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As would be expected from these authors, this is an interesting and well-written paper.
It provides a stimulating introduction to robustness problems in the analysis of func-
tional data. We have four general comments, none extensive.

1 Robust bivariate boxplots

The “bag-plot” of Rousseeuw et al. (1990), which you exemplify in your Figure 8,
provides a polygonal approximation to the unknown distribution. The robust bivariate
boxplot introduced by Zani et al. (1998) provides a smoother approximation to the
unknown distribution. We briefly recall some of its properties.

Zani et al. (1998) use the peeling of convex hulls to, in the tradition of very robust
statistics, find a region that contains approximately 50% of the data. Peeling of hulls
continues until the first one is obtained which includes not more than 50% of the data
(and asymptotically half the data as the sample size increases). The “50% hull” so
found is smoothed using B-splines, with cubic pieces which use the vertices of the
50% hull to provide information about the location of the knots.

The robust centre of the data is found as the bivariate mean of the observations lying
with the 50% contour. Given the centre and the contour, the distance of any point from
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Fig. 1 Robust bivariate boxplot
of the writing data at time t = 5.
The greater spread of the data in
the lower left corner is evident
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the centroid can be defined. Apart from the method of constructing the reference con-
tour, themethod is the same as that in your section 3.2. Riani and Zani (1998) comment
that the distance they find is non-parametric, robust, takes into account, as you stress,
the differing spread of the data in different directions and reduces to the customary
squared Mahalanobis distance when the uncontaminated data are elliptically distrib-
uted.

The assumption for other contours is that they will have the same shape as the 50%
contour. For diagnostic purposes, Riani and Zani (1998) find expansion coefficients
leading to contours which contain a prespecified portion of the data when they are
normally distributed.

Figure 1 shows the resulting robust bivariate boxplot for the data at time t = 5,
with a 99% contour, to be compared with your Figure 8. Both plots reveal the outlying
nature of observation 132. However, our plot suggests that the three observations for
low values of both variables are also outlying. In both bivariate boxplots the robust
centroids are not at the centre of the 50% contour but are located closer to the upper
right inner contour. Indeed, both boxplots indicate that the spread of the data in the
lower left part of the plot is greater than that in the upper right corner. This is an
indication that the data may need to be transformed. In our next section we consider
transformations of the data to normality.

2 Transformations of data

Atkinson and Riani (1997) illustrate the use of scatterplot matrices incorporating
the robust bivariate boxplot in the analysis of a five-dimensional example on soil
properties. Some of the boxplots are plausibly elliptical, others are not. They extend
their analysis to a robust form of the Box-Cox transformation to normality, which we
now further extend.

Developments of our work on the robust analysis of multivariate data are described
in Atkinson et al. (2004). We have found, there and elsewhere, that use of a robust
form of the Box-Cox transformation leads to data for which Mahalanobis distances
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Fig. 2 Left-handpanel:monitoring themaximum likelihood estimates of the two transformation parameters
during the forward search. Right-hand panel: monitoring the likelihood ratio test of no transformation. The
two horizontal bands respectively correspond to 95 and 99% asymptotic pointwise confidence limits

are useful indicators of outlyingness and incorrectly specified structure. Mahalanobis
distances are, of course, easy to calculate, robustly or not, whatever the dimension.
A discussion of the use of this transformation in principal components analysis is in
Maadooliat et al. (2015). Given that in this case the data contain both positive and
negative values, we instead use the transformation of Yeo and Johnson (2000). This
is a Box-Cox transformation of y+ 1 for nonnegative values of y, and of |y| + 1 with
parameter 2− λ for y negative.

The left-hand panel of Fig. 2 displays the monitoring of the maximum likelihood
estimates of the two transformation parameters during the latter part of the forward
search. This exhibits an upward trend departing from one, as the more remote obser-
vations are included in the subset. The right-hand panel of Fig. 2, which shows the
monitoring of the likelihood ratio test for the hypothesis of no transformation, indi-
cates that the need to transform the data does not depend on the presence of few
observations. The value of the test statistic begins to exceed the 99% confidence band
from a subset size m = 155.

Figure 3 shows the bivariate boxplot of the transformed data using the transforma-
tionλ1 = λ2 = 1.3. In the untransformed scale of Fig. 2 therewas a high concentration
of data points near the upper-right corner of the 50% hull. This feature is no longer evi-
dent in Fig. 3. The contours seem more nearly elliptical and the points are appreciably
closer to having an elliptically symmetrical distribution.

Our form of boxplot produces smooth contours; further, no data point is forced to
lie on the fence. However, as Rousseeuw et al. (1990) comment, there may in general
be some loss of robustness in small samples due to the use of peeling. However, in
this particular example, the 50% hull includes exactly n/2− 1 (86) data.

Like the bagplot, our robust bivariate boxplot becomes computationally muchmore
challenging in three or more dimensions. Scatterplot matrices are then very helpful.
Of course, the analysis which has been presented here is for one time point. For the
transformation model to be useful in the analysis of these functional data, one would
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Fig. 3 Robust bivariate boxplot
of the writing data at time t = 5
transformed with λ1=λ2=1.3.
The contours and distribution of
data points are more elliptical
than in Fig. 1
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hope that the same transformation would hold at all times. Failing that, the transfor-
mation parameters might be expected to vary in a smooth, and perhaps informative,
way. Outlying periods will be revealed by a jump to a different set of parameter
values.

3 Time series and Kriging

We wonder about the relationship between functional data analysis and the analysis
of time series. In your abstract you refer to “each time point” and it is tempt-
ing to wonder whether such Kalman-filter based methods as those of West and
Harrison (1989) and Harvey (1989), suitably robustified, might be appropriate. In
your work the distances are calculated independently at each “time” point and then
summed (your equation 3) over time. Self evidently, in functional data, there is
no sense of moving from “left” to “right”. But one might expect some stochas-
tic relationship between adjacent observations, such as is incorporated in Kriging
models.

4 Graphics

All the new plots which are presented are highly informative and are strongly inter-
related. It will be very important to have brushing and linking tools which enable the
user to connect the information on a particular subgroup of units in different plots.
Such procedures are possible in Matlab (e.g. Riani et al. 2014), but not routinely
in R. We think it will be very helpful to have your new routines produced for both
languages.

We enjoyed reading your paper and look forward to your responses in the light of
your experience of the analysis of functional data.
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