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Abstract In recent literature there has been a growing interest in the construction of
covariance models for multivariate Gaussian random fields. However, effective esti-
mation methods for these models are somehow unexplored. The maximum likelihood
method has attractive features, but when we deal with large data sets this solution
becomes impractical, so computationally efficient solutions have to be devised. In
this paper we explore the use of the covariance tapering method for the estimation of
multivariate covariance models. In particular, through a simulation study, we compare
the use of simple separable tapers with more flexible multivariate tapers recently pro-
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posed in the literature and we discuss the asymptotic properties of the method under
increasing domain asymptotics.

Keywords Cross Covariance estimation · Large datasets · Multivariate compactly
supported correlation function · Multivariate Gaussian process

1 Introduction

In the last years there has been a great demand for models describing the evolution
of environmental or geophysical spatial processes. In particular, there is a consider-
able need for models able to catch the simultaneous behavior of different variables
observed in the same spatial region. The analysis of this kind of data requires not
only the specification of the dependence within the phenomenon of interest but also
the dependence between other phenomena observed in the same spatial domain. The
related statistical modeling is often restrained by computational challenges when the
data sets get larger. For example, modeling local air quality as in Arima et al. (2012)
and Fontanella and Ippoliti (2003) or global carbon budget (Vetter et al. 2015) often
expresses the need for tools capable to handle such complexity.

Multivariate Gaussian random fields (MGRF throughout) are important tools to
describe such dependence (Wackernagel 2003).Nevertheless,modeling the covariance
function of such MGRF is not an easy task. The linear model of corregionalization
(LMC) has been the cornerstone in multivariate geostatistics for many years despite
the drawbacks outlined in Porcu et al. (2013), Gneiting et al. (2010). For instance,
the smoothness of any component of the MGRF is restricted to that of the roughest
underlying univariate process. In order to overcome these problems, new multivariate
covariancemodels have been proposed in the last years [for a recent review see Genton
andKleiber (2015)]. Among them,Gneiting et al. (2010) andApanasovich et al. (2012)
extend the Matérn model to the multivariate case. These models are very flexible and
can capture both the marginal and the cross spatial dependence as well as the level of
smoothness associated and the correlation between the components. Bevilacqua et al.
(2015) compare the Matérn and the LMC models in terms of flexibility.

Effective estimation methods for multivariate covariance models are somehow
unexplored. Maximum likelihood (ML) is probably the best method of estimation
when dealing with MGRF, but the exact computation of the likelihood requires cal-
culation of the inverse and determinant of the covariance matrix, and this evaluation
is slow when the number of observations is large. Specifically, the computational
problem is generally the Cholesky decomposition of the covariance matrix, whose
computational cost in the multivariate case is of order O(np)3 where n is the number
of location sites for each of the p components of the MGRF. In the univariate case,
different approaches have been proposed in order to find estimation methods with a
good balance between computational complexity and statistical efficiency for large
data sets. Some of these approaches proposed specific type of composite likelihood as
in Vecchia (1988), Stein et al. (2004), Bevilacqua et al. (2012), Bevilacqua and Gaetan
(2015), and Eidsvik et al. (2014), or stochastic approximations of the score function
as in Stein et al. (2012, 2013).
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Another possible approach is to consider an approximation of the covariancematrix,
as in the covariance tapering (CT) method (Kaufman et al. 2008). With this approach,
certain elements of the covariance matrix, that correspond to pairs with large distance,
are set to zero by multiplying elementwise the covariance matrix with a taper matrix,
this last being a positive definite sparse correlation matrix coming from a compactly
supported correlation function. Then sparse matrix algorithms can be used to evaluate
efficiently an approximate likelihood. Kaufman et al. (2008) propose two types of
estimation based on CT. The first type, called one-taper, leads to a biased estimating
equation and it is computationallymore efficient with respect to the second type, called
two-taper. Nervetheless the second type leads to an unbiased estimating equation and,
under increasing domain, asymptotic properties of the method are well known (Shaby
and Ruppert 2012).

For univariate Gaussian fields there is a large literature on compactly supported
correlation functions [seeGneiting (2002) and the references therein] but the extension
to the multivariate case is not trivial. Recently, Daley et al. (2015) have introduced a
class of multivariate models with possibly different compact supports, extending the
Wendland compactly supported correlation functions to the multivariate case.

In this paper we propose the multivariate two-taper CT method for the estimation
of the MGRF. In particular, we make use of the multivariate tapers proposed in Daley
et al. (2015). We compare, through a simulation study, the use of separable tapers with
a common compact support, with more flexible tapers allowing different compact sup-
ports, when estimating a bivariateMatérn model and a LMC. Asymptotic properties of
the proposed method (under increasing domain asymptotics) are discussed extending
the results in Shaby and Ruppert (2012).

The paper is organized as follows. In Sect. 2 we review some possible models for
building multivariate tapers, while Sect. 3 describes the multivariate CT method and
its asymptotic properties. In Sect. 4, through a simulation study, we compare CT with
ML from statistical and computational viewpoint and also we compare the CT using
separable and nonseparable tapers. Finally, in Sect. 5 we give some conclusions.

2 Multivariate covariance models and tapers

For the remainder of the paper, we denote Z(s) = {(Z1(s), . . . , Z p(s))T }, a p-variate
weakly stationary Gaussian field with continuous spatial index s ∈ R

d . The assump-
tion of Gaussianity implies that the first and second ordermoments determine uniquely
the finite dimensional distributions. In particular, we shall suppose weak stationarity
throughout, so that the mean vector μ = E(Z) is constant and the covariance function
between Z(s1) and Z(s2), for any pair s1, s2 in the spatial domain, is represented by
a mapping C : Rd → Mp×p defined through

C(h) = [
Ci j (h)

]p
i, j=1 = [

cov
(
Zi (s1), Z j (s2)

)]p
i, j=1 , h = s1 − s2 ∈ R

d . (1)

The function C(h) is called matrix valued covariance function and when p = 2 we
call it bivariate covariance function. Here, Mp×p is the set of squared, symmetric and
positive definite matrices. For i = j , the functions Cii are called autocovariances
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or marginal covariances of Zi (s), i = 1, . . . , p, whilst for i �= j the mapping Ci j

is called cross-covariance between Zi (s) and Z j (s) at the spatial lag h ∈ R
d . The

matrix-valued mapping C must be positive definite, which means that, for a given
realization Z = (Z(s1)T , . . . , Z(sn)T )T , the (np) × (np) covariance matrix Σ :=
[C(si − s j )]ni, j=1 is positive definite.

We shall assume throughout that the mapping C comes from a parametric family
of matrix valued covariances {C(·; θ), θ ∈ Θ ⊆ Rk}, with Θ an arbitrary parametric
space. Here, we shall list those parametric models that will be used throughout the
paper. One of them is the linear model of coregionalization, that has been popular for
over thirty years (Wackernagel 2003). It consists of representing the p-variateGaussian
field as a linear combination of q independent univariate fields, with q = 1, . . . , p.
The resulting matrix valued covariance function takes the form:

C(h; θ) =
[ q∑

s=1

αisα js Rs(h,ψ s)

]p

i, j=1

, (2)

with A := [αlm]
p,q
l,m=1 being a p × q dimensional matrix with full rank, and with

Rs(·,ψ s)with s = 1, . . . , q, being a univariate parametric correlation model. Clearly,
we have θ = (vec(A)T ,ψ1

T , . . . ,ψq
T )T . Constructive criticism about this model

has been expressed by Gneiting et al. (2010), Apanasovich et al. (2012) and Daley
et al. (2015). For instance, if αlm �= 0 for each l,m the smoothness of any component
defaults to that of the roughest latent process.

Another popular construction, called separable, is obtained through:

C(h, θ) = [
ρi jσiσ j R(h,ψ)

]p
i, j=1 , ρi i = 1, (3)

where R(·,ψ) is a univariate parametric correlation model, σ 2
i > 0, i = 1, . . . , p, are

the marginal variances and the ρi j expresses the marginal correlation between Zi (s)
and Z j (s). In this case θ = (ρ,ψT , σ 2

1 , . . . , σ 2
p)

T where ρ is the vector containing
all the pairwise correlations ρi j , i = 1, . . . p − 1, j = i + 1, . . . , p. This type of
construction assumes that the components of the multivariate random field have the
same spatial correlation structure. Therefore, the model is not able to capture the
different characteristics of the components.

A generalization of model (3) which allows to overcome this drawback is:

C(h, θ) = [
ρi jσiσ j R(h;ψ i j )

]p
i, j=1

, ρi i = 1. (4)

In this general approach, the difficulty lies in deriving conditions on the model para-
meters that result in a valid multivariate covariance model. For instance Gneiting et al.
(2010) proposed model (4) with R(h, .) equal to the Matérn correlation model:

R(h;ψ) = 21−ν

Γ (ν)

(‖h‖
α

)ν

Kν

(‖h‖
α

)
, (5)
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where ψ = (α, ν), α > 0 is the scale parameter, ν > 0 indexes differentiability at the
origin and Kν(·) is the modified Bessel function of the second kind of order ν. In the
bivariate case, they find necessary and sufficient conditions on the parameters, whilst
for the case p ≥ 3 they only offered sufficient conditions. This kind of construction
allows for a nice closed form, together with the possibility of different spatial scale
and smoothness parameters and different variances.

2.1 Multivariate tapers

In the univariate case a taper is a correlation function being additionally compactly
supported on a ball of Rd with given radius. Notable examples of tapers are the
following.

We denote (x)+ for the positive part of x ∈ R. The Askey function (Askey 1973)
defined here as

Aν(h; b) =
(
1 − ‖h‖

b

)ν

+
, h ∈ R

d , b > 0, (6)

is compactly supported over the ball ofRd with radius b. Positive definiteness inRd is
guaranteed whenever ν ≥ (d+1)

2 (Zastavnyi and Trigub 2002). Gneiting (2002) argues
convincingly about the need for tapers being smooth at the origin, which is not the case
for the Askey taper. The ingenious Wendland-Gneiting (Gneiting 2002) construction
allows to overcome such a drawback through the use of theMontée operator (Matheron
1962). An example is the C2 Wendland function, that we define as

Wν(h; b) =
(
1 + ν

‖h‖
b

)
Aν(h; b), h ∈ R

d , b > 0, (7)

where ν > (d + 5)/2 in order to preserve positive definiteness in Rd .
For the remainder of the paper, we call a multitaper a matrix valued correlation

function, havingmembers Ri j being compactly supported over balls of arbitrary radius,
and such that the functions on the diagonal (i = j) are univariate tapers. We denote
with RTap a multitaper. Building a multitaper implies a nontrivial mathematical effort
and the reader is referred to paper by Daley et al. (2015) with the details therein. It
might be interesting to have multitapers that allow for

1. possibly different compact supports;
2. possibly different levels of differentiability at the origin;
3. a good balance between the number of parameters to be fixed and the multitaper

flexibility.

The first feature is desirable since each compact support can be chosen in order
to taper the marginal and the cross-covariance matrices in a different way, that is to
fix the level of sparseness for each sub-matrix. The level of differentiability of the
taper is an important feature since it is related to the level of differentiability of the
covariance model to be tapered when considering results under infill asymptotics as
in Furrer et al. (2013) and Du et al. (2009). Let us sketch some possible constructions:
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1. Separable multitapers. This responds to the construction in Eq. (3), with emphasis
on that R must be compactly supported (i.e., a univariate taper as those indicated
above). In this case, the taper can be written as

RTap(h; d) = [
ri j RTap(h; b)]pi, j=1 , b > 0, (8)

where the symmetric matrix A := [ri j ]pi, j=1, is a matrix of fixed coefficients such

that rii = 1, −1 ≤ ri j ≤ 1 and A is positive semidefinite. Here d = (rT , b)T is
the multitaper parameter vector where r is the vector containing all the pairwise
coefficients ri j , i = 1, . . . p − 1, j = i + 1, . . . , p. We write RTap(·; b) for a
univariate taper, as for instance those in Sect. 2.1, where b determines the radius
of the ball ofRd overwhich R is compactly supported. Thus, RTap(·; d) inherits the
compact support and level of differentiability of RTap(h; b). Note that the number

of parameters to be fixed is p(p−1)
2 + 1.

2. Multitapers based on a linear model of coregionalization, so that

RTap(h; d) =
[ q∑

k=1

rikr jk RTap,k(h; bk)
]p

i, j=1

, bk > 0,

with A := [rlm]
p,q
l,m=1 being a p × q dimensional matrix with full rank, and with

RTap,k(·; bk) being a univariate taper. Note that since ∑q
k=1 r

2
ik RTap,k(h; bk) must

be a univariate taper for each i , then
∑q

k=1 r
2
ik = 1 and the number of parameters

to be fixed, i.e. the cardinality of d, is p(q − 1) + q. Moreover, if rlm �= 0
for each l,m then the model shares the same compact support (the minimum of
bi , i = 1, . . . , k) and the same level of differentiability (theminimum between the
levels of differentiability associated to RTap,k(h; bk)). However, it is possible to
fix some coefficients equal to zero in order to attain p different compact supports
and p different levels of differentiability.

3. Nonseparable multitapers, based on the following construction:

RTap(h; d) = [ri j RTap(h, bi j )]pi, j=1, bi j > 0, (9)

with RTap(·; b) being Wendland tapers (one of the entries in Sect. 2.1). Sufficient
conditions for the validity of this construction (which depends on the coefficients
ri j ) are given in Theorem 2 in Daley et al. (2015).

This last model allows to attain different compacts supports for each marginal and
cross-covariance matrix, and the same level of differentiability at the origin. In this
case, the number of parameters to be fixed is p(p − 1) + p.

Table 1 depicts the features of multitapers 1, 2 and 3 in the bivariate and trivariate
case. As expected, there is a sort of trade off between the number of the multitaper
parameters and its flexibility. The separable model is the simplest one, but it attains
common compact supports and same level of differentiability at the origin. The LMC
and the nonseparable multitaper share the same number of parameters but the last
is more flexible from the number of compact supports viewpoint while the LMC
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Table 1 Features of separable, nonseparable and LMC multitaper for p = 2, 3

p = 2 p = 3

N. par. N. comp.supp. N. lev. diff. N. par. N. comp.supp. N. lev. diff.

Separable 2 1 1 4 1 1

LMC 4 2 2 9 3 3

No separable 4 3 1 9 6 1

construction allows for different levels of differentiability at the origin. Since in this
paper we are not interested in different level of differentiability, hereafter we consider
multitapers of the type (9), including the separable multitaper as defined in Eq. (8).

3 Multivariate covariance tapering

Since we are assuming that the state of truth is represented by some parametric family
of matrix–valued covariances {C(·; θ), θ ∈ Θ ⊆ Rk}, we may use the abuse of
notation Σ(θ) for the covariance matrix Σ , in order to emphasize the dependence on
the unknown parameters vector. For a realization Z from a p-variate Gaussian random
field, the log likelihood can be written, up to an additive constant, as

ln(θ) = −1

2
log |Σ(θ)| − 1

2
Z TΣ(θ).−1Z, (10)

Themost time-consuming part when calculating (10) is to evaluate the determinant and
inverse of Σ(θ). The most widely used algorithms, such as Cholesky decomposition,
require up to O((np)3) steps. This can be prohibitive if n is large.

When extending the CT approach proposed in Kaufman et al. (2008) to the mul-
tivariate case, certain elements of the covariance matrix Σ(θ) are set to zero by
multiplying Σ(θ) element by element with a sparse matrix coming from a multi-
taper model. Let us denote with T (d) the np × np matrix associated to a multitaper
RTap(h; d) as for instance those described in Sect. 2.1. The ‘tapered’ covariancematrix
is then obtained through

ΣT (θ) = Σ(θ) ◦ T (d),

where ◦ denotes the Schur product. The multitaper vector parameters d is fixed
including the (possibly different) radiii and these are fixed in a way to determine
the desired level of sparseness for the construction above. Observe that this con-
struction guarantees positive definiteness of ΣT (θ) when T (d) is positive definite or
positive semidefinite with positive diagonal elements (Horn and Johnson 1991). The
multitapered likelihood is defined as:

lT,n(θ, d) = −1

2
log |ΣT (θ)| − 1

2
Z T (ΣT (θ)−1 ◦ T (d))Z, (11)

123



28 M. Bevilacqua et al.

and algorithms for sparsematrices can be exploited in order to compute (11) efficiently.
Under increasing domain, it can be shown that the maximizer of (11) is consistent

and asymptotically Gaussian, extending the result in Shaby and Ruppert (2012). Theo-
rems 1 and 2 in the Supplementary material give conditions for the consistency and the
asymptotically normality of the CT estimator. Let us define the Godambe information
matrix

GT,n(θ , d) = HT,n(θ, d)JT,n(θ , d)−1HT,n(θ , d)T , (12)

where

HT,n(θ , d) = −E
[
∇2lT,n(θ, d)

]
, JT,n(θ , d) = E

[
∇lT,n(θ , d)∇lT,n(θ , d) T

]
.

(13)
The generic entries of the HT,n(θ , d) and JT,n(θ , d) matrices are respectively:

[HT,n(θ, d)]i j = 1

2
tr

{
Bi

(
∂Σ(θ)

∂θ j
◦ T (d)

)}
,

and [JT,n(θ, d)]i j = 1

2
tr

{
[Bi ◦ T (d)]Σ(θ)

[
Bj ◦ T (d)

]
Σ(θ)

}
,

where Bi = ΣT (θ)−1
(

∂Σ(θ)

∂θ i
◦ T (d)

)
ΣT (θ)−1.

Then, under increasing domain it can be shown that the maximizer of (11) has
Gaussian asymptotic distribution with variance covariance matrix equal to the inverse
of the Godambe information (12). As outlined in Shaby and Ruppert (2012), the
requirement of increasing domain is not stated explicitly but rather is implied by
conditions on the eigenvalues of the covariance matrix and its derivatives that in
general are not easy to check. In the Supplementary material, we have showed that
a bivariate exponential separable model satisfies the condition of Theorem 1 and 2
when using a separable taper.

4 Numerical examples

This section is organized in order to answer, through numerical examples, to the
following questions:

1. How does the CT method perform with respect to the the ML from statistical and
computational efficiency point of view?

2. How does the choice of the parameters ri j in the multitapers (8) and (9) affect the
efficiency of the CT method?

3. Does the use of a flexible multitaper (9) allow to improve the statistical efficiency
of the method with respect of a separable taper (8)?

We work under the bivariate case (p = 2) and in particular we consider 400 location
sites, being uniformly distributed on the square [0, 1]2. We consider two bivariate
covariance models, the former being a special case of the model in Eq. (4), obtained
by fixing R(h; .) equal to the exponential model, so that
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C(h, θ) =
[
ρi jσiσ j e

− ‖h‖
ψi j

]2

i, j
, (14)

where ρi i = 1 and θ = (ρ12, ψ11, ψ12, ψ22, σ
2
1 , σ 2

2 )T . The second model we consider
is a special case of the bivariate LMC model in Eq. (2):

C(h; θ) =
[

2∑

k=1

αikα jke
− ‖h‖

ψi

]2

i, j=1

, (15)

where ψi > 0 and [αlm]2l,m=1 is a matrix of rank 2. Following Daley et al. (2015), as
bivariate taper we consider :

RTap(h; d) =
[

ri j

(
1 + 5

‖h‖
bi j

) (
1 − ‖h‖

bi j

)5

+

]2

i, j=1

(16)

obtained from (9) fixing RTap(h, b) = W5(h; b), and d = (b11, b12, b22, r12)T .
For statistical efficiency comparison and, in order to answer to the first question,

we focus on the relative mean square error, defined through RE(θ i ) = MSEML(θ i )

MSET (θ i )
for i = 1, . . . , k, whilst as global measure of relative efficiency we consider:

GRE(θ , k) =
(
det(VML(θ))

det(VT (θ))

)1/k

where Vx , with x = ML , T , is the sample variance covariance matrix of the ML and
CT estimates, k is the number of parameters involved in the estimation and det(A) is
the determinant of the matrix A.

We consider three scenarios (denoted A, B and C), with increasing complexity of
the bivariate exponential model in Eq. (14), and two additional scenarios (denoted
D and E), with increasing complexity of the bivariate LMC model in Eq. (15). For
each scenario, we simulate 1000 realizations from a bivariate zero mean GRF with a
specified bivariate covariance model, and then we estimate using ML and CT, using
both a separable and a nonseparable version of the bivariate taper as in Eq. (16).
All the estimates have been carried out using un upcoming version of the R package
CompRandFld (Padoan and Bevilacqua 2015), avalaible on CRAN. Let us describe
further the five scenarios considered.
Scenario A. We use the model in Eq. (14) with ψ12 = ψ11 = ψ22, i.e. a separable
model. In this case, θ = (ρ12, ψ, σ 2

1 , σ 2
2 )T and we fixed σ 2

1 = σ 2
2 = 1, ψ11 = ψ12 =

ψ22 = ψ = pr/3 with pr = 0.2 (the common practical range) and ρ12 = x, x =
0.1, 0.5, 0.9. For this scenario, we consider a separable bivariate taper as in Eq. (16)
with a common compact support b. Here, we fix b = pr/2 and r12 varying in its range
of permissibility, that is r12 = 0.1, 0.5, 1.

Note thatwefix the compact support as a fraction of the practical range, as suggested
in Kaufman et al. (2008), and in order to answer to the second question, we consider
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Table 2 RE(θ i ) and GRE(θ , 4) for the parameters of the bivariate exponential separable model using a
separable taper with r12 = 0.1, 0.5, 1 when ρ12 = 0.1, 0.5, 0.9 (scenario A)

r12 ρ12 = 0.1 ρ12 = 0.5 ρ12 = 0.9

0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

σ 2
11 0.635 0.636 0.638 0.625 0.630 0.644 0.596 0.591 0.642

σ 2
22 0.681 0.682 0.685 0.635 0.640 0.653 0.598 0.599 0.653

ψ 0.546 0.550 0.556 0.437 0.476 0.557 0.289 0.306 0.560

ρ12 0.314 0.348 0.350 0.367 0.370 0.371 0.341 0.376 0.378

GRE(θ, 4) 0.420 0.431 0.432 0.406 0.413 0.430 0.343 0.369 0.426

different values of r12. The percentage of non zero values in the tapered matrix is
3.2%.Moreover,we considered differentmarginal correlations, i.e. different colocated
correlation parameters, in order to look how the CT estimation is affected by the
strength of the correlation between the components.

Table 2 shows RE(θ i ), i = 1, 2, 3, 4 and GRE(θ , 4) for ρ12 = 0.1, 0.5, 0.9 and
r12 = 0.1, 0.5, 1. Some comments are in order. First, note that we consider only
positive values of the taper parameter r12. In fact it can be easily shown that, in the
bivariate case, the CT estimating equations depend on r212. This means that fixing
positive or negative values of r12 ∈ [−1, 1] leads to the same estimates. Second,
the choice of r12 affects the statistical efficiency. In particular, the scale parameter
is strongly affected by the choice of r12 especially when the correlation between the
component is stronger (ρ12 = 0.9). As expected, the best efficiency is obtained when
r12 = 1. The reason can be well explained in Fig. 1 where the tapered cross-covariance
is shown for the scenario A when ρ12 = 0.9 and r12 = 1, 0.5, 0.1. It is apparent
that when reducing r12 from 1 to 0.1 the resulting tapered cross-covariance function
changes dramatically with respect to the non tapered cross-covariance function. For
this reason, hereafter we consider r12 = 1 when using a separable taper.

Scenario B. Here, we use the model in Eq. (14) with constraints on the scale parame-
ters. Specifically, we set σ 2

1 = σ 2
2 = 1, ψi i = prii/3, i = 1, 2, ψ12 = (ψ11+ψ22)/2

and ρ12 = 0.1, 0.5, 0.9, where pr11 = 0.2 and pr22 = 0.15 are the practical ranges
for the first and second components. Here, θ = (ρ12, ψ11, ψ22, σ

2
1 , σ 2

2 )T . For this
scenario, we consider two possible tapers:

– a separable bivariate taper as in Eq. (16), with a common compact support bi j =
0.0984;

– a nonseparable bivariate taper as in Eq. (16), where we fixed bii = 3 prii/5
i = 1, 2, b12 = min(b11, b22) and r12 = 0.65.

We fix the common compact support in the first taper in such a way that the per-
centage of nonzero values in the tapered matrices is the same for both tapers (3.1%
approximatively). Since the tapered matrices have the same level of sparseness, we
can compare the relative statistical efficiency of CT using both tapers.

Table 3 shows RE(θ i ) , i = 1, 2, 3, 4, 5 and GRE(θ , 5) for both tapers when
ρ12 = 0.1 and ρ12 = 0.5, while Fig. 2 depicts the boxplots for each parameter in the
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Fig. 1 Cross-covariance function with ρ12 = 0.9 (solid line) and tapered cross-covariance function when
r12 = 0.1, 0.5, 1 for scenario A

Table 3 RE(θ i ) andGRE(θ , 5) for the parameters of the bivariate exponential model with contrasts using
a separable and a nonseparable taper when ρ12 = 0.1, 0.5, 0.9 (scenario B)

ρ12 = 0.1 ρ12 = 0.5 ρ12 = 0.9

Sep Nosep Sep Nosep Sep Nosep

σ 2
11 0.890 0.900 0.858 0.866 0.849 0.840

σ 2
22 0.940 0.932 0.869 0.841 0.811 0.767

ρ12 0.431 0.434 0.458 0.426 0.515 0.389

ψ11 0.445 0.595 0.425 0.585 0.421 0.557

ψ22 0.556 0.474 0.535 0.417 0.441 0.272

GRE(θ , 5) 0.508 0.539 0.501 0.527 0.494 0.469

ML case and in the tapering case, using a separable and nonseparable taper, when the
correlation is ρ12 = 0.1. Note that the scale parameters, as expected, are affected by
the choice of the taper. In fact, the relative efficiency ofψ11 ismuch better in the case of
the nonseparable taper, as expected, since the compact support of the first component
in the nonseparable taper is 0.12, while it is 0.0984 in the separable case. On the other
hand, the relative efficiency of ψ22 is slightly better in the separable case, since the
compact support of the second component in the nonseparable taper is 0.09. Despite
these discrepancies in the scale parameters estimation, the overall measure highlights
basically no differences between the two types of tapers.

Scenario C. Here we use the model in Eq. (14), with the setting σ 2
1 = σ 2

2 = 1, ψi j =
pri j/3, i, j = 1, 2 and ρ12 = 0.5, where pr11 = 0.2, pr12 = 0.15 and pr22 = 0.175
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Fig. 2 Boxplots of the bivariate exponential model with constraints estimates using ML, and CT with a
separable and a nonseparable taper when the correlation between the components is 0.1

are the practical ranges. In this case, θ = (ρ12, ψ11, ψ12, ψ22, σ
2
1 , σ 2

2 )T . We consider
the following tapers:

– a separable bivariate taper as in Eq. (16), with a common compact support bi j =
0.1133;

– a nonseparable bivariate taper as in Eq. (16), with bii = 3 prii/5, i = 1, 2, and
b12 = max(b11, b22) and r12 = 0.8.

As before, we fix the common compact support b in the separable taper in such a
way that the percentage of nonzero values in the tapered matrices is the same for the
separable and non separable case (3.97% approximatively).

Table 4 (left panel) shows RE(θ i ) i = 1, 2, 3, 4, 5, 6 and GRE(θ , 6) for both
tapers, when ρ12 = 0.5. As in the scenario B the choice of the taper affects the
efficiency of the parameters. Specifically, the nonseparable taper outperforms the sep-
arable taper in the estimation of ψ11 and ψ12, since the compact support of the first
component and cross compact support are b11 = b12 = 0.12 while the common com-
pact support in the separable taper is bi j = 0.1133. On the other hand, the separable
taper outperform the non separable taper in the estimation of ψ22 since b22 = 0.105.
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Table 4 Left panel RE(θ i ) andGRE(θ , 6) for the parameters of the bivariate full exponential model using
a separable and a nonseparable taper for the case ρ12 = 0.5 (scenario C)

Sep Nosep Sep Nosep

σ 2
11 0.988 0.991 α11 0.733 0.846

σ 2
22 0.972 0.960 α22 0.649 0.770

ρ12 0.964 0.958 α12 0.718 0.824

ψ11 0.668 0.718 α21 0.772 0.862

ψ12 0.721 0.762 ψ1 0.496 0.548

ψ22 0.667 0.499 ψ2 0.689 0.528

GRE(θ , 6) 0.628 0.620 0.643 0.653

Right panel RE(θ i ) and GRE(θ , 6) for the parameters of the LMC model using the same separable and
nonseparable tapers for the case when the correlation is 0.5 (scenario E)

Table 5 RE(θ i ) and GRE(θ , 5) for the parameters of the LMC model with constraints using a separable
and a nonseparable taper when the correlation among the components is 0.1, 0.5, 0.9 (scenario D)

ρ12 = 0.1 ρ12 = 0.5 ρ12 = 0.9

Sep Nosep Sep Nosep Sep Nosep

α11 0.899 0.909 0.876 0.882 0.791 0.754

α22 0.949 0.942 0.920 0.900 0.588 0.515

α12 0.417 0.416 0.468 0.457 0.828 0.769

ψ1 0.451 0.594 0.433 0.550 0.431 0.407

ψ2 0.562 0.476 0.548 0.423 0.535 0.307

GRE(θ , 5) 0.510 0.536 0.503 0.517 0.502 0.456

Nevertheless, as in the previous scenario there are no substantial differences in the
global measure of efficiency.
Scenario D. This scenario is based on the model in Eq. (15), with ψ1 = 0.2/3 ,ψ2 =
0.15/3, αi i = √

1 − x i = 1, 2, and α12 = α21 = √
x , with x = 0.003, 0.067, 0.29.

Using this setting, the bivariate randomfield has unit variances, withmarginal practical
ranges equal to pr11 = 0.2 and pr22 = 0.15 and correlation between the components
approximatively equal to 0.1, 0.5 and 0.9 when x = 0.003, 0.067, 0.29 respectively
In this case, θ = (α11, α12, α22, ψ1, ψ2)

T . We consider the same two tapers used for
scenario B.

Table 5 show RE(θ i ) , i = 1, 2, 3, 4, 5 and GRE(θ , 5) for both tapers. The scale
parameters estimation, as expected, is more sensible to the type of taper. In particular
the nonseparable taper outperforms in the estimation of ψ1 and globally it slightly
outperforms than the separable taper.

Scenario E. For this final scenario, we use the same model and the same set-
ting of the scenario D, but without constraints on the parameters. In this case,
θ = (α11, α12, α21, α22, ψ1, ψ2)

T . As tapers, we use the same as in Scenario C.
Table 4 (right panel) show RE(θ i ) , i = 1, 2, 3, 4, 5, 6 and GRE(θ , 6) for both tapers
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when the correlation is equal to 0.5 (case x = 0.067). The comments of the case D
apply for this case.

In order to answer to the three questions at the begin of the section, we can resume
our findings as follows:

– overall the CT relative efficiency is relatively good (between approximatively 0.4
and 0.6 of global relative efficiency with a percentage of non zero values between
3 and 4%). Increasing the compact support(s) allows to improve the efficiency of
the CT method as confirmed by simulation results not reported here.

– the sign of r12 in (16) does not affect the CT estimation in the bivariate case.
Moreover for the separable taper, r12 should be fixed equal to 1, while in the
nonseparable case it should be fixed equal to the upper bound of its range of
validity, in order to improve the statistical efficiency.

– nonseparable tapers should be used in order to improve the efficiency of CT esti-
mation for specific parameters. In particular, they can be useful if there is some
preference in estimating the scale parameter of a specific component. Neverthe-
less, looking at the global efficiency, there are no substantial differences for CT
using a separable and a nonseparable taper.

As further remark, the statistical efficiency ofCT estimation depends on the strength
of the marginal correlation between the components. Specifically, when decreasing
the correlation, the efficiency improves. Finally, the choice of the marginal compact
supports in the non separable taper should be related to the associated empirical prac-
tical ranges as suggested in Kaufman et al. (2008), while the “cross compact” support
can be fixed as a function of the marginal ones. Possible choices are the minimum,
the maximum or the mean of the marginal compact supports. Overall the choice of
the compact supports should be driven by computational reasons that is the associated
tapered matrix must be sufficiently sparse. In our examples the percentage of non zero
values lies between 3 and 4%.

We also consider an example in the trivariate case. Specifically we simulated 1000
realizations from a trivariate zero mean GRF, observed on 100 location sites uniformly
distributed in [0, 1]2, with covariance model obtained through Eqs. (4) and (5) with
p = 3 and fixing νi j = 0.5 i, j = 1, 2, 3 that is a trivariate exponential model. When
p ≥ 3, estimation can be troublesome because of the large number of parameters.
A practical solution to this problem can be represented by decreasing the number
of the parameters in some way such for instance some parsimonious versions of the
covariance model. Here we consider a simple setting. We fix ψi j = 0.1/3, σ 2

i = 1
for i, j = 1, 2, 3 and ρ12 = −0.3, ρ13 = 0.3, ρ23 = 0.5. We then estimate using a
separable taper with common compact support equal to 0.13 (5.9% of non zero values
in the tapered matrix) and ML the three marginal scale parameters (considering the
contrasts ψi j = ψi i i, j = 1, 2, 3), the three colocated correlation parameters and
the three variances. Table 6 show the relative efficiency for the nine parameters.

We now compare the computational performance of the bivariate CT estimate with
the ML one by using an increasing sequence of nw = 400 · 2w location sites, w =
0, 1, 2, 3, 4. The sites are uniformly distributed on the squareWw = [0, 2w]×[0, 2w].
In Table 7 we report the mean of 5 evaluations of (10) and (11) in terms of elapsed
time using the R function proc.time. Tapering is computed using a separable
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Table 6 RE(θ i ) and GRE(θ , 9) for the parameters of a trivariate exponential model with constraints on
the scale parameters

σ 2
1 σ 2

2 σ 2
3 ψ1 ψ2 ψ3 ρ12 ρ13 ρ23 GRE(θ , 9)

Sep 0.903 0.873 0.790 0.268 0.291 0.300 0.899 0.911 0.877 0.616

Table 7 Time in seconds for evaluating ln , lT,n , in the bivariate case using a separable taper with b = 0.2
under increasing domain setup

w n ln lT,n %

0 800 0.26 0.26 11.500

1 1600 1.44 0.60 3.070

2 3200 9.10 1.36 0.800

3 6400 65.70 3.04 0.022

4 12800 579.20 16.90 0.006

The column (%) indicates the associated percentages of non zero values in the tapered covariance matrix

taper with common compact support b = 0.2 and ρ12 = 1. For evaluating (11) we
use sparse matrix functions in the R package spam (Furrer and Sain 2010). The
spam package allows users to separate structural and numerical computations needed
for Cholesky factorization. The result is that for a given sparsity structure, the full
factorization needs only to be done once. In subsequent factorizations, one can pass in
the structure and have spam only compute the numerical part. This can save a lot of
time when the tapered likelihood function is evaluated repeatedly. For instance with
12,800 observations, the CT is approximatively 35 times faster than likelihood if the
covariance matrix is very sparse.

5 Concluding remarks

For spatial Gaussian processes there are two types of covariance estimation methods
based on CT (Kaufman et al. 2008). In this paper we focus on the one inducing
unbiased estimating equations and we extend it to the multivariate case. The other
version, obtained tapering the covariance matrix only, has been recently addressed in
Furrer et al. (2015). In the same paper the authors use multivariate CT as prediction
tool.

As outlined in Furrer et al. (2015) there is a clear trade off between statistical
efficiency and computational complexity between the first and second version of the
CT. Our proposal is much more efficient from statistical efficiency point of view but
the price to pay is a severe loss of computational efficiency. On the other hand, the
method proposed in Furrer et al. (2015) can lead to a substantial bias in the estimation,
depending on the choice of the compact support in the multitaper. In our experience
the second version of the multivariate CT can be an effective tool of estimation with
a good balance between statistical efficiency and computational complexity, when
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working with large data sets, where how large depends on the availability of memory
and computing power. For instance in a computer with a 2.4GHz processor and 8GB
of memory, CT estimation of a bivariate dataset with 5000 locations sites, i.e. 10,000
observations, starts to be troublesome. For very large data set, the approach proposed
in Furrer et al. (2015) or extension to the multivariate case of methods proposed in the
univariate case such as composite likelihood methods should be considered.

Tapering in a multivariate setting can be done with a simple separable taper or with
more flexible tapers which allows to use different compact supports. In this paper,
through a simulation study, we compare the performance of the CT using both tapers
when estimating a multivariate Matern model and a LMC. Our numerical examples
show that the colocated parameters of the multitaper must be chosen in the appropriate
way in order to improve the efficiency. Moreover, the use of a non separable taper is
recommended if there is an interest to improve the quality of the estimation of the
parameters associated to a specific marginal component of the multivariate random
fields. Nevertheless, globally there is no particular statistical gains when using a non
separable tapers with respect to a separable one.
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