemma 4 Under assumptions A1, A2, A3(iv), A4(i) and A5, we have, as n → ∞,

sup
ϕ∈C

sup
y∈Sϕ

( f̄ϕ,n(x, y) − l̄n(x)gϕ(y|x)) = Oa.s.(h
β
K + hH

ν).

Proof of Lemma 4 By condition A5 with j = 0, we have

f̄ϕ,n(x, y) = 1

nhHE[Δ1(x)]
n∑

i=1

E

[
Δi (x)E

(
H

(
y − ϕ(Zi )

hH

)
| Xi

)
|Fi−1

]
.

A change of variables and the fact that
∫

R

H(t)dt = 1 allow us to write

E

[
H

(
y−ϕ(Zi )

hH

)
| Xi

]
= hH

∫

R

H(t)[gϕ(y−thH |Xi ) − gϕ(y|x)]dt+hH gϕ(y|x)

=: Ji,ϕ + hH gϕ(y|x).

Thus,

f̄ϕ,n(x, y) = gϕ(y|x)

nE[Δ1(x)]
n∑

i=1

E
[
Δi (x)|Fi−1

]

+ 1

nhHE[Δ1(x)]
n∑

i=1

E
[
Δi (x)Ji,ϕ |Fi−1

]

=: l̄n(x)gϕ(y|x) + S2.

Using condition A3(iv), one may write

|S2| ≤ 1

nhHE[Δ1(x)]
n∑

i=1

E
[
Δi (x)|Ji,ϕ ||Fi−1

]
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≤ 1

nE[Δ1(x)]
n∑

i=1

E

[
Δi (x)

{∫

R

H(t)
(|t |νhH

ν + (d(x, Xi ))
β
)

dt

}
|Fi−1

]

≤ Cx

{
hH

ν

∫

R

|t |ν H(t)dt + hβ
K

}
1

nE[Δ1(x)]
n∑

i=1

E
[
Δi (x)|Fi−1

]
.

Moreover, considering Lemma 2 in Laïb and Louani (2011) combined with the con-
dition A4(i) imply that

f̄ϕ,n(x, y) − l̄n(x)gϕ(y|x) = Oa.s.

(
hβ

K + hH
ν
)

,

where Oa.s. does not depend on ϕ ∈ C. 
�
The following Lemma describes the asymptotic behavior of the conditional bias

term Bϕ,n(x, y) as well as that of Rϕ,n(x, y) and Qϕ,n(x, y).

Lemma 5 Under conditions A1, A2, A3(ii), A4(i) and A5, we have

sup
ϕ∈C

sup
y∈Sϕ

|Bϕ,n(x, y)| = Oa.s.(h
β
K + hH

ν), (8)

sup
ϕ∈C

sup
y∈Sϕ

|Rϕ,n(x, y)| = Oa.s.

(
(hβ

K + hH
ν)

(√
log(n)

nφ(hK )

))
. (9)

Moreover, when hypotheses (3)–(4) are satisfied, we have

sup
ϕ∈C

sup
y∈Sϕ

|Qϕ,n(x, y)| = Oa.s.

(
ηhH

−2
)

+ Oa.s. (λn) + Oa.s

((
log n

nφ(hK )

)1/2
)

.

(10)

Proof of Lemma 5 Observe that

Bϕ,n(x, y) = f ϕ,n(x, y) − gϕ(y|x)ln(x)

ln(x)
:= B̃ϕ,n(x, y)

ln(x)
.

Making use of Lemma 4, we obtain supϕ∈C supy∈Sϕ
|B̃ϕ,n(x, y)| = Oa.s.(h

β
K +hH

ν).

The statement (8) follows then from the second part of Lemma 3.
To deal now with the quantity Rϕ,n(x, y), write it as

Rϕ,n(x, y) = − B̃ϕ,n(x, y)

ln(x)
(ln(x) − l̄n(x)).

Therefore, the statement (9) follows from the statement (8) combined with Lemma 3
(i).
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In order to check the result (10), recall that

Qϕ,n(x, y) = ( fϕ,n(x, y) − f̄ϕ,n(x, y)) − gϕ(y|x)(ln(x) − l̄n(x)).

Therefore the statement (10) results fromLemma3 and the use of Lemma6 established
hereafter. This completes the proof of Lemma 5. 
�

The following Lemma is needed as a step in proving Theorem 1

Lemma 6 Under assumptions A1, A2, A3, A4(ii), A5 together with hypotheses (3)–
(4), for n large enough, we have

sup
ϕ∈C

sup
y∈Sϕ

| fϕ,n(x, y) − f̄ϕ,n(x, y)| = Oa.s.

(
ηhH

−2
)

+ Oa.s. (λn) .

Proof of Lemma 6 Recall that, for any ϕ ∈ C,

Sϕ = [θϕ(x) − ξ, θϕ(x) + ξ ].

Let ϕ1, ϕ2 ∈ C and, for any ε > 0, define the set

Sε
ϕ2

= {y ∈ R : |y − Θϕ2(x)| ≤ ξ + ε}.

It is easily seen, by condition A3(i), that, for any ε > 0, there exists η > 0 for which
the fact that ϕ1 ∈ B(ϕ2, η) implies Sϕ1 ⊂ Sε

ϕ2
. Consider a grid (ϕ j )1≤ j≤N (η,C,dC) on

the space C such that dC(ϕi , ϕ j ) for any i �= j . Therefore, we have

sup
ϕ∈C

sup
y∈Sϕ

| fϕ,n(x, y) − f̄ϕ,n(x, y)|

≤ max
1≤ j≤N (η,C,dC)

sup
ϕ∈B(ϕ j ,η)

sup
y∈Sϕ

| fϕ,n(x, y) − f̄ϕ,n(x, y)|

≤ max
1≤ j≤N (η,C,dC)

sup
ϕ∈B(ϕ j ,η)

sup
y∈Sε

ϕ j

| fϕ,n(x, y) − f̄ϕ,n(x, y)|. (11)

Using now the compactness of Sε
ϕ j

and the fact that its length is 2(ξ + ε) for any ϕ j ,

we can write Sε
ϕ j

⊂ ∪dε,n
k=1Sε

ϕ j ,k
where Sε

ϕ j ,k
= (tεϕ j ,k

− mn; tεϕ j ,k
+ mn) and mn and

dε,n are such that dε,n = Cεm−1
n for some positive constant Cε . Moreover, we have

sup
y∈Sε

ϕ j

| fϕ,n(x, y) − f̄ϕ,n(x, y)| ≤ max
1≤k≤dε,n

sup
y∈Sε

ϕ j ,k

| fϕ,n(x, y) − fϕ,n(x, tεϕ j ,k)|

+ max
1≤k≤dε,n

| fϕ,n(x, tεϕ j ,k) − f̄ϕ,n(x, tεϕ j ,k)|
+ max

1≤k≤dε,n
sup

y∈Sε
ϕ j ,k

| f̄ϕ,n(x, tεϕ j ,k) − f̄ϕ,n(x, y)|

=: Jϕ,n,1 + Jϕ,n,2 + Jϕ,n,3. (12)
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Making use of A4(ii), we obtain

Jϕ,n,1 ≤ 1

nhHE[Δ1(x)] max
1≤k≤dε,n

sup
y∈Sε

ϕ j ,k

n∑
i=1

Δi (x)

∣∣∣∣∣H
(

y − ϕ(Zi )

hH

)
− H

(
tεϕ j ,k

− ϕ(Zi )

hH

)∣∣∣∣∣

≤ CH mnhH
−2ln(x). (13)

Similarly, we have also

Jϕ,n,3 ≤ CH mnhH
−2l̄n(x). (14)

Therefore,

max
1≤ j≤N (η,C,dC)

sup
ϕ∈B(ϕ j ,η)

(
Jϕ,n,1 + Jϕ,n,3

) ≤ CH mnhH
−2 (ln(x) + l̄n(x)

)
. (15)

Using Lemma 3(ii), it follows that

max
1≤ j≤N (η,C,dC)

sup
ϕ∈B(ϕ j ,η)

(
Jϕ,n,1 + Jϕ,n,3

) = Oa.s.

(
mnhH

−2
)

. (16)

To identify the convergence rate to zero of the term max
1≤ j≤N (η,C,dC)

sup
ϕ∈B(ϕ j ,η)

Jϕ,n,2,

observe that

max
1≤ j≤N (η,C,dC)

sup
ϕ∈B(ϕ j ,η)

Jϕ,n,2

≤ max
1≤ j≤N (η,C,dC)

sup
ϕ∈B(ϕ j ,η)

max
1≤k≤dε,n

| fϕ,n(x, tεϕ j ,k) − fϕ j ,n(x, tεϕ j ,k)|

+ max
1≤ j≤N (η,C,dC)

max
1≤k≤dε,n

| fϕ j ,n(x, tεϕ j ,k) − f̄ϕ j ,n(x, tεϕ j ,k)|
+ max

1≤ j≤N (η,C,dC)
sup

ϕ∈B(ϕ j ,η)

max
1≤k≤dε,n

| f̄ϕ j ,n(x, tεϕ j ,k) − f̄ϕ,n(x, tεϕ j ,k)|

=: Jn,1 + Jn,2 + Jn,3. (17)

By the same arguments as in the statement (15), we can show, under ConditionA4(ii),
that

(
Jn,1 + Jn,3

) ≤ CH ηhH
−2 (ln(x) + l̄n(x)

) = Oa.s.

(
ηhH

−2
)

. (18)

We have to deal now with the middle term Jn,2. Observe that
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P
(
Jn,2 > λ

) = P

(
max

1≤ j≤N (η,C,dC)
max

1≤k≤dε,n
| fϕ j ,n(x, tεϕ j ,k) − f̄ϕ j ,n(x, tεϕ j ,k)| > λ

)

≤
N (η,C,dC)∑

j=1

dε,n∑
k=1

P

(
1

nhH

∣∣∣∣∣
n∑

i=1

Li,ϕ j (x, tεϕ j ,k)

∣∣∣∣∣ ≥ λ

)
,

where Li,ϕ j (x, y) = 1
E[Δ1(x)]

[
Δi (x)H(

y−ϕ j (Zi )

h H
) − E

[
Δi (x)H(

y−ϕ j (Zi )

h H
)| Fi−1

]]
.

Notice that Li,ϕ j (x, y) is a martingale difference bounded by the quantity M :=
2K̄ H

φ(hK )[M1 f1(x) + o(1)] . In fact, since the kernel K and the function H are bounded,

it follows easily in view of Lemma 2 (ii) in Laïb and Louani (2011) that

|Li,ϕ j (x, y)| ≤ 2K̄ H

E[Δ1(x)] = 2K̄ H

φ(hK )[M1 f1(x) + o(1)] ,

where H := supy∈R H(y) and K := supy∈R K (y). Observe now that

E[(Li,ϕ j (x, tεϕ j ,k))
2|Fi−1]

≤ 1

(E[Δ1(x)])2E
⎡
⎣
(

Δi (x)H

(
tεϕ j ,k

− ϕ j (Zi )

hH

))2

| Fi−1

⎤
⎦ .

Therefore, by condition A5, we have

E

⎡
⎣
(

Δi (x)H

(
tεϕ j ,k

− ϕ j (Zi )

hH

))2

| Fi−1

⎤
⎦

= E

⎡
⎣(Δi (x))2 E

⎡
⎣
(

H

(
tεϕ j ,k

− ϕ j (Zi )

hH

))2

|Gi−1

⎤
⎦ | Fi−1

⎤
⎦

= E

⎡
⎣(Δi (x))2 E

⎡
⎣
(

H

(
tεϕ j ,k

− ϕ j (Zi )

hH

))2

|Xi

⎤
⎦ | Fi−1

⎤
⎦

= E

[
(Δi (x))2

∫

R

(
H

(
u

hH

))2

gϕ j (t
ε
ϕ j ,k − u|Xi )du | Fi−1

]

:= E

[
(Δi (x))2 Ti,1 | Fi−1

]
+ T2E

[
(Δi (x))2 | Fi−1

]
,

where we have set Ti,1 = ∫
R

(
H
(

u
h H

))2 (
gϕ j (t

ε
ϕ j ,k

− u|Xi ) − gϕ j (t
ε
ϕ j ,k

|x)
)

du and

T2 = ∫
R

(
H
(

u
h H

))2
gϕ j (t

ε
ϕ j ,k

|x)du. Subsequently, for η > 0, we have
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Ti,1 ≤
∫

|u|≤η

(
H

(
u

hH

))2 ∣∣∣gϕ j (t
ε
ϕ j ,k − u|Xi ) − gϕ j (t

ε
ϕ j ,k |x)

∣∣∣ du

+
∫

|u|>η

(
H

(
u

hH

))2 ∣∣∣gϕ j (t
ε
ϕ j ,k − u|Xi ) − gϕ j (t

ε
ϕ j ,k |x)

∣∣∣ du

≤ hH sup
|u|≤η

|gϕ(tεϕ j ,k − u|Xi ) − gϕ j (t
ε
ϕ j ,k |x)|

∫

|u|≤η/h H

(H(u))2 du

+ hH sup
|u|>η/h H

(H(u))2 + hH gϕ j (t
ε
ϕ j ,k |x)

∫

|u|>η/h H

(H(u))2 du;

Condition A3(iv) allows us, for any η > 0, to write

Ti,1 ≤ hH Cx (|η|ν + d(x, Xi )
β)

∫

|u|≤η/h H

(H(u))2 du

+ hH sup
|u|>η/h H

(H(u))2 + hH gϕ j (t
ε
ϕ j ,k |x)

∫

|u|>η/h H

(H(u))2 du.

Thus,

E

[
(Δi (x))2 Ti,1 | Fi−1

]

≤ hHE

[
(Δi (x))2

(
Cx (|η|ν + d(x, Xi )

β)

∫

|u|≤ η
h H

H2(u)du

+ sup
|u|> η

h H

H2(u) + gϕ j (t
ε
ϕ j ,k |x)

∫

|u|> η
h H

H2(u)du

)
| Fi−1

]

≤ hH

(
Cx (|η|ν + hβ

K )

∫

|u|≤η/h H

(H(u))2 du + sup
|u|> η

h H

H2(u)

+ gϕ j (t
ε
ϕ j ,k |x)

∫

|u|> η
h H

H2(u)du

)
E

[
(Δi (x))2 | Fi−1

]
.

On another hand, we can see easily, for some positive constant C0, that

T2E
[
(Δi (x))2 | Fi−1

]
≤ C0hHE

[
(Δi (x))2 | Fi−1

]
.

Therefore, since H is bounded and hH → 0, it follows then that there exists a constant
C1 > 0 such that

E

⎡
⎣
(

Δi (x)H

(
tεϕ j ,k

− ϕ(Zi )

hH

))2

| Fi−1

⎤
⎦≤C1hHE

[
(Δi (x))2 | Fi−1

]
as n →∞.

Furthermore, using Condition (A1), which supposes almost surely that fi,1 is bounded
by a deterministic function b(x) and that ψi,x (hK ) ≤ φ(hK ) as hK → 0, together
with Lemma 2 in Laïb and Louani (2011), we have for n large enough
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E[(Li,ϕ j (x, tεϕ j ,k))
2|Fi−1] ≤ C1hH

(E[Δ1(x)])2E
[
(Δi (x))2 | Fi−1

]

≤ C1hH

φ(hK )[M2
1 f 21 (x) + o(1)] [M2bi (x) + 1] =: d2

i .

Moreover, using Conditions A1(iii), (v), one may write

4Dn

n
+ 2MhH λ = hH

φ(hK )

[
4C1[M2D(x) + 1]
M2

1 f 21 (x) + o(1)
+ 4λK̄ H̄

M1 f1(x) + o(1)

]

and
nhH

2λ2

4Dn/n + 2MhH λ
= nhH φ(hK )λ2Cε(x), where

Cε(x) = M1 f1(x)

4
.

1
C1(M2D(x)+1)

M1 f1(x)
+ λH̄ K̄ + o(1)

.

Consequently,

P

(
1

nhH

∣∣∣∣∣
n∑

i=1

Li,ϕ j (x, tεϕ j ,k)

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

{
−nhH φ(hK )λ2Cε(x)

}
.

Choosing λ = λn and mn = η, we obtain

P
(
J2,n ≥ λn

) ≤ 2N (η, C, dC)dε,n exp
{
−nhH φ(hK )λ2nCε(x)

}

≤ 2 exp

{
−λ2nnhH φ(hK )

[
Cε(x) − cε logN (η, C, dC)

ηλ2nnhH φ(hK )

]}
.

Taking into account the condition (4), it suffices to use the Borel–Cantelli Lemma to
conclude the proof. 
�
Proof of Theorem 1 Taylor series expansion of the function gϕ(Θ̂ϕ,n(x)|x) around
Θϕ(x) together with the definition of Θϕ(x) yield

gϕ

(
Θ̂ϕ,n(x)|x

)
= gϕ

(
Θϕ(x)|x) +

(
Θ̂ϕ,n(x) − Θϕ(x)

)2 1

2
g(2)
ϕ

(
Θ∗

ϕ,n(x)|x) ,(19)

where Θ∗
ϕ,n is between Θ̂ϕ,n(x) and Θϕ(x). Subsequently, considering the statement

(19) we obtain

(Θ̂ϕ,n(x) − Θϕ(x))2|g(2)(Θ∗
ϕ,n(x)|x)| = O

(
sup
y∈Sϕ

|gn(y|x) − g(y|x)|
)

. (20)

To end the proof of the theorem, we need the following lemma which deals with the
uniform (with respect to ϕ ∈ C) asymptotic behavior of the conditional mode estimate.
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Lemma 7 Under assumptions of Proposition 1, we have

lim
n→∞ sup

ϕ∈C
|Θ̂ϕ,n(x) − Θϕ(x)| = 0 a.s.

Proof of Lemma 7 Since by the assumption A3(ii), uniformly in ϕ ∈ C, gϕ(·|x) is
uniformly continuous on the compact set Sϕ on which θϕ(x) is the unique mode.
Then, proceeding as in Parzen (1962), for any ε > 0, there exists ζ > 0 such that, for
any y ∈ Sϕ ,

sup
ϕ∈C

|Θϕ(x) − y| ≥ ε ⇒ sup
ϕ∈C

|gϕ(Θϕ(x)|x) − gϕ(y|x)| ≥ ζ. (21)

On another hand, we have

sup
ϕ∈C

|gϕ(Θ̂ϕ,n(x)|x) − gϕ(Θϕ(x)|x)| ≤ sup
ϕ∈C

|gϕ,n(Θ̂ϕ,n(x)|x) − gϕ(Θ̂ϕ,n(x)|x)|

+ sup
ϕ∈C

|gϕ,n(Θ̂ϕ,n(x)|x) − gϕ(Θϕ(x)|x)|
≤ sup

ϕ∈C
sup
y∈Sϕ

|gϕ,n(y|x) − gϕ(y|x)|

+ sup
ϕ∈C

| sup
y∈Sϕ

gϕ,n(y|x) − sup
y∈Sϕ

gϕ(y|x)|

≤ 2 sup
ϕ∈C

sup
y∈Sϕ

|gϕ,n(y|x) − gϕ(y|x)|. (22)

Using the statements (21) and (22) combined with Proposition 1, we obtain the result.

�

We come back now on the proof of the Theorem.Making use of Lemma 7 combined
with conditions A3(iii)–(iv), we deduce that

lim
n→∞ sup

ϕ∈C
|g(2)(Θ∗

ϕ,n(x)|x)| = sup
ϕ∈C

|g(2)(Θϕ(x)|x)| = Φ(x) �= 0. (23)

Moreover, the statements (20), (23) imply that

sup
ϕ∈C

(Θ̂ϕ,n(x) − Θϕ(x))2 = O

(
sup
ϕ∈C

sup
y∈Sϕ

|gn(y|x) − g(y|x)|
)

, (24)

which is enough, while considering Proposition 1, to complete the proof of Theorem 1.

�
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