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Abstract A new characterization of the Pareto distribution is proposed, and new
goodness-of-fit tests based on it are constructed. Test statistics are functionals of U -
empirical processes. The first of these statistics is of integral type, it is similar to
the classical statistics ω1

n . The second one is a Kolmogorov type statistic. We show
that the kernels of our statistics are non-degenerate. The limiting distribution and
large deviations asymptotics of the new statistics under null hypothesis are described.
Their local Bahadur efficiency for parametric alternatives is calculated. This type of
efficiency is mostly appropriate for the solution of our problem since the Kolmogorov
type statistic is not asymptotically normal, and the Pitman approach is not applicable
to this statistic. For the second statistic we evaluate the critical values by usingMonte-
Carlo methods. Also conditions of local optimality of new statistics in the sense of
Bahadur are discussed and examples of such special alternatives are given. For small
sample size we compare the power of those tests with some common goodness-of-fit
tests.
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1 Introduction

Let P be the family of the Pareto distributions with the distribution function (d.f.)

F(x) = 1 − x−λ, x ≥ 1, λ > 0. (1)

In this paper we develop the goodness-of-fit tests for the Pareto distribution using a
newcharacterization based on the property of order statistics. The problem formulation
is as follows: let X1, . . . , Xn be positive i.i.d. random variables (rv’s) with continuous
d.f. F . Consider testing the composite hypothesis H0 : F ∈ P against the general
alternative H1 : F /∈ P , assuming that the alternative d.f. is also concentrated on
[1,∞).

The goodness-of-fit tests for the Pareto distribution have been discussed in Beirlant
et al. (2006), Gulati and Shapiro (2008), Martynov (2009), Rizzo (2009). We exploit
a different idea for constructing and analyzing statistical tests based on characteri-
zation by the property of equidistribution of linear statistics by means of so-called
U -empirical d.f.’s (Janssen 1988; Korolyuk and Borovskikh 1994). This method was
developed early in several articles, particularly, inNikitin (1996),Nikitin andPeaucelle
(2004), Nikitin and Tchirina (1996), Nikitin and Volkova (2010), Nikitin and Volkova
(2012), Litvinova (2004). The tests for the Pareto distribution using this approachwere
obtained and analyzed in Jovanovic et al. (2014). One can observe that the new tests
based on characterizations have reasonably high efficiencies and can be competitive
with previously known goodness-of-fit tests. Let us explain our approach.

We will say that the d.f. F belongs to the class of distributionsF , if ∀x1, x2: either
F(x1x2) ≤ F(x1)F(x2) or F(x1x2) ≥ F(x1)F(x2), see Ahsanullah (1989).

Let X1, . . . , Xn be i.i.d. positive absolutely continuous random variables with the
d.f. F from the classF . Denote by X(1,n) ≤ X(2,n) ≤ . . . ≤ X(n,n) - the order statistics
of a random sample X1, ..., Xn .

We present a new characterization within the classF .

Theorem 1 For the fixed k let X1, ..., Xk be i.i.d., positive and bounded rv’s having an
absolutely continuous (with respect to Lebesgue measure) d.f. F(x). Then the equality
in law of X1 and X(k,k)/X(k−1,k) takes place iff X1 has some d.f. from the family P .

Proof Let Y = ln X and let G denote the d.f. of Y . It can be easily seen that
F ∈ F iff G is NBU (“new better than used”) or NWU (“new worse than used”)
(Ahsanullah 1977). Further, since we use the monotonic transformation, then X1 and
X(k,k)/X(k−1,k) will be identically distributed iff Y1 and Y(k,k) − Y(k−1,k) are identi-
cally distributed. It follows from Ahsanullah (1977) that X1 and X(k,k)/X(k−1,k) are
identically distributed iff Y = ln X has the exponential distribution with some scale
parameter λ, therefore X1 has the Pareto distribution with the same parameter λ. ��

In the case when k = 2 our characterization coincide with another characterization
of the Pareto distribution considered in Jovanovic et al. (2014), see also Nikitin and
Volkova (2012). Note that our characterization extends the charaterization, involved
in Jovanovic et al. (2014).
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According to our characterization we construct theU -empirical d.f. by the formula

Hn(t) =
(
n

k

)−1 ∑
1≤i1<...<ik≤n

1{X(k,{i1,...,ik })/X(k−1,{i1,...,ik }) < t}, t ≥ 1,

where X(s,{i1,...,ik }), s = {k − 1, k} denotes the s−th order statistic of the subsample
Xi1 , . . . , Xik . For rv X the U−statistical d.f. will be simply the usual empirical d.f.
Fn(t) = n−1 ∑n

i=1 1(Xi < t), t ∈ R1, based at the observations X1, . . . , Xn .
It is known that the properties of U -empirical d.f.’s are similar to the properties

of usual empirical d.f.’s (Helmers et al. 1988; Janssen 1988). Hence the difference
Hn − Fn for large n should be almost surely close to zero under H0, and we can
measure their closeness by using some test statistics, assuming their large values to
be critical.

We suggest two test statistics

I (k)
n =

∫ ∞

1
(Hn(t) − Fn(t)) dFn(t), (2)

D(k)
n = sup

t≥1
| Hn(t) − Fn(t) | . (3)

Note that both proposed statistics under H0 are invariant with respect to the change of

variables X → X
1
λ , so we may set λ = 1.

Wediscuss their limiting distributions under the null hypothesis andfind logarithmic
asymptotics of large deviations under H0. Next we calculate their efficiencies against
some parametric alternatives from the class F . We use the notion of local exact
Bahadur efficiency (BE) (Bahadur 1971; Nikitin 1995), as the statistics D(k)

n has the
non-normal limiting distribution, hence the Pitman approach to the efficiency is not
applicable. However, it is known that the local BE and the limiting Pitman efficiency
usually coincide, see Wieand (1976), Nikitin (1995).

Finally, we study the conditions of the local optimality of our tests, describe the
“most favorable” alternatives for them and compare the powers of our tests with some
standard goodness-of-fit tests.

The family of d.f. in null-hypothesis we consider is a particular case of the so-called
Pareto type I distribution with the d.f. P1(x) = 1 − ( x

β
)−λ, x ≥ β > 0, λ > 0, see,

for example, Arnold (1983). For practice goodness-of-fit testing based on our new
tests the unknown parameters of the hypothesized Pareto distribution can be estimated
by a number of methods, see Arnold (1983, Ch. 5), Kleiber and Kotz (2003, Ch. 3),
Brazausskas and Serfling (2003), Rizzo (2009). One can estimate first the parameter β
for example by the MLE estimator β̂ = mini=1,...,n Xi . Then the sample X1, . . . , Xn

can be transformed to the new sample Y1, . . . ,Yn , where Yi = Xi/β̂ and its has the
d.f. considered in (1).

There exist the Pareto’s second model, so-called Pareto type II distribution with d.f.
P2(x) = 1 − (1 + x−μ

β
)−λ, x ≥ μ ∈ R, λ > 0. Pareto type I and type II models are

related by a following transformation: if rv X has a Pareto type II distribution, then
X − (μ − σ) has a Pareto type I distribution. Therefore using one of the estimator
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of the location parameter μ, one can reduce Pareto type II rv to our model. We do
not discuss the difference between the parameter estimators and concentrate on the
constructing of the goodness-of-fit tests.

2 Integral statistic I (k)n

The statistic I (k)
n is asymptotically equivalent to theU -statistic of degree (k + 1) with

the centered kernel

Ψk(Xi1 , . . . , Xik+1)=
1

k + 1

∑
π(i1,...,ik+1)

1(X(k,{i1,...,ik })/X(k−1,{i1,...,ik }) < Xik+1) − 1

2
,

where π(i1, . . . , ik+1)means all permutations of different indices from {i1, . . . , ik+1}.
Let X1, . . . , Xk+1 be independent rv’s from the standard Pareto distribution. It is

known that non-degenerate U -statistics are asymptotically normal (Hoeffding 1948;
Korolyuk and Borovskikh 1994). To prove that the kernel Ψk(X1, . . . , Xk+1) is non-
degenerate, we calculate its projection ψk(s). For a fixed Xk+1 = s, s ≥ 1 we have:

ψk(s) := E(Ψk(X1, . . . , Xk+1) | Xk+1 = s)

= k

k + 1
P(X(k,{2,...,k,s})/X(k−1,{2,...,k,s}) < X1)

+ 1

k + 1
P(X(k,{1,...,k})/X(k−1,{1,...,k}) < s) − 1

2
.

It follows from the above characterization that the second probability is equal to:

P(Xk,{1,...,k}/Xk−1,{1,...,k} < s) = P(X1 < s) = F(s).

It remains to calculate the first term. For this purpose we decompose the probability
as P(Xk,{2,...,k,s}/Xk−1,{2,...,k,s} < X1) = P1 + P2 + P3, where Pi , i = 1, 2, 3 are
initial probabilities, computed in one of the following cases:

(1) Let the sample units take places as follows: X2 < . . . < Xk < s. Then our
probability transforms into

P1 = (k − 1)!P
(

s

Xk
< X1, X2 < . . . < Xk < s

)

= (k − 1)!P
(
Xk < s, X1 >

s

Xk
, X2 < X3, X3 < X4, . . . , Xk−1 < Xk

)
.
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After some calculations we obtain that the last probability is equal to:

(k − 1)!
∫ s

1

(
1 − F

(
s

xk

))
Fk−2(xk)

(k − 2)! dF(xk)

= Fk−1(s) − (k − 1)
∫ s

1

(
1 − 1

x

)k−2 (
1 − x

s

) dx

x2
.

The integral in the second term can be evaluated using integration by parts and
binomial representation of the function (1 − 1

x )k−1. Finally we have:

∫ s

1

(
1 − 1

x

)k−2 (
1 − x

s

) dx

x2
= 1

s(k − 1)

∫ s

1

k−1∑
j=0

(−1) j
(
k − 1

j

)
x− j dx

= 1

s(k − 1)

⎛
⎝s − 1 − (k − 1) ln (s) +

k−1∑
j=2

(−1) j
(
k − 1

j

)
1 − s−( j−1)

j − 1

⎞
⎠ .

Thus the initial probability in this case is equal to

P1 = Fk−1(s) − F(s) + (k − 1)
ln s

s
− 1

s

k−1∑
j=2

(−1) j
(
k − 1

j

)
1 − s−( j−1)

j − 1
.

(2) The sample units are X2 < X3 < . . . Xk−1 < s < Xk , then for this case we have:

P2 = (k − 1)!P
(
Xk

s
< X1, X2 < X3 < . . . Xk−1 < s < Xk

)

= (k − 1)!P
(
Xk > s, X1 >

Xk

s
, X2 < X3, X3 < X4, . . . , Xk−1 < s

)

= (k − 1)!
∫ ∞

s

(
1 − F

( xk
s

)) Fk−2(s)

(k − 2)! dF(xk)

= (k − 1)

2s
Fk−2(s).

(3) The last case we consider is when s is situated on j−th place (1 ≤ j ≤ k − 2)
in variational series of the sample X2, . . . , Xk−2. It means that the sample units
take places as follows: X2 < . . . < s < . . . < Xk−2 < Xk−1 < Xk and s also
may stand on first and (k − 2)-th places. Then the required probability is equal to

P3 = (k − 1)!P
(

Xk

Xk−1
< X1, X2 < . . . < s < . . . < Xk−2 < Xk−1 < Xk

)

= 1

2
C j−1
k−1 (1 − F(s))k− j F j−1(s), 1 ≤ j ≤ k − 2.
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Combining the results we get that the first term in the projection has the form:

P(X(k,{2,...,k,s})/X(k−1,{2,...,k,s}) < X1) = Fk−1(s) − F(s) + (k − 1)
ln s

s

−1

s

k−1∑
j=2

(−1) j
(
k − 1

j

)
1 − s−( j−1)

j − 1
+ 1

2

k−1∑
j=1

C j−1
k−1 (1 − F(s))k− j F j−1(s).

Note that the last sum is equal to
∑k−1

j=1 C
j−1
k−1 (1−F(s))k− j F j−1(s) = 1−Fk−1(s).

Thus for the initial probability we get the result:

P(X(k,{2,...,k,s})/X(k−1,{2,...,k,s}) < X1) = 1

2
Fk−1(s)

−F(s) + (k − 1)
ln s

s
− 1

s

k−1∑
j=2

(−1) j
(
k − 1

j

)
1 − s−( j−1)

j − 1
+ 1

2
.

Hence we get the final expression for the projection of the kernel Ψk :

ψk(s) = kFk−1(s) − 1

2(k + 1)
− k − 1

k + 1
F(s) + k(k − 1)

k + 1

ln s

s

− k

s(k + 1)

k−1∑
j=2

(−1) j
(
k − 1

j

)
1 − s−( j−1)

j − 1
. (4)

The calculation of the variance for the projection ψk in the general case is too
complicated, therefore we calculate it only for particular k.

2.1 Integral statistic I (3)n

The projection ψk(s) for the case k = 3 has the form:

ψ3(s) = 9

8s2
+ 3 ln s

2s
− 1

s
− 1

4
. (5)

The variance of this projection Δ2
3 = Eψ2

3 (X1) under H0 is given by

Δ2
3 =

∫ ∞

1
ψ2
3 (s)

1

s2
ds = 11

1920
≈ 0.006.

Therefore the kernel Ψ3 is centered and non-degenerate. We can apply Hoeffd-
ing’s theorem on asymptotic normality of U -statistics, see again Hoeffding (1948),
Korolyuk and Borovskikh (1994), which implies that the following result holds

Theorem 2 Under the null hypothesis as n → ∞ the statistic
√
nI (3)

n is asymptoti-
cally normal so that

123



Goodness-of-fit tests for the Pareto distribution based on… 357

√
nI (3)

n
d−→ N

(
0,

11

120

)
.

Now we shall evaluate the large deviation asymptotics of the sequence of statistics
I (3)
n under H0. According to the theorem on large deviations of such statistics from
Nikitin and Ponikarov (1999), see also DasGupta (2008), Nikitin (2010), we obtain
due the fact that the kernel Ψ3 is centered, bounded and non-degenerate the following
result.

Theorem 3 For a > 0

lim
n→∞ n−1 ln P(I (3)

n > a) = − f (3)
I (a),

where the function f (3)
I is continuous for the sufficiently small a > 0, and

f (3)
I (a) ∼ a2

32Δ2
3

= 5.455 a2, as a → 0.

2.2 Some notions from the Bahadur theory

Suppose that under the alternative H1 the observations have the d.f. G(·, θ) and the
density g(·, θ), θ ≥ 0, such that G(·, 0) ∈ P . The measure of the Bahadur efficiency
(BE) for any sequence {Tn} of test statistics is the exact slope cT (θ) describing the
rate of an exponential decrease for the attained level under the alternative d.f. G(·, θ).
According to the Bahadur theory (Bahadur 1971; Nikitin 1995) the exact slopes may
be found by using the following Proposition.

Proposition 1 Suppose that the following two conditions hold:

a) Tn
Pθ−→ b(θ), θ > 0,

where −∞ < b(θ) < ∞, and
Pθ−→ denotes convergence in probability under

G(· ; θ).
b) lim

n→∞ n−1 ln PH0 (Tn ≥ t ) = −h(t)

for any t in an open interval I , on which h is continuous and {b(θ), θ > 0} ⊂ I .
Then

cT (θ) = 2 h(b(θ)).

We have already found the large deviation asymptotics. In order to evaluate the
exact slope it remains to calculate the first condition of the Proposition.

Note that the exact slopes for any θ satisfy the inequality (Bahadur 1971; Nikitin
1995)

cT (θ) ≤ 2K (θ), (6)

where K (θ) is the Kullback-Leibler “distance” between the alternative and the null-
hypothesis H0. In our case H0 is composite, hence for any alternative density g j (x, θ)

one has
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K j (θ) = inf
λ>0

∫ ∞

1
ln[g j (x, θ)/λx−λ−1]g j (x, θ) dx .

This quantity can be easily calculated as θ → 0 for particular alternatives. According
to (6), the local BE of the sequence of statistics Tn is defined as

eB(T ) = lim
θ→0

cT (θ)

2K (θ)
.

2.3 The local Bahadur efficiency of I (3)n

According to Bahadur theory, the considered alternatives should be close to null-
hypothesis as θ → 0. Therefore we suggest three alternatives against the Pareto
distribution. The first two alternativeswe consider are obtained by skewingmechanism
(Ley and Paindaveine 2008), we call them Ley–Paindaveine alternatives.

i) First Ley–Paindaveine alternative with the d.f.

G1(x, θ) = F(x)e−θ(1−F(x)), θ ≥ 0, x ≥ 1;

ii) Second Ley–Paindaveine alternative with the d.f.

G2(x, θ) = F(x) − θ sin πF(x), θ ∈ [0, π−1], x ≥ 1;

iii) log-Weibull alternative with the d.f.

G3(x, θ) = 1 − e−(ln x)θ+1
, θ ∈ (0, 1), x ≥ 1.

Let us find the local BE for the alternative under consideration.
According to the Law of Large Numbers forU -statistics (Korolyuk and Borovskikh

1994), the limit in probability under H1 is equal to

b1(θ) = Pθ (X(3,3)/X(2,3) < Y ) − 1

2
.

It is easy to show (Jovanovic et al. 2014) that

b1(θ) ∼ 4θ
∫ ∞

1
ψ3(s)h1(s)ds,

where h1(s) = ∂
∂θ
g1(s, θ) |θ=0 and ψ3(s) is the projection from (5). Therefore for

the first Ley–Paindaveine alternative we have

b1(θ) ∼ 4θ
∫ ∞

1

(
9

8s2
+ 3 ln s

2s
− 1

s
− 1

4

) (
s − 2

s3

)
ds

s2
∼ θ

12
, θ → 0,
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Table 1 Local Bahadur
efficiencies for I (3)n

Alternative Efficiency

Ley–Paindaveine 1 0.909

Ley–Paindaveine 2 0.905

log-Weibull 0.787

and the local exact slope of the sequence I (3)
n as θ → 0 admits the representation

c1(θ) = b21(θ)/(16Δ2
3) ∼ 5

66
θ2, θ → 0.

The Kullback-Leibler “distance” K1(θ) between the alternative and the null-
hypothesis H0 admits the following asymptotics (Jovanovic et al. 2014):

2K1(θ) ∼ θ2

[{∫ ∞

1
h21(x)xdx −

(∫ ∞

1
h1(x) ln (x)dx

)2
]

, θ → 0.

Therefore in our case
K1(θ) ∼ θ2/24, θ → 0. (7)

Consequently, the local efficiency of the test is

eB1 (I ) = lim
θ→0

c1(θ)

2K1(θ)
≈ 10

11
≈ 0.909.

Omitting the calculations similar to previous cases, we get for the second Ley–
Paindaveine alternative b2(θ) ∼ 0.353 θ , c2(θ) ∼ 1.363 θ2, θ → 0. It is easy to show
that K2(θ) ∼ 0.753 θ2, θ → 0. Therefore the local BE is equal to 0.905.

After some calculations in case of the log-Weibull alternative we have:

b3(θ) ∼
(
3

4
− ln 3 + ln 2

)
θ ≈ 0.345 θ, θ → 0,

and the local exact slope of the sequence I (3)
n as θ → 0 admits the representation

c3(θ) ∼ 1.295 θ2. Moreover for the log-Weibull distribution K3(θ) satisfies K3(θ) ∼
θ2

12 , θ → 0. Hence the local BE for the last case is equal to 0.787.
Table 1 gathers values of the local BE.

2.4 Integral statistic I (4)n

For the case k = 4 the projection ψk(s) has the form:

ψ4(s) = 12 ln s

5s
− 4

5s3
+ 18

5s2
− 13

5s
− 3

10
. (8)
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The variance of this projection under H0 is equal to

Δ2
4 =

∫ ∞

1
ψ2
4 (s)

1

s2
ds = 271

52500
≈ 0.005.

Therefore the kernel Ψ4 is centered, non-degenerate and bounded. Due to Hoeffd-
ing’s theorem on asymptotic normality ofU -statistics (Hoeffding 1948; Korolyuk and
Borovskikh 1994), we have that:

Theorem 4 Under the null hypothesis as n → ∞ the statistic
√
nI (4)

n is asymptoti-
cally normal so that

√
nI (4)

n
d−→ N

(
0,

271

2100

)
.

The large deviation asymptotics of the sequence of statistics I (4)
n under H0 follows

from the following result. It was derived using the theorem on large deviations (see
again Nikitin and Ponikarov 1999; DasGupta 2008; Nikitin 2010), applied to the
centered, bounded and non-degenerate kernel Ψ4.

Theorem 5 For a > 0

lim
n→∞ n−1 ln P(I (4)

n > a) = − f (4)
I (a),

where the function f (4)
I is continuous for the sufficiently small a > 0, and

f (4)
I (a) ∼ a2

50Δ2
4

= 3.875 a2, as a → 0.

2.5 The local Bahadur efficiency of I (4)n

For this case the limit in probability under H1 has the following asymptotics

b1(θ) ∼ 5θ
∫ ∞

1
ψ4(s)h1(s)ds,

where again h1(s) = ∂
∂θ
g1(s, θ) |θ=0 and ψ4(s) is the projection from (8). Therefore

for the first Ley–Paindaveine alternative we have

b1(θ) ∼ 5θ
∫ ∞

1

(
9

8s2
+ 3 ln s

2s
− 1

s
− 1

4

) (
s − 2

s3

)
ds

s2
∼ θ

12
, θ → 0.

and the local exact slope of the sequence I (4)
n as θ → 0 admits the representation

c1(θ) = b21(θ)/(25Δ2
4) ∼ 5

66
θ2, θ → 0.
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Table 2 Local Bahadur
efficiencies for I (4)n

Alternative Efficiency

Ley–Paindaveine 1 0.930

Ley–Paindaveine 2 0.961

log-Weibull 0.746

Table 3 Comparative table of
local efficiencies for the statistic
I (k)n

Alternative Efficiency

k = 3 k = 4 maxk

Ley–Paindaveine 1 0.909 0.930 0.930 for k = 4

Ley–Paindaveine 2 0.905 0.961 0.961 for k = 4

log-Weibull 0.787 0.746 0.821 for k = 2

The Kullback-Leibler “distance” for this alternative was already found above, and
it satisfies K1(θ) ∼ θ2/24, θ → 0. Thus the local efficiency of the test is

eB1 (I ) = lim
θ→0

c1(θ)

2K1(θ)
≈ 0.930.

For other alternatives the calculations are similar. Omitting the details, let us gather
the values of the local BE for this case in the Table 2.

In Table 3 we present the efficiencies from Tables 1 and 2 gathered with maximal
values of efficiencies against presumed alternatives.

3 Kolmogorov-type statistic D(k)
n

Nowwe consider theKolmogorov type statistic (3). For a fixed t the difference Hn(t)−
Fn(t) is a family of U -statistics with the kernels, depending on t ≥ 1:

Ξk(Xi1 , . . . , Xik ; t) = 1(X(k,{i1,...,ik })/X(k−1,{i1,...,ik }) < t) − 1

k

k∑
l=1

1(Xl < t).

The projection of this kernels ξk(s; t) for a fixed t ≥ 1 has the form:

ξk(s; t) := E(Ξk(X1, . . . , Xk) | Xk = s)

= P(X(k,{1,...,k−1,s})/X(k−1,{1,...,k−1,s}) < t) − 1

k
1{s < t} − k − 1

k
P{X1 < t}.

It remains to calculate the first term. For this purpose like in the previous cases, we
write the decomposition

P(Xk,{1,...,k−1,s}/Xk−1,{1,...,k−1,s} < t) = P1 + P2 + P3,
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where Pi , i = 1, 2, 3, are the initial probabilities, computed in one of the following
cases:

(1) Let the sample units take places as follows: X1 < X2 < . . . < Xk−1 < s. Then
the probability expresses as

P1 = (k − 1)!P
(

s

Xk−1
< t, X1 < X2 < . . . < Xk−1 < s

)

= (k − 1)! 1(s ≥ t)P
( s
t

< Xk−1 < s, X1 < X2 < . . . < Xk−1

)
+(k − 1)! 1(s < t)P(X1 < X2 < . . . < Xk−1 < s)

= 1(s ≥ t)
(
Fk−1(s) − Fk−1

( s
t

))
.

(2) The sample units are X1 < X2 < . . . Xk−2 < s < Xk−1, then for this case we
have:

P2 = (k − 1)!P
(
Xk−1

s
< t, X1 < X2 < . . . Xk−2 < s < Xk−1

)

= (k − 1)!P(s < Xk−1 < st, X1 < X2 < . . . Xk−2 < s)

= (k − 1)! F
k−2(s)

(k − 2)! (F(st) − F(s)) = (k − 1)

s

(
1 − 1

s

)k−2 (
1 − 1

t

)
.

(3) In the last case let s be situated on l−th place (1 ≤ l ≤ k − 2) in the variational
series of the sample X1, . . . , Xk−2. Then the required probability transforms into:

P3 = (k − 1)!P
(
Xk−1

Xk−2
< t, X1 < . . . < s < . . . < Xk−2 < Xk−1

)

=
(
1 − 1

t

)
Cl−1
k−1(1 − F(s))k− j F j−1(s), 1 ≤ l ≤ k − 2.

Combining these results we get that the first term in the projection is equal to:

P(X(k,{1,...,k−1,s})/X(k−1,{1,...,k−1,s}) < t)

= 1(s≥ t)
(
Fk−1(s) − Fk−1

( s
t

))
+

(
1− 1

t

) k−1∑
l=1

Cl−1
k−1(1−F(s))k− j F j−1(s).

Again we can see that the last sum can be simplified as

k−1∑
l=1

Cl−1
k−1(1 − F(s))k− j F j−1(s) = 1 − Fk−1(s).

Thus the initial probability is equal to

P(X(k,{1,...,k−1,s})/X(k−1,{1,...,k−1,s}) < t) = 1

t
(Fk−1(s) − 1) − 1(s ≥ t)Fk−1

( s
t

)
.
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Hencewe get the final expression for the projection of the family of kernelsΞk(·, t):

ξk(s; t) = 1

t

((
1 − 1

s

)k−1

− 1

k

)
− 1(s ≥ t)

((
1 − t

s

)k−1

− 1

k

)
. (9)

It is easy to show that E(ξk(X; t)) = 0. After some calculations we get that the
variance of this projection under H0 is for any t

δ2k (t) = t + 1

(2k − 1)t2
+ t − 1

k2t2
−

k−1∑
i=0

(−1) j2(k − 1)!(k − 1)!
(k + j)!(k − j − 1)! t j−1

+ (−1)k+1 2(k − 1)!(k − 1)!
(2k − 1)! tk−2F2k−1(t) − 2

k2t
Fk(t).

3.1 Kolmogorov-type statistic D(3)
n

In the case k = 3 the projection of the family of kernels Ξ3(X,Y, Z; t), namely
ξ3(s; t) := E(Ξ3(X,Y, Z; t) | X = s) is equal to:

ξ3(s; t) = 1

t

(
1

s2
− 2

s
+ 2

3

)
− 1{s ≥ t}

(
t2

s2
− 2t

s
+ 2

3

)
. (10)

Now we calculate variances of these projections δ23(t) under H0. Elementary cal-
culations show that

δ23(t) = 1

45t4

(
4t3 + 4t2 − 15t + 7

)
.

Hence our family of kernelsΞ3(X,Y, Z; t) is non-degenerate in the sense ofNikitin
(2010) and

δ23 = sup
t≥1

δ23(t) = 0.035.

This value will be important in the sequel when calculating the large deviation asymp-
totics (Figs. 1, 2, 3).

The limiting distribution of the statistic D(3)
n is unknown. Using methods of Silver-

man (1983), one can show that the U -empirical process

ηn(t) = √
n (Hn(t) − Fn(t)), t ≥ 1,

weakly converges in D(1,∞) as n → ∞ to certain centered Gaussian process η(t)
with calculable covariance. Then the sequence of statistics

√
nD(3)

n converges in dis-
tribution to the rv supt≥1 |η(t)| but currently it is impossible to find explicitly its

distribution. Hence it is reasonable to determine the critical values for statistics D(3)
n

by simulation.
Now we obtain the logarithmic large deviation asymptotics of the sequence of

statistics D(3)
n under H0. The family of kernels {Ξ3(X,Y, Z; t), t ≥ 0} is not only
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Fig. 1 Plot of the function δ23(t)
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centered but bounded. Using results from Nikitin (2010) on large deviations for the
supremum of non-degenerate U -statistics, we obtain the following result.

Theorem 6 For a > 0

lim
n→∞ n−1 ln P(D(3)

n > a) = − f (3)
D (a),

where the function f (3)
D is continuous for the sufficiently small a > 0, moreover

f (3)
D (a) = (18δ23)

−1a2(1 + o(1)) ∼ 1.598 a2, as a → 0.

3.2 The local Bahadur efficiency of D(3)
n

To evaluate the efficiency, first consider again the first Ley–Paindaveine alternative
with the d.f. G1(x, θ), θ ≥ 0, x ≥ 1 given above. By the Glivenko-Cantelli theorem
forU -statistics (Janssen 1988) the limit in probability under the alternative for statistics
D(3)
n is equal to

b1(θ) := sup
t≥1

|b1(t, θ)| = sup
t≥1

|Pθ (X(3,3)/X(2,3) < t) − G(t, θ)|.

It is not difficult to show that

b1(t, θ) ∼ 3θ
∫ ∞

1
ξ3(s; t)h1(s)ds,

where again h1(s) = ∂
∂θ
g1(s, θ) |θ=0 and ξ3(s; t) is the projection defined above in

(10). Hence for the first Ley–Paindaveine alternative we have for t ≥ 1:

b1(t, θ) ∼ t − 1

2t2
θ, θ → 0.

Thus b1(θ) = supt≥1 |b1(t, θ)| ∼ 0.125 θ , and it follows that the local exact slope
of the sequence of statistics Dn admits the representation:

c1(θ) ∼ b21(θ)/(9δ23) ∼ 0.05 θ2, θ → 0.

The Kullback-Leibler information in this case is given by (7). Hence the local Bahadur
efficiency of our test is eB1 (D) = 0.599.

Next we take the second Ley–Paindaveine distribution, where calculations are sim-
ilar, and the local BE is equal to 0.689. In the case of the log-Weibull density we find
that the local BE is 0.467.

We collect the values of local BE in the Table 4.
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Table 4 Local Bahadur
efficiencies for D(3)

n
Alternative Efficiency

Ley–Paindaveine 1 0.599

Ley–Paindaveine 2 0.689

log-Weibull 0.467

3.3 Kolmogorov-type statistic D(4)
n

In the case k = 4 the projection of the family of kernels Ξ4(X,Y, Z ,W ; t), is equal
to:

ξ4(s; t) = 1

t

((
1 − 1

s

)3

− 1

4

)
− 1{s ≥ t}

(
−

(
t

s

)3

+ 3

(
t

s

)2

− 3t

s
+ 3

4

)
.

Therefore we get that variances of these projections δ24(t) under H0

δ24(t) = 1

560t5

(
45t4 + 45t3 − 252t2 + 224t − 62

)
.

Hence our family of kernels Ξ4(X,Y, Z ,W ; t) is non-degenerate in the sense of
Nikitin (2010) and

δ24 = sup
t≥1

δ24(t) = 0.026.

The limiting distribution of the statistic D(4)
n is unknown as in the previous section.

The logarithmic large deviation asymptotics of the sequence of statistics D(4)
n under

H0 is showed in the next theorem.

Theorem 7 For a > 0

lim
n→∞ n−1 ln P(D(4)

n > a) = − f (4)
D (a),

where the function f (4)
D is continuous for the sufficiently small a > 0, moreover

f (4)
D (a) = (32 δ24)

−1a2(1 + o(1)) ∼ 1.211 a2, as a → 0.

3.4 The local Bahadur efficiency of D(4)
n

In the Table 5 we collect the calculated efficiencies for the statistic D(k)
n joined with

results from the Table 4 and with the maximal values of efficiencies against our alter-
natives.

We observe that the efficiencies for the Kolmogorov-type test are lower than for the
integral test. However, it is the usual situation when testing goodness-of-fit (Nikitin
1995; Rank 1999; Nikitin 2010).
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Table 5 Comparative table of
local efficiencies for statistic
D(k)
n

Alternative Efficiency

k = 3 k = 4 maxk

Ley–Paindaveine 1 0.599 0.654 0.674 for k = 6

Ley–Paindaveine 2 0.689 0.767 0.790 for k = 5

log-Weibull 0.467 0.472 0.472 for k = 4

Table 6 Critical values for the
statistic D(3)

n
n \ α 0.1 0.05 0.01

10 0.39 0.42 0.56

20 0.30 0.32 0.36

30 0.25 0.27 0.31

40 0.23 0.25 0.28

50 0.21 0.23 0.26

100 0.17 0.18 0.21

Table 7 Critical values for the
statistic D(4)

n
n \ α 0.1 0.05 0.01

10 0.47 0.50 0.54

20 0.37 0.40 0.44

30 0.33 0.35 0.38

40 0.30 0.33 0.35

50 0.28 0.30 0.33

100 0.24 0.26 0.29

3.5 Critical values

Tables 6 and 7 shows the critical values of the null distribution of D(3)
n and D(4)

n for
significance levels α = 0.1, 0.05, 0.01 and specific sample sizes n. Each entry is
obtained by using the Monte-Carlo simulation methods with 10,000 replications.

4 Power comparison

We recall computation formulae for statistics I (k)
n and D(k)

n for k = {3, 4}:

I (k)
n =

∫ ∞

1
(Hn(t) − Fn(t)) dFn(t)

=
(

n

k + 1

)−1 ∑
1≤i1<...<ik+1≤n

1

k + 1

∑
π(i1,...,ik+1)

1
(
X(k,{i1,...,ik })/X(k−1,{i1,...,ik }) < Xik+1

) − 1

2
,

where π(i1, . . . , ik+1)means all permutations of different indices from {i1, . . . , ik+1}.
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D(k)
n = sup

t≥1
| Hn(t) − Fn(t) |

= sup
t≥1

|
(
n

k

)−1 ∑
1≤i1<...<ik≤n

[
1(X(k,{i1,...,ik })/X(k−1,{i1,...,ik }) < t) − 1

k

k∑
l=1

1(Xl < t)

]
| .

This section presents results of aMonte-Carlo study to compare powers of new tests
with the widely applied for these types of hypotheses Kolmogorov-Smirnov (KS) and
Cramer-von Mises (CvM) tests. The comparison is done for the size n = 20 and for
the significance level α = 0.05. All calculation were done using JAVA (The Apache
CommonsMathematics Library) and R packagewith 10,000 replications.We consider
following distributions as alternatives for the Pareto distribution:

1) the Gamma alternative Γ (θ) with the density (Γ (θ))−1xθ−1 exp(−x);
2) the log-normal law LN (θ)with the density (θx)−1(2π)−1/2 exp(−(log x)2/2θ2);
3) the first Ley–Paindaveine alternative LP1(θ)with the d.f. (1− 1

x ) exp(−θ/x), θ ≥
0, x ≥ 1;

4) log-Weibull alternative with the d.f. 1 − e−(ln x)θ+1
, θ ∈ (0, 1), x ≥ 1;

5) the Weibull distribution W (θ) with the density θxθ−1 exp(−xθ ).

The KS and CvM tests are not applicable to composite hypothesis, so first
we estimate parameter λ with its maximum likelihood estimator (MLE) λ̂ =
n(

∑n
k=1 ln Xk)

−1, then calculate the critical values of corrected test and powers
for the sample n = 20 using the Monte-Carlo procedure. Powers are given in the
Table 8.

We observe that powers of our tests correspond to local Bahadur efficiencies for
considerable alternatives. In whole we can notice that our new statistics in comparison
with classical tests more favorable to alternatives with the density shapes similar to the
Pareto distribution, for example like the first Ley–Paindaveine alternative. However
they are less responsive to close alternatives but with another shapes (for example
when density have some twists differ to the Pareto distribution), for example gamma
and log-Weibull alternatives.

Table 8 Comparative table of the power simulation for different statistics

Statistics I (3)n I (4)n D(3)
n D(4)

n KS CvM

Γ (2) 0.7311 0.8505 0.4291 0.2277 0.8602 0.9605

LN (1) 0.7090 0.7126 0.7192 0.7390 0.5573 0.6391

LN (1.5) 0.6984 0.6997 0.7305 0.7512 0.5685 0.6540

LP1(0.25) 0.4618 0.4722 0.4894 0.5001 0.0712 0.2471

LP1(0.5) 0.6816 0.7013 0.6899 0.6975 0.0887 0.2903

LW (0.25) 0.2551 0.2429 0.0835 0.0178 0.0213 0.2130

LW (0.5) 0.5816 0.5677 0.2526 0.0622 0.0442 0.2736

W (2) 1 1 0.9992 0.9950 0.9904 1
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Table 9 Goodness-of-fit tests
for fitted Pareto models based on
MLE λ = 0.764 and σ = 1.5 for
statistics I (k)n , D(k)

n

Statistic I (3)n I (4)n D(3)
n D(4)

n

p value 0.73 0.44 0.32 0.27

5 Application to the real data

In this section we apply our tests to the real data example from Hogg and Klugman
(1984), where they are discussed in detail. The data set represents the losses due to
wind-related catastrophes, 1977, rounded to the nearest million dollars and involved
more than $2 million:

2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5
5 5 5 6 6 6 6 8 8 9 15 17 22 23 24 24 25 27 32 43

These data widely analyze in the literature, see Brazausskas and Serfling (2003) for
detail, the new goodness-of-fit tests were proposed in Rizzo (2009). First we apply
the same to Brazausskas and Serfling (2003) and Rizzo (2009) the data de-grouping
method. The necessity of this method appear as a consequence of the initial data
rounding and make from discrete grouping the uniform distributed data. Put

Xk =
(
1 − k

m + 1

)
A + k

m + 1
B, k = 1, . . . ,m,

where (A, B) is a grouping interval with m observations. According to Brazausskas
and Serfling (2003) for example to observations corresponds to 2 we conditionally
take as (A, B) the interval (1.5, 2.5).

We tested the null-hypothesis H0 : X has the Pareto distribution with the scale
parameter σ = 1.5 andMLE of the tail parameter λ = 0.764. Such special parameters
consider in Brazausskas and Serfling (2003), Hogg and Klugman (1984) and in Rizzo
(2009), Philbrick and Jurschak (1981) applied σ = 2.0.
Applying our tests to these data, we get in the Table 9 the following p-values of test
statistics I (k)

n and D(k)
n , based on 10,000 simulations.

So we conclude that our tests do not reject the null-hypothesis. It correspond to
results of Brazausskas and Serfling (2003), Rizzo (2009).

6 Conditions of the local asymptotic optimality

In this section we are interested in conditions of the local asymptotic optimality (LAO)
in Bahadur sense for both sequences of statistics I (k)

n and D(k)
n . This means to describe

the local structure of alternatives for which the given statistic has maximal potential
local efficiency so that the relation

cT (θ) ∼ 2K (θ), θ → 0,

holds (Nikitin 1995; Nikitin and Tchirina 1996). Such alternatives form the domain
of LAO for the given sequence of statistics.
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Consider functions

H(x) = G
′
θ (x, θ) |θ=0, h(x) = g

′
θ (x, θ) |θ=0 .

We will assume that the following regularity conditions are true (see also Nikitin and
Tchirina 1996):

∫ ∞

1
h2(x)x dx < ∞ where h(x) = H ′(x), (11)

∂

∂θ

∫ ∞

1
g(x, θ) ln x dx |θ=0 =

∫ ∞

1
h(x) ln x dx . (12)

Denote by G the class of densities g(x, θ)with d.f.’s G(x, θ), satisfying the regularity
conditions (11)–(12). We are going to deduce the LAO conditions in terms of the
function h(x).

Recall that for alternative densities from G the following asymptotics is valid:

2K (θ) ∼ θ2

[∫ ∞

1
h2(x)x dx −

(∫ ∞

1
h(x) ln x dx

)2
]

, θ → 0.

6.1 LAO conditions for I (k)n

First consider the integral statistic I (k)
n with the kernel Ψk(X1, . . . , Xk+1) and its

projection ψk(x) from (4). Let introduce the auxiliary function

h0(x) = h(x) − (ln x − 1)

x2

∫ ∞

1
h(u) ln u du.

Simple calculations show that

∫ ∞

1
h2(x)x2dx −

(∫ ∞

1
h(x) ln x dx

)2

=
∫ ∞

1
h20(x)x

2dx,

∫ ∞

1
ψk(x)h(x)dx =

∫ ∞

1
ψk(x)h0(x)dx .

Hence the local asymptotic efficiency takes the form

eB(I (k)
n ) = lim

θ→0
b2I (θ)/

(
(k + 1)2Δ2

k · 2K (θ)
)

=
(∫ ∞

1
ψk(x)h0(x)dx

)2

/

(∫ ∞

1
ψ2
k (x)

dx

x2
·
∫ ∞

1
h20(x)x

2dx

)
.
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Table 10 Examples of LAO
alternative density g(x, θ) for

statistic I (k)n

Alternative density g(x, θ) as θ → +0, x ≥ 1

k = 3 g(x, θ) = 1
x2

(
1 + θ

(
9

8x2
+ 3 ln x

2x − 1
x − 1

4

))

k = 4 g(x, θ) = 1
x2

(
1 + θ

(
12 ln s
5s − 4

5s3
+ 18

5s2
− 13

5s − 3
10

))

By Cauchy-Schwarz inequality we obtain that the expression in the right-hand side
is equal to 1 iff h0(x) = C1ψk(x)

1
x2

for some constant C1 > 0, so that

h(x) = (C1ψk(x) + C2(ln x − 1))
1

x2
for some constants C1 > 0 and C2. (13)

The set of distributions for which the function h(x) has such form generate the domain
of LAO in the class G . The simplest examples of such alternatives density g(x, θ) for
small θ > 0 is given by the Table 10.

6.2 LAO conditions for D(k)
n

Now let consider the Kolmogorov type statistic D(k)
n with the family of kernels Ξk

and their projections ξk(x; t) from (9). After simple calculations we get

∫ ∞

1
ξk(x; t)h(x)dx =

∫ ∞

1
ξk(x; t)h0(x)dx, ∀t ∈ [1,∞).

Hence the local efficiency takes the form

eB(D(k)
n ) = lim

θ→0

[
b2D(θ)/ sup

t≥1

(
k2δ2k (t)

)
· 2K (θ)

]

=
supt≥1

(∫ ∞
1 ξk(x; t)h0(x)dx

)2

supt≥1

(∫ ∞
1 ξ2k (x; t) dx

x2
· ∫ ∞

1 h20(x)x
2dx

) ≤ 1.

We can apply once again the Cauchy-Schwarz inequality to the numerator in the
last ratio. It follows that the sequence of statistics Dn is the locally asymptotically
optimal, and eB(D(k)

n ) = 1 iff

h(x) = (C3ξk(x; t0) + C4(ln x − 1)) · 1

x2
for t0 = arg sup

t≥1
δ2k (t)

and some constants C3 > 0 and C4.
Distributions with such h(x) form the domain of LAO in the class G . The simplest

examples are given in the Table 11.
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Table 11 Examples of LAO alternative density g(x, θ) for statistic D(k)
n

Alternative densities g(x, θ) as θ → +0, x ≥ 1

k = 3 g(x, θ) = 1
x2

(
1 + θ

(
1
t1

(
1
x2

− 2
x + 2

3

)
− 1{x ≥ t1}

((
t1
x

)2 − 2t1
x + 2

3

)))

t1 = argmaxt≥1

(
1

45t4

(
4t3 + 4t2 − 15t + 7

))
≈ 1.9395

k = 4 g(x, θ) = 1
x2

(
1 + θ

(
1
t2

((
1 − 1

x

)3 − 1
4

)
− 1{x ≥ t2}

(
−

(
t2
x

)3 + 3
(
t2
x

)2 − 3t2
x + 3

4

)))

t2 = argmaxt≥1

(
1

560t5
(45t4 + 45t3 − 252t2 + 224t − 62)

)
≈ 2.1810

7 Conclusion

We constructed two new tests for goodness-of-fit testing for the Pareto distribution
based on the new characterization for the Pareto distribution. We describe their limit
distribution and large deviations. The Bahadur efficiency for some alternatives has
been obtained and it turned out reasonably high. Also we derived the conditions of
local optimality for our tests. These tests were compared with some commonly used
goodness-of-fit tests and it can be noted that in most cases our tests are more powerful.
They can be of some use in statistical research, especially when the alternative is close
to the alternative from the LAO class.
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