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Abstract The local influence method has proven to be a useful and powerful tool
for detecting influential observations on the estimation of model parameters. This
method has been widely applied in different studies related to econometric and statis-
tical modelling. We propose a methodology based on the Lagrange multiplier method
with a linear penalty function to assess local influence in the possibly heteroskedastic
linear regression model with exact restrictions. The restricted maximum likelihood
estimators and information matrices are presented for the postulated model. Several
perturbation schemes for the local influence method are investigated to identify poten-
tially influential observations. Three real-world examples are included to illustrate and
validate our methodology.
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1 Introduction

The linear regression model with exact linear restrictions is widely used in applied
econometrics and statistics. An example in financial econometrics is the simple linear
model for the excess return of a security regressed on the excess return of the market
portfolio. When the intercept is set equal to zero, this becomes the capital asset pricing
model.

The method of restricted least squares (RLS) provides natural estimators of the
regression coefficients in a linear model with exact restrictions. Basic distributional
properties of the RLS estimator, efficiency comparisons, hypothesis tests and real-
world applications can be found in Chipman and Rao (1964), Trenkler (1987),
Ramanathan (1993), Greene (2007) and Wooldridge (2013). It is well known that
the RLS estimator can be expressed in terms of the ordinary least squares (OLS)
estimator. In particular, Magnus and Neudecker (1999) studied the RLS estimator in
various specific situations. Gross (2003) and Rao et al. (2008) explored its relationship
to a ridge estimator. However, it seems that few publications so far have treated the
RLS estimator from a viewpoint of influence diagnostic or sensitivity analyses, even
though such analyses are needed and have increasingly been used; see, for example,
themonographs Cook andWeisberg (1982) for early studies on residuals and influence
in regression, Chatterjee and Hadi (1988) and Rao et al. (2008) for sensitivity analysis
in linear regression, Atkinson and Riani (2000) and Atkinson et al. (2004) for robust
diagnostic regression analysis, and Kleiber and Zeileis (2008) for regression diagnos-
tics incorporated in a recent textbook on applied econometrics. To our knowledge, only
Liu and Neudecker (2007) provided a local sensitivity result for the RLS estimator.
Two alternatives to the RLS method are the model reduction and Lagrange multiplier
methods. As pointed out byHocking (2003, p. 622), in themodel reductionmethod it is
difficult to assess the effect of adjoining restrictions due to the lack of a specific expres-
sion for the reduced model. The Lagrange multiplier method is more amenable to such
theoretical developments. Therefore, in the present paper, our approach is based on this
last method.We deal with the estimation and diagnostic issues in a systematic manner,
which links the unique solution of the restricted maximum likelihood (RML) and RLS
estimators to the local influence method both proven to be very useful in practice.

The local influence method was introduced by Cook (1986). Subsequently, alter-
native approaches were suggested by, for example, Billor and Loynes (1993, 1999),
Poon and Poon (1999) and Shi and Huang (2011). Unlike case deletion methods,
which can suffer from masking effects, the local influence method is a powerful tool
for detecting observations that can be influential in the estimation of model parame-
ters. It now becomes a general method for assessing the influence of local departures
from model assumptions on maximum likelihood (ML) estimates. The local influ-
ence method is employed in several areas of applied econometrics and statistics. For
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Diagnostics in a heteroskedastic model with restrictions 229

example, there are a number of applications and studies in regression modelling and
time series analysis; see Cook (1986), Galea et al. (1997), Liu (2000, 2002, 2004),
Díaz-García et al. (2003), Galea et al. (2008) and Shi and Chen (2008) for studies
in linear regression and time series models, de Castro et al. (2007) and Galea and de
Castro (2012) for heteroskedastic errors-in-variables models, Leiva et al. (2007, 2014)
for influence diagnostics with censored and uncensored data, Barros et al. (2010) for a
Tobit model and Paula et al. (2012) for robust modelling applied to insurance data. In
particular, the local influence method can play an important role in regression models
involving restrictions. Paula (1993) used this method to handle the linear model with
inequality restrictions; Cysneiros and Paula (2005) and Paula and Cysneiros (2010)
considered parameter constraints in univariate symmetrical linear regression models;
and Liu et al. (2009) studied a normal linear model with stochastic linear restrictions.

The objective of this paper is to provide a methodology to assess local influence
in the possibly heteroskedastic linear regression model with exact linear restrictions.
While influence diagnostics were studied for the spherical linear model by Cook
(1986) and the capital asset pricing model by Galea et al. (2008), no such studies
have been carried out for the RLS estimator. Therefore, we fill this gap. In addition,
heteroskedasticity is a classic issue that is widely encountered in practical situations;
see, for example, Greene (2007) and Wooldridge (2013). It was investigated by de
Castro et al. (2007) and Galea and de Castro (2012) in models with errors-in-variables,
but not with linear restrictions. Furthermore, we present results which are relevant to
but different from those considered byCysneiros and Paula (2005), Liu andNeudecker
(2007), Liu et al. (2009) and Paula andCysneiros (2010).We use theMLmethod under
normality of the model errors to estimate the corresponding parameters with exact
restrictions. We deal with not only the general linear model for spherical disturbances,
corresponding to the univariate models studied by Cysneiros and Paula (2005) and
Paula and Cysneiros (2010), but also the general linear model for non-spherical or
heteroskedastic disturbances as an extension. Our approach differs from the quadratic
penalty function approach considered in Cysneiros and Paula (2005) and Paula and
Cysneiros (2010) by the fact that we employ the Lagrange multiplier method with a
linear penalty function, and that the RML estimators are closely related to the RLS
or generalized least-squares (GLS) estimators. In addition, we introduce three global
influence statistics and compare our local influence statistics with them.

Note that exact restrictions in the model often arise from past experience, economic
or financial theory, or the area under study, which must be treated as prior information.
We treat such prior information as equivalent to the sample data, although we also
allow the possibility that the linear restrictions on the coefficients are not really prior
information, but just a null hypothesis, proposed to simplify the relationship between
the response variable (called response hereafter) and explanatory variables (called
covariables hereafter).

The rest of the paper is organized as follows. In Sects. 2 and 3, we propose amethod-
ology to assess local influence in the normal linear regression model with restrictions.
Specifically, in Sect. 2, we formulate and discuss the model, RML estimation, the
information matrix and inference. In Sect. 3, we describe the local influence method
with different perturbation matrices, and three global influence statistics for compar-
ison purposes. In Sect. 4, we illustrate and validate the proposed methodology with
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real-world data. In Sect. 5, we make some concluding remarks about this work. The
technical proofs of our results are included in the Appendix.

2 Modelling and estimation

In this section, we formulate the general linear regression model with restrictions in
two cases: the first with spherical disturbances and the second with non-spherical
disturbances. We then provide several estimators for the corresponding parameters,
together with the corresponding information matrix.

2.1 Formulation of the model

Spherical disturbance Consider the general linear regression model given by

y = Xβ + u, (1)

where y = (Y1, . . . ,Yn)� is an n × 1 response vector, X is an n × p known design
matrix of rank p containing the values of the covariables, β is a p × 1 vector of
unknown parameters to be estimated, and u is an n × 1 error vector with expectation
E[u] = 0n×1 and variance-covariance matrix D[u] = σ 2 In . Here, 0n×1 is an n × 1
zero vector, σ 2 > 0 is an unknown parameter to be estimated and In is the n × n
identity matrix.

For the model given in (1), suppose we have prior information about β in the form
of a set of q independent exact linear restrictions expressed as

r = Rβ, (2)

where R is a q × p known matrix of rank q ≤ p and r is a q × 1 vector of known
elements. The k × 1 parameter vector in the formulation given in (1) and (2) is θ =
(β�, σ 2)�, where k = p + 1.

Non-spherical disturbance To extend the spherical disturbance assumption for the
model given in (1), we consider a groupwise heteroskedastic case. Without loss of
generality, we split the data into two groups to correspond to the non-spherical dis-
turbance by writing y = ( y�

1 , y�
2 )�, X = (X�

1 , X�
2 )� and u = (u�

1 , u�
2 )�, where

n1 + n2 = n. We extend the model given in (1) by assuming the variance-covariance
matrix D[u] = diag(σ 2

1 In1 , σ
2
2 In2) = V (say), with σ 2

g > 0, for g = 1, 2, and
σ 2
1 �= σ 2

2 (non-spherical or heteroskedastic case). We assume the same prior informa-
tion about β as in (2). The k × 1 parameter vector is now θG = (β�, σ 2

1 , σ 2
2 )�, where

k = p + 2.

2.2 Estimation

Spherical disturbance The RLS estimators of the elements of the parameter vector θ

in the formulation (1) and (2) are well-known to be
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Diagnostics in a heteroskedastic model with restrictions 231

β̂RLS = b − (X�X)−1R�[R(X�X)−1R�]−1(Rb − r), (3)

σ̂ 2
RLS = ( y − Xβ̂RLS)

�( y − Xβ̂RLS)

n − p + q
, (4)

where b = (X�X)−1X� y is the (unrestricted) OLS estimator of β.
If we add the normality assumption u ∼ Nn(0n×1, σ

2 In) to the formulation given
in (1) and (2), we can use the MLmethod to estimate θ . In this case, the log-likelihood
function for θ to be optimised subject to the restriction r = Rβ (called the restricted
log-likelihood function) is given by

� =�(θ)= −n

2
log(2π) − n

2
log(σ 2) − 1

2σ 2 ( y − Xβ)�( y − Xβ)− λ
�(Rβ−r),

(5)

where λ is the q × 1 vector of Lagrange multipliers. In order to obtain the RML
estimator, we use matrix calculus to take the differential of � given in (5) with respect
to β and σ 2 and equate it to 0k×1. We get

λ̂ = [R(X�X)−1R�]−1(Rb − r)
σ̂ 2

and then the corresponding RML estimators are

β̂ = b − (X�X)−1R�[R(X�X)−1R�]−1(Rb − r), (6)

σ̂ 2 = ( y − Xβ̂)�( y − Xβ̂)

n
, (7)

where b is defined in (3).
Rao et al. (2008) noted that the RML and RLS estimators of β given in (3) and (6)

are the same, but those for σ 2 given in (4) and (7) are not the same. They considered
a special case with exact knowledge of a subvector and stepwise inclusion of exact
linear restrictions. From (6) we obtain

E(β̂) = β, (8)

D(β̂) = σ 2[(X�X)−1 − (X�X)−1R�[R(X�X)−1R�]−1R�(X�X)−1]. (9)

Note from (8) and (9) that β̂ is unbiased and more efficient than b, which has variance
σ 2(X�X)−1.

Non-spherical disturbance In this case, the restricted log-likelihood function for θG
is given by

�(θG) = −n

2
log(2π) −

2∑

g=1

ng
2

log
(
σ 2
g

)

−
2∑

g=1

1

2σg2
( yg − Xgβ)�( yg − Xgβ) − λ

�(Rβ − r), (10)
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whereλ is again the q×1 vector of Lagrangemultipliers.We again usematrix calculus
to find the RML estimators under groupwise heteroskedasticity, obtaining

β̂G = bG − (X�V̂−1
X)−1R�[R(X�V̂−1

X)−1R�]−1(RbG − r), (11)

σ̂ 2
g = ( yg − Xgβ̂G)�( yg − Xgβ̂G)

ng
, g = 1, 2, (12)

where bG = (X�V̂−1
X)−1X�V̂−1

y is the GLS estimator of β with V̂ =
diag(σ̂ 2

1 In1 , σ̂
2
2 In2).

From the formulas given in (11) and (12), we need to calculate the RML estimates
iteratively. We can employ a procedure starting with the OLS estimate b and then
iterating between V̂ and bG and β̂G.Under the usual assumptions,when the restrictions
RbG = r are true, in large samples the distribution of β̂G can be approximated by a
normal distribution with mean β and a variance matrix which is consistently estimated
by

(X�V̂−1
X)−1 − (X�V̂−1

X)−1R�[R(X�V̂−1
X)−1R�]−1R(X�V̂−1

X)−1.

For further ideaswith examples and relevant asymptotic results, see, for example, Efron
and Hinkley (1978), Judge et al. (1988) and Greene (2007). By assuming σ 2

1 = σ 2
2 ,

we note that the results given in (11) and (12) reduce to the RML estimators for β

given in (6) and for σ 2 given in (7). When V in (11) is known, we obtain

E(β̂G) = β,

D(β̂G) = (X�V−1X)−1 − (X�V−1X)−1R�

×[R(X�V−1X)−1R�]−1R(X�V−1X)−1.

2.3 Information matrices

Spherical disturbance Using the Hessian matrix derived in Appendix 1 and given by

H(θ) = −
⎛

⎜⎝

1

σ 2 X
�X

1

σ 4 X
�( y − Xβ)

1

σ 4 ( y − Xβ)�X − n

2σ 4 + 1

σ 6 ( y − Xβ)�( y − Xβ)

⎞

⎟⎠ , (13)

we obtain the expected Fisher information matrix given by

I(θ) =

⎛

⎜⎜⎝

1

σ 2 X
�X 0

0
n

2σ 4

⎞

⎟⎟⎠ .
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The observed Fisher information matrix is J(θ̂) = −H(θ̂) = I(θ̂).

Non-spherical disturbance In this case, the Hessian matrix is obtained as

H(θG) = −
⎛

⎜⎝

hββ hβσ 2
1

hβσ 2
2

h�
βσ 2

1
hσ 2

1 σ 2
1

hσ 2
1 σ 2

2

h�
βσ 2

2
h�

σ 2
1 σ 2

2
hσ 2

2 σ 2
2

⎞

⎟⎠ , (14)

where

hββ = X�V−1X = 1

σ 2
1

X�
1 X1 + 1

σ 2
2

X�
2 X2,

hβσ 2
1

= 1

σ 4
1

X�
1 ( y1 − X1β),

hβσ 2
2

= 1

σ 4
2

X�
2 ( y2 − X2β),

hσ 2
1 σ 2

1
= − n1

2σ 4
1

+ 1

σ 6
1

( y1 − X1β)�( y1 − X1β),

hσ 2
1 σ 2

2
= 0,

hσ 2
2 σ 2

2
= − n2

2σ 4
2

+ 1

σ 6
2

( y2 − X2β)�( y2 − X2β).

Then, the corresponding expected Fisher information matrix is given by

I(θG) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

X�V−1X 0 0

0
n1
2σ 4

1

0

0 0
n2
2σ 4

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and we have J(θ̂G) = −H(θ̂G) = I(θ̂G).

3 Influence diagnostics

In this section, we present the local influence method, the perturbation matrices for
some different schemes, and then three global influence measures.

3.1 Local influence

Let �(θ) be the log-likelihood function for the model given in (1) and (2), which we
call the postulated or non-perturbed model. Here θ is the k × 1 unknown parameter
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234 S. Liu et al.

vector to be estimated and we denote its ML estimator by θ̂ . Let w = (w1, . . . , wm)�
denote an m × 1 perturbed vector and Ω an open set of relevant perturbations such
that w ∈ Ω . Then, let �(θ |w) = �w be the log-likelihood function for the perturbed
model and θ̂w be the corresponding ML estimator of θ . Let w0 ∈ Ω denote an m × 1
non-perturbed vector with w0 = (0, . . . , 0)�, or w0 = (1, . . . , 1)�, or even a third
choice, depending on the context, such that �(θ) = �(θ |w0). Suppose that �(θ |w)

is twice continuously differentiable in a neighborhood of (θ̂,w0). We are interested
in comparing the parameter estimates θ̂ and θ̂w using the idea of local influence to
detect how the inference is affected by the perturbation. Specifically, in the Cook local
influence method, the likelihood displacement (LD) is given by

LD(w) = 2(�(θ̂) − �(θ̂w)),

which can be used to assess the influence of the perturbation w. Here, large values
of LD(w) indicate that θ̂ and θ̂w differ considerably in relation to the contours of
the non-perturbed log-likelihood function �(θ ). The idea is based on studying the
local behaviour of LD(w) and the normal curvature Cl in a unit-length direction vec-
tor l , where ||l|| = 1. According to Cook (1986), the normal curvature is given by
Cl = 2|l�F(θ)l|. Themaximum curvatureCmax and the corresponding direction vec-
tor lmax may reveal those observations that exercise more influence on LD(w), where
Cmax = max||l||=1 Cl . To examine the magnitude of influence, it is useful to have a
benchmark value for Cmax and for the elements of lmax. For Cmax, 2 or a q-value mea-
sure suggested by Shi and Huang (2011) can be used. For example, when the q-value
is greater than 2, we can say the associated direction vector is significant for detecting
influential observations. For the elements of lmax, Poon and Poon (1999) suggested
1/

√
n and Shi and Huang (2011) noted 2/

√
n can be more reasonable, where n is the

sample size. In our case, we consider as influential those observations with absolute
values of lmax exceeding 2/

√
n. To findCmax and lmax, we need to calculate them×m

matrix F(θ) defined by

F(θ) = −Δ(θ)�H(θ)−1Δ(θ), (15)

where Δ(θ) is a p × m matrix for the perturbed model (perturbation matrix), which
must be obtained from d2θw�w and evaluated at θ = θ̂ and w = w0. Here, H(θ)

is obtained from (13) or (14). In order to detect local influence, one or both of the
following two options can be considered:

(i) The vector f = (F11, . . . , Fnn)
�, where Fi i is the i th diagonal element of F(θ)

given in (15), for i = 1, . . . , n. Clearly, Fi i indicates the possible impact of the
perturbation of the i th observation on the RML estimates of themodel parameters.
We consider the i th case as outstanding if Fi i ≥ 2 F, similarly toCi ≥ 2C , where
Ci is the i th total local influence corresponding to Fi i , and C = 1

n

∑n
i=1 Ci is as

given in, for example, Leiva et al. (2007) and Paula and Cysneiros (2010).
(ii) The vector lmax, which is the eigenvector associated with the largest eigenvalue

Cmax of F(θ); see Cook (1986), Leiva et al. (2007), Liu et al. (2009) and Paula
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Diagnostics in a heteroskedastic model with restrictions 235

et al. (2012). Large absolute values of those elements of lmax, that is, those greater
than 2/

√
n, indicate the corresponding observations to be influential.

3.2 Perturbation matrices

3.2.1 Model perturbation

Spherical disturbance We replace the normal distribution in (1) and (2) by uw ∼
Nn(0n×1, σ

2W−1), where W = diag(w1, . . . , wn) is an n × n diagonal matrix with
its elementswi being the perturbations orweights andW0 = diag(1, . . . , 1) is then×n
identity matrix for non-perturbed values, with i = 1, . . . , n. We also use vecW = Sw,
where S is the n2×n selectionmatrix,w = (w1, . . . , wn)

� and vecW is the vectoriza-
tion ofW ; seeNeudecker et al. (1995) andLiu et al. (2014). In this perturbation scheme,
the relevant part of the log-likelihood function subject to the restriction r = Rβ is
given by

�w1(θ)=−n

2
log(σ 2)+ 1

2
log(|W |) − 1

2σ 2 ( y − Xβ)�W( y − Xβ)− λ
�(Rβ− r).

(16)

Using the differential of �w1(θ) given in (16) with respect to θ detailed in Appendix
2, we obtain Δ(θ̂) defined in (15) as

Δ(θ̂) =

⎛

⎜⎜⎝

1
σ̂ 2

((
y − Xβ̂

)� ⊗ X�
)
S

1
2σ̂ 4

((
y − Xβ̂

)� ⊗
(
y − Xβ̂

)�)
S

⎞

⎟⎟⎠ ,

where ⊗ is the Kronecker product.

Non-spherical disturbance In this case, the relevant part of the log-likelihood function
subject to the restriction r = Rβ is given by

�(θG) = −
2∑

g=1

ng
2

log(σ 2
g ) + 1

2
log(|W |) −

2∑

g=1

1

2σg2
( yg − Xgβ)�W g( yg − Xgβ)

−λ
�(Rβ − r).

We use again matrix calculus to get

Δ( ˆθG) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1

σ̂ 2
1

((
y1 − X1β̂G

)� ⊗ X�
1

)
S1 1

σ̂ 2
2

((
y2 − X2β̂G

)� ⊗ X�
2

)
S2

1

2σ̂ 4
1

((
y1 − X1β̂G

)� ⊗
(
y1 − X1β̂G

)�)
S1 0

0 1

2σ̂ 4
2

((
y2 − X2β̂G

)� ⊗
(
y2 − X2β̂G

)�)
S2

⎞

⎟⎟⎟⎟⎟⎟⎠
,
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where Sg is the n2g × ng selection matrix, for g = 1, 2.

3.2.2 Response perturbation

Spherical disturbance We replace the assumption of normality by uw ∼ Nn(0n×1,

σ 2 In), where uw = y + w − Xβ is based on y + w instead of y given in (1),
w = (w1, . . . , wn)

� is an n × 1 perturbed vector, and w0 = (0, . . . , 0)� is an
n × 1 non-perturbed vector. In this perturbation scheme, the relevant part of the log-
likelihood function subject to the restriction r = Rβ is given by

�w2(θ) = −n

2
log(σ 2) − 1

2σ 2 ( y + w − Xβ)�( y + w − Xβ) − λ
�(Rβ − r). (17)

Taking the differential of �w2(θ) given in (17) with respect to θ as detailed in Appendix
2, we get

Δ(θ̂) =
( 1

σ̂ 2
X�

1
σ̂ 4

( y − Xβ̂)�

)
.

Non-spherical disturbance In this case, the relevant part of the log-likelihood function
subject to the restriction r = Rβ is given by

�(θG) = −
2∑

g=1

ng
2

log(σ 2
g ) −

2∑

g=1

1

2σg2
( yg + wg − Xgβ)�( yg + wg − Xgβ)

−λ
�(Rβ − r).

By using matrix calculus, we get

Δ( ˆθG) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1

σ̂ 2
1

X�
1

1

σ̂ 2
2

X�
2

1

σ̂ 4
1

( y1 − X1β̂G)� 0

0 1

σ̂ 4
2

( y2 − X2β̂G)�

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

3.2.3 Covariable perturbation

Spherical disturbance We now assume uw ∼ Nn(0n×1, σ
2 In), where uw = y −

(X + WA)β is based on X + WA instead of X given in (1), with W being an n × p
perturbed matrix, W0 = 0 an n × p non-perturbed matrix, A = diag(a1, . . . , ap) a
p × p diagonal matrix, and a j the standard deviation of x j corresponding to the j th
column of X , for j = 1, . . . , p. In this perturbation scheme, the relevant part of the
log-likelihood function subject to the restriction r = Rβ is given by
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Diagnostics in a heteroskedastic model with restrictions 237

�w3(θ)=−n

2
log(σ 2)− 1

2σ 2 ( y − (X+WA)β)�( y − (X+WA)β)−λ
�(Rβ − r).

(18)

Based on the differential of �w3(θ) given in (18) with respect to θ as detailed in
Appendix 2, we obtain

Δ(θ̂) =
⎛

⎝
1
σ̂ 2

(
( y − Xβ̂)� ⊗ A

)
K − 1

σ̂ 2
β̂

�
A ⊗ X�

− 1
σ̂ 4 β̂

�
A ⊗ ( y − Xβ̂)�

⎞

⎠ ,

where K is the np × np commutation matrix such that vecW� = KvecW for the
n× p matrixW ; see Magnus and Neudecker (1999) and Liu (2002) for the definition,
properties and applications of K . In particular, if we perturb only x j to x j + a jw,
where w = (w1, . . . , wn)

� is the n × 1 perturbed vector and w0 = (0, . . . , 0)� is the
n × 1 non-perturbed vector, we obtain

Δ(θ̂) j = a j

(
1
σ̂ 2

s j ( y − Xβ̂)� − 1
σ̂ 2

β̂ jX�

− 1
σ̂ 4 β̂ j ( y − Xβ̂)�

)
,

where s j is the p × 1 vector with an one in the the j th position and zeros in the other
positions, for j = 1, . . . , p.

Non-spherical disturbance In this case, the relevant part of the log-likelihood function
subject to the restriction r = Rβ is given by

�(θG) = −
2∑

g=1

ng
2

log(σ 2
g ) −

2∑

g=1

1

2σg2
( yg − (Xg + W gAg)β)�

×( yg − (Xg + W gAg)β) − λ
�(Rβ − r),

where W g is the ng × p perturbed matrix, Ag = diag(ag1, . . . , agp) is the p × p
diagonalmatrix, and agj is the standard deviation of the j th column of Xg , for g = 1, 2
and j = 1, . . . , p. We use matrix calculus to obtain

Δ( ˆθG) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

σ̂ 2
1

((
y1 − X1β̂G

)� ⊗ A1

)
1

σ̂ 2
2

((
y2 − X2β̂G

)� ⊗ A2

)

×K 1 − 1

σ̂ 2
1

β̂G
�
A1 ⊗ X�

1 ×K 2 − 1

σ̂ 2
2

β̂G
�
A2 ⊗ X�

2

− 1
σ̂ 4
1
β̂G

�
A1 ⊗ ( y1 − X1β̂G)� 0

0 − 1
σ̂ 4
2
β̂G

�
A2 ⊗ ( y2 − X2β̂G)�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where K g is the ng p × ng p commutation matrix such that vecW�
g = K gvecW g for

the ng × p matrix W . In particular, if we perturb only x j to x j + a jw, we obtain

Δ( ˆθG) j = a j

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1

σ̂ 2
1

s j ( y1 − X1β̂G)� − 1

σ̂ 2
1

β̂G jX�
1

1

σ̂ 2
2

s j ( y2 − X2β̂G)� − 1
σ̂ 2

β̂G jX�

− 1
σ̂ 4
1
β̂G j ( y1 − X1β̂G)� 0

0 − 1
σ̂ 4
2
β̂G j ( y2 − X2β̂G)�

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where s j is the p × 1 vector with an one in the the j th position and zeros in the other
positions, for j = 1, . . . , p.

3.3 Global influence

In addition to our local influence statistics Fi i and lmax given in Sect. 3.1, using
the case deletion method, we introduce three global influence statistics: LD, relative
change (RC) and generalised Cook distance (GCD). These are defined by

(a) LDi = 2[�(θ̂) − �(θ̂ i )],
(b) RCi = ||θ̂ (i) − θ̂ ||/||θ̂ ||,
(c) GCDi = (θ̂ (i) − θ̂)�J(θ̂)−1(θ̂ (i) − θ̂)/k,

for measuring differences between fits with and without the i th observation, for
i = 1, . . . , n. In the spherical disturbance case, to calculate these global influence
measures, � is given in (5), θ̂ is obtained using all the observations, θ̂ (i) is computed
using the data without the i th observation, J(θ̂) is given in (13) and k = p + 1 is
the dimension of θ . In the non-spherical disturbance case, � is given in (10), θ̂G is
obtained using all the observations, θ̂Gi is calculated using the data without the i th
observation, J(θ̂G) is in (14) and k = p + 2 is the dimension of θG.

4 Numerical illustration

In this section, we illustrate and validate the diagnostic methodology proposed in this
work with three empirical examples of real-world data. The first two examples are for
the spherical disturbance case and the third one is for the non-spherical disturbance
case.

4.1 Example 1

We analyze the data for a response with six covariables observed in 40 metropolitan
areas used in a study by Ramanathan (1993, Table 10.1) and Cysneiros and Paula
(2005). Theobjective of this study is to regress the number (in thousands) of subscribers
with cable TV (Y ) against the number (in thousands) of homes in the area (X1), the
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per capita income for each TV market with cable (X2), the installation fee (X3), the
monthly service charge (X4), the number of TV signals carried by each cable system
(X5) and the number of TV signals received with good quality without cable (X6). As
Y is a count, we take its square root to try to stabilize the variance. Thus, the model is

√
Y i = β0 +

6∑

j=1

xi jβ j + εi ,

where εi ∼ N(0, σ 2) are mutually independent errors, for i = 1, . . . , 40. It is reason-
able to expect the effect of each coefficient to be unidirectional, such as in Cysneiros
and Paula (2005), so that the opposite direction is theoretically impossible. We may
focus on assessing whether the number of subscribers changes as the monthly service
charge changes, that is, to assess whether β4 = 0 or not, which can be treated as an
exact linear restriction. Of course, in the same way for the remaining covariables, we
may be interested in assessing other equality restrictions. Therefore, we use Rβ = 0,
where

R =

⎛

⎜⎜⎝

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎞

⎟⎟⎠ ,

and β = (β0, β1, . . . , β6)
�, such as in Cysneiros and Paula (2005). This corresponds

to the exact linear restrictions β2 = β3 = β4 = β5 = 0. For these data, Cysneiros and
Paula (2005) found case #14 to be most influential using the standardised residuals,
and both cases #1 and #14 to be the most influential using the total local influence
based on a quadratic penalty function. Employing our formulas provided in Sect. 3,
we obtain the RML estimates and the plots of the diagonal elements of F and lmax.
The plot of standardised residuals in Fig. 1 may indicate two extremal observations.
However, the potentially influential observations in Fig. 2 include cases #21 and #16
identified by |Fi i |, plus those found by Cysneiros and Paula (2005) and our lmax. In
addition, the three global influence statistics in Fig. 3 indicate that only cases #14 and
#1 are influential.

4.2 Example 2

Weuse the data considered in Paula andCysneiros (2010,Application 1). The response
(Y ) is theweight to height ratio (scaled by a factor of 100) versus age (X ) for 72 children
from birth to 71.5 months. A restricted normal model is proposed with response
required to be cubic for x ≤ t0 and linear for x > t0 (t0 = 16 months), that is,

Yi = β0 +
3∑

j=1

x j
i β j + β4(xi − t0)

3+ + εi , i = 1, . . . , 72,
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Fig. 1 Plot of standardised
residual versus index for data of
Example 1 in the indicated
perturbation scheme
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where εi ∼ N(0, σ 2) are mutually independent errors, and (xi − t0)+ = 0 if x ≤ t0,
or (xi − t0)+ = xi − t0 if x ≥ t0 with the restrictions Rβ = 0 to guarantee a linear
tendency after t0. Thus,

R =
(
0 0 1 0 −3t0
0 0 0 1 1

)
,

and β = (β0, β1, β2, β3, β4)
�.

Using a quadratic penalty function under a model perturbation scheme, Paula and
Cysneiros (2010, Application 1) applied the total local influence method to β and
then to σ 2. They found two young children identified as cases #2 and #8 having a
large total local influence on β and cases #8, #21 and #25 having a large influence
on σ 2. Using our formulas provided in Sect. 3, we obtain the RML estimates and the
plots of the diagonal elements of F and lmax. The plot of standardised residuals in
Fig. 4 indicates four extremal observations. However, the potentially influential cases
in Fig. 5 include #1, #72 and #9, and even #2 and #8, identified by Fi i and lmax, in
addition to those found by Paula and Cysneiros (2010, Application 1) with case #1 or
#72 being the most influential ones in one or two perturbation schemes. In Fig. 6, the
LD statistics may indicate that cases #8, #2, #1 and #21 are influential. The other two
global influence statistics indicate that only cases #2 and #1 are influential.

4.3 Example 3

The objective of this example is to apply our results with restrictions for the non-
spherical case.We use the data analysed in Examples 9.8 and 9.9 inWooldridge (2013)
to study if the R&D intensity increases with firm size, while an equality restriction on
the coefficient may be involved. Following Wooldridge (2013), we suppose that R&D
expenditures as a percentage of sales are related to sales and profits as a percentage of
sales by
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Fig. 2 Plots of diagonal element of F versus index (left) and of element of lmax versus index (right) for
data of Example 1 in the indicated perturbation scheme
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Fig. 3 Plots of the indicated global influence statistic versus index for data of Example 1

Fig. 4 Plot of standardised
residual versus index for data of
Example 2
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Yi = β0 + xi1β1 + xi2β2 + εi , i = 1, . . . , 32,

where the responses Yi are for the R&D intensity, the covariables xi1 and xi2 are the
firm sales (in millions) and the profit margins, respectively. For a simple illustration,
we impose R = (0, 1, 0) and r = 0.00005, which agrees with the data analysis in
Wooldridge (2013). After ordering the data by the sizes of xi1, that is, the sales, and
splitting the data into two groups of 16 observations, we assume εi ∼ N(0, σ 2

1 ), for
i = 1, . . . , 16, and εi ∼ N(0, σ 2

2 ), for i = 17, . . . , 32, are mutually independent
errors. We fit the model and conduct the Goldfeld-Quandt test for heteroscedasticity
with p value = 0.012 < 0.05 = α, which supports the appropriateness of a non-
spherical disturbance model with σ 2

1 �= σ 2
2 .

We present a plot of the standardised residuals in Fig. 7. Note that this residual for
case #1 is greater than 2. In Fig. 8, the local influence statistics find case #1 to be most
influential and cases #22, #30, #32 and #10 to be possibly influential. In Fig. 9, the
global influence statistics suggest cases #1 and #30 to be influential, with cases #32
and #10 to be noted. Using a dummy variable approach, Wooldridge (2013) found
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Fig. 5 Plots of diagonal element of F versus index (left) and of element of lmax versus index (right) for
data of Example 2 in the indicated perturbation scheme

cases #10 and #1 to be individually influential. They are the largest firm (case #10)
and the firm with the highest value of R&D intensity (case #1). We find that case #1
is more influential than case #10, and identify additional observations including cases
#22 and #30 as potentially influential using our local influence method with Fi i and
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Fig. 6 Plots of the indicated global influence statistic versus index for data of Example 2

Fig. 7 Plot of standardised
residual versus index for data of
Example 3
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even lmax. These cases are not identified by the global influence or dummy variable
approaches.

5 Concluding remarks

We have established results for influence diagnostics in the possibly heteroskedastic
regression linear model with exact linear restrictions.We have used the restrictedmax-
imum likelihood estimators with Lagrange multipliers for the linear penalty function
to find the diagnostic matrix. On one hand, the empirical examples have indicated that
our results can be used to make findings similar to those on the same datasets provided
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Fig. 8 Plots of diagonal element of F and lmax versus index for data of Example 3 in the indicated
perturbation scheme
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Fig. 9 Plots of the indicated global influence statistic versus index for data of Example 3
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in Cysneiros and Paula (2005) and Paula and Cysneiros (2010). On the other hand, we
have seen that our results are different from those given in Cysneiros and Paula (2005)
and Paula and Cysneiros (2010) in a number of ways. Our methodology may be used
in the non-spherical disturbance case and further extended models. For diagnostics,
we have used not just the total local influence statistics which are based on the diag-
onal elements of the diagnostic matrix, but also the direction eigenvector associated
with its largest eigenvalue. We have compared the local influence statistics with three
global influence statistics by examining the possible influential observations identi-
fied by these sets of influence statistics. Our local influence statistics have identified
additional influential observations than the local influence statistics in Cysneiros and
Paula (2005) and Paula and Cysneiros (2010) and our global influence statistics. These
results are directly related to the restricted least squares estimators, which have been
widely used in econometrics and statistics. They also complement those results for
the linear model established by Liu and Neudecker (2007) using a sensitivity analy-
sis approach. Our results can be used and implemented in a reasonably easy way by
computer packages. Our Matlab codes are available on request.

Appendix 1: differentials for the Hessian matrix

We use matrix calculus as studied in Magnus and Neudecker (1999) to establish our
results in both disturbance cases. In the spherical disturbance case, we present the
differentials for the Hessian matrix in Appendix 1 and for the Δ matrices in Appendix
2. In the non-spherical disturbance case, we obtain the differentials and matrices in a
similar manner, so that they are and omitted here.

First, we take the differential of � given in (5) with respect to β and σ 2 and obtain

dβ� = 1

σ 2 ( y − Xβ)�Xdβ − λ
�Rdβ, (19)

dσ 2� = − n

2σ 2 dσ
2 + ( y − Xβ)�( y − Xβ)

2σ 4 dσ 2. (20)

Then, we take the differentials of the elements of the score vector given in (19) and
(20) with respect to β and σ 2 as

d2β� = − 1

σ 2 dβX�Xdβ, (21)

d2
σ 2� = n

2σ 4 dσ
2dσ 2 − 1

σ 6 dσ
2( y − Xβ)�( y − Xβ)dσ 2, (22)

d2
βσ 2� = − 1

σ 4 dβ
�X�( y − Xβ)dσ 2. (23)

We establish the Hessian matrix H(θ) from the differentials given in (21), (22) and
(23).
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Appendix 2: differentials for the perturbation schemes

We present the differentials for the perturbation schemes in the spherical disturbance
case defined in Sect. 3.2 considering the log-likelihood functions �w1 , �w2 and �w3

established in (16), (17) and (18), respectively. From the differentials, we get the Δ

matrices.

Model perturbation Taking the differential of �w1 with respect to β and σ 2, we obtain

dβ�w1 = 1

σ 2 dβ
�X�W( y − Xβ) − dβ�R�

λ,

dσ 2�w1 = − n

2σ 2 dσ
2 + ( y − Xβ)�W( y − Xβ)

2σ 4 dσ 2.

Taking the differential of d�w1 with respect to w, we obtain

d2βw�w1 = 1

σ 2 dβ
�X�dW( y − Xβ)

= 1

σ 2 dβ
� (

( y − Xβ)� ⊗ X�)
Sdw,

d2
σ 2w

�w1 = 1

2σ 4 dσ
2( y − Xβ)�dW(y − Xβ)

= 1

2σ 4 dσ
2
(
( y − Xβ)� ⊗ ( y − Xβ)�

)
Sdw.

Response perturbation Taking the differential of �w2 with respect to β and σ 2, we
obtain

dβ�w2 = 1

σ 2 dβ
�X�(y + w − Xβ) − dβ�R�

λ,

dσ 2�w2 = − n

2σ 2 dσ
2 + ( y + w − Xβ)�( y + w − Xβ)

2σ 4 dσ 2.

Taking the differential of d�w2 with respect to w we obtain

d2βw�w2 = 1

σ 2 dβ
�X�dw,

d2
σ 2w

�w2 = 1

σ 4 dσ
2( y + w − Xβ)�dw.

Covariable perturbation Taking the differential of d�w3 with respect to β and σ 2, we
obtain

dβ�w3 = 1

σ 2 dβ
�(X + WA)�( y − (X + WA)β) − dβ�R�

λ,

dσ 2�w3 = − n

2σ 2 dσ
2 + 1

2σ 4 dσ
2( y − (X + WA)β)�( y − (X + WA)β).
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Taking the differential of d�w3 with respect to w, we obtain

d2βw�w3 = 1

σ 2 dβ
�AdW�( y − (X + WA)β) − 1

σ 2 dβ
�(X + WA)�dWAβ,

d2
σ 2w

�w3 = − 1

σ 4 dσ
2( y − Xβ − WAβ)�dWAβ.
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