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Abstract We propose new simultaneous and two-step procedures for reconciling sys-
tems of time series subject to temporal and contemporaneous constraints according to
a growth rates preservation (GRP) principle. The techniques exploit the analytic gra-
dient and Hessian of the GRP objective function, making full use of all the derivative
information at disposal. We apply the new GRP procedures to two systems of eco-
nomic series, and compare the results with those of reconciliation procedures based
on the proportional first differences (PFD) principle, widely used by data-producing
agencies. Our experiments show that (1) the nonlinear GRP problem can be efficiently
solved through an interior-point optimization algorithm, and (2) GRP-based proce-
dures preserve better the growth rates than PFD solutions, especially for series with
high temporal discrepancy and high volatility.

Keywords Benchmarking · Reconciliation · Movement preservation ·
Nonlinear optimization

1 Introduction: benchmarking and reconciliation of time series

The benchmarking problem arises when two time series for the same target variable
are measured at different frequencies with different level of accuracy, and there is the
need to remove discrepancies between the annual benchmarks and the corresponding
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aggregates (either sums or averages) of the sub-annual values. For example, the optimal
combination of annual levels and quarterly movements requires an adjustment that
preserves as much as possible the short-term movements in the preliminary infra-
annual figures subject to the restrictions provided by the annual constraints.

The reconciliation problem is commonly known as the adjustment process of a
system ofm(>1) time series in accord with their low-frequency benchmarks and with
at least one high-frequency aggregate series. In this case, both temporal aggregation
constraints, for each individual series across the temporal dimension, and contem-
poraneous constraints, for each individual period across the variables of the system,
must be satisfied. As for the benchmarking problem, this adjustment should be done
according to some movement preservation principle such that the temporal profiles of
the original series are preserved to the highest possible degree.

Benchmarking and reconciliation problems are typically faced by statistical agen-
cies in the production of official statistics. Typical examples are the compilation of
quarterly supply and use tables (SUT) in national accounts, where the quarterly flows
are required to satisfy more comprehensive level estimates from annual SUT and to
be in line with the many row and column equalities of the tables; or the production of
seasonally adjusted (SA) estimates following a direct approach, when SA series are
required to be consistent with their annual unadjusted levels and SA aggregates need
to be in line with SA components in any observed period.

Both benchmarking and reconciliation can be performed setting up constrained
minimization problems of some mathematical criterion aimed at preserving at the
best the movements in the sub-annual values. It is commonly understood by many
authors and practitioners that an ideal movement preservation principle should be
formulated as an explicit preservation of the period-to-period rates of change of the
preliminary series (Helfand et al. 1977; Bloem et al. 2001), according to which the
sum of the squared differences between the growth rates of the target series and the
growth rates of the preliminary series is minimized. The Growth Rates Preservation
(GRP) criterion, however, gives rise to a nonlinear problem (NLP), whose solution
requires numerical optimization algorithms.

Denton (1971) proposed alternative movement preservation principles (i.e. objec-
tive criteria) for benchmarking, that give rise to quadratic-linear optimization problems
in the target values. The benchmarked values can thus be found using an explicit
formula involving simple matrix operations. In particular, the Proportionate First
Differences (PFD) criterion, one of the variant proposed by Denton, has been very
successful in practical benchmarking applications. The PFD criterion looks for bench-
marked estimates aimed at minimizing the sum of squared proportional differences
between the target values and the unbenchmarked values.

Di Fonzo and Marini (2011) extended the PFD criterion to the reconciliation of a
system of time series subject to both temporal and contemporaneous constraints. A
simultaneous solution to the problem was proposed, which exploits the sparsity of
the linear system to be solved. Furthermore, a two-step reconciliation strategy was
recommended to reduce the complexity of the problem in the case of large systems: a
benchmarking procedure is applied for each series at the first step, and then, the bench-
marked series are reconciled year-by-year using a least squares balancing procedure.
The work demonstrated empirically that a two-step procedure with a least squares
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adjustment proportional to the squared level of the benchmarked series at the second
step results in a close approximation of the Denton PFD simultaneous solution.

At the individual series level (i.e. for univariate benchmarking), the PFD criterion
has often been claimed to be a close approximation of the GRP principle. Thanks
to the satisfactory results obtained from the modified Denton’s PFD technique and
from other related linear solutions (e.g. Dagum and Cholette 2006), few significant
progress has been achieved towards the development of an efficient and robust opti-
mization algorithm to minimize the nonlinear GRP function for benchmarking and
reconciliation problems. A benchmarking procedure based on the GRP criterion was
first implemented by Causey and Trager (1981; see also Trager 1982; Bozik and Otto
1988). To solve the NLP defined by the GRP criterion, Causey and Trager devel-
oped a steepest descent (SD) algorithm based on first-derivative information (i.e. the
gradient). However, using only first-derivative information may result in poorly effi-
cient procedures, characterized by slow convergence and possible troubles in finding
actual minima of the objective function. More recently, Brown (2010, 2012, see also
Titova et al. 2010) proposed a gradient-based procedure that uses a Conjugate Gradient
(CG) algorithm, but the results were broadly in line with the Causey and Trager’s SD
procedure in terms of efficiency and robustness of the solutions.

Our interest in developing GRP-based benchmarking and reconciliation procedures
has been motivated by two reasons. First, we think that recent advances in optimiza-
tion algorithms along with the huge increase in computational power of computers
make it possible to solve the nonlinear GRP problem nowadays more accurately and
more rapidly than in the past. Second, once a more efficient optimization algorithm
is available, we aim at assessing empirically how true is the supposed approximation
of the optimal, nonlinear GRP objective function by the linear PFD solution in both
benchmarking and reconciliation problems.

In our recentworkswe have found thatmassive improvements in both efficiency and
robustness of the benchmarking results can be obtained exploiting both the analytical
gradient vector and Hessian matrix of the GRP function. First, Di Fonzo and Marini
(2013a, 2013b) found that an interior-point method (Nocedal andWright 2006), which
uses second-order derivative information, provides more accurate and faster solutions
compared to other gradient-based optimization procedures. Second, Di Fonzo and
Marini (2012a) proposed a Newton’s method with Hessian modification that can be
applied after the original constrained benchmarking problem is transformed into an
unconstrained problem.

With these effective implementations of the GRP benchmarking procedure we have
been able to clarify the nature of the PFD approximation. Using a simulation exercise,
we showed the conditions under which the PFD solution provides a close approxi-
mation to GRP (Di Fonzo and Marini 2013a). We also found that the approximation
works particularly well when the movements in the preliminary series are smooth
(low variance in the growth rates) and the relationship with the (annual) target series is
relatively stable (no changes in the ratio between their levels), but deteriorates as soon
as the preliminary series is lumpy (or affected by strong seasonal effects) or presents
sudden level shifts compared to the target series.

In this paper we continue our research on the GRP by extending this approach to the
reconciliation of systems of time series subject to both temporal and contemporaneous
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constraints. We show that using an interior-point method to solve a constrained non-
linear optimization problem is a fast and feasible choice even for very large systems.
Then, we compare the results with the PFD-based reconciliation procedures presented
in Di Fonzo and Marini (2011) in order to demonstrate the effectiveness of the GRP
adjustment in terms of both computational efforts and quality of the results.

The paper is organized as follows. In Sect. 2 the optimization problem in terms of
GRP is discussed and compared to the classical benchmarking procedure by Denton
(1971). The extension to reconciliation with both temporal and contemporaneous
constraints is then presented. In Sect. 3 we introduce the interior-point method, and in
Sect. 4 we discuss two-step reconciliation procedures based on the GRP criterion. In
order to analyze the distinctive features of the proposed procedures, Sect. 5 presents
two applications of the new reconciliation procedures for real-life systems of series,
namely 175 quarterly series from the EU Quarterly Sector Accounts (EUQSA), and
236monthly series from theCanadianMonthlyRetail TradeSurvey (MRTS). Section 6
presents some final remarks and conclusions.

2 Growth rates preservation in benchmarking and reconciliation

Benchmarking and reconciliation problems are solved through the minimization of
an objective function of the unobserved values of one or more target series, which
must satisfy given temporal and contemporaneous aggregation constraints. Let us
denote the target series by y j,t , where the two sub-indices indicate the cross-sectional
dimension and the temporal dimension, respectively: j = 1, . . . ,m and t = 1, . . . , n,
withm the number of series considered (ifm = 1, we have a univariate benchmarking
problem) and n the number of high-frequency periods. Each series is denoted in vector
form as y j = [y j,1, y j,2, . . . , y j,n]′. The whole system of series can be conveniently
stacked in a single vector as y = [y′

1, . . . , y
′
m]′. In the following, we assume that for

benchmarking and reconciliation problems the system constraints assume the general
form

Ay = b (1)

where A is a (r × mn) matrix of any given real numbers defining the relationships
between the mn observations and b is the r -dimensional vector with the known quan-
tities (benchmarks) of the system (for details, see Appendix A in Di Fonzo andMarini
2012b).

The objective function is usually set as a distance metric between the unobserved
target series y j,t and some preliminary series p j,t observed at the same frequency. For
economic series, especially those observed at the infra-annual level, it is sensible to
define this metric in terms of movements of the series: the user of such statistics is
generally much more interested in the dynamic of a monthly or quarterly series (e.g.
howmuch it has grown since the last month or quarter) rather than in its level (e.g. how
much is the level in the month or the quarter). For this reason, objective functions for
benchmarking and reconciliation problems are most commonly known as movement
preservation principles.
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2.1 Benchmarking (m = 1)

As for benchmarking, Causey and Trager (1981) consider a criterion to be minimized
explicitly related to the growth rate, which is a natural measure of the movement of a
time series:

fGRP =
n∑

t=2

(
yt − yt−1

yt−1
− pt − pt−1

pt−1

)2

=
n∑

t=2

(
yt
yt−1

− pt
pt−1

)2

. (2)

The benchmarked values y∗
t , t = 1, . . . , n, minimize the criterion (2) subject to the

aggregation constraints
∑

t∈T yt = YT , T = 1, . . . , N , where index T denotes the
low-frequency period (e.g. the year). In other words, the benchmarked series is esti-
mated in such a way that its temporal dynamics, as expressed by the growth rates(
yt − yt−1

yt−1

)
, t = 2, . . . , n, be ‘as close as possible’ to the temporal dynamics

of the preliminary series, where the ‘distance’ from the preliminary growth rates(
pt − pt−1

pt−1

)
is given by the sum of the squared differences.

Two observations are in order. Looking at the criterion fGRP, it clearly appears that it
is grounded on an “ideal” movement preservation principle, “formulated as an explicit
preservation of the period-to-period rate of change” of the preliminary series (Bloem
et al. 2001, p. 100). Second, the constrained minimization of fGRP is nonlinear in the
target values yt , has not linear first-order conditions for a stationary point, and thus an
explicit, analytic expression for the solution cannot be found. A solution can only be
found using nonlinear optimization algorithms. We think that this complication has
made the GRP benchmarking approach less appealing for data-producing agencies,
and limited its use in practical applications.

Denton (1971) proposed a benchmarking procedure grounded on theProportionate
First Differences (PFD) between the target and the preliminary series:1

fPFD =
n∑

t=2

(
yt − pt

pt
− yt−1 − pt−1

pt−1

)2

=
n∑

t=2

(
yt
pt

− yt−1

pt−1

)2

. (3)

Since fPFD is a quadratic function of the target values, the benchmarked series can be
expressed in closed form and its values found with simple matrix operations (Dagum
and Cholette 2006; Di Fonzo and Marini 2013a).

In the literature (Cholette 1984; Bloem et al. 2001; Dagum and Cholette 2006)
it is often claimed that the PFD procedure produces results very close to the GRP
benchmarking. Indeed, fGRP and fPFD are very close to each other. For, it can be seen
that

1 Criterion (3) is expressed according to Cholette (1984), who modified the PFD criterion proposed by
Denton, in order to correctly deal with the starting conditions of the problem.
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n∑

t=2

(
yt
pt

− yt−1

pt−1

)2

=
n∑

t=2

[
yt−1

pt

(
yt
yt−1

− pt
pt−1

)]2
. (4)

The term in parentheses on the right-hand side is the difference between the growth
rates of the target series and those of the preliminary series, namely the addendum of
(2). In the PFD criterion these terms are weighted by the ratio between the target series
at t−1 and the preliminary series at t .When these ratios are relatively stable over time,

which is the case when the ‘benchmark-to-indicator ratio’ YT∑
t∈T pt , T = 1, . . . , N

(Bloem et al. 2001), is a smooth series, criteria (2) and (3) are very close to each
other. On the contrary, when the ratios yt−1

pt behave differently, each term in the
rhs summation in expression (4) is over-(under-)weighted according to the specific
relationship between target and preliminary series in that period. For example, sudden
breaks in the movements of yt−1/pt might arise in case of large differences between
the annual benchmarks and the annually aggregated preliminary series. In addition,
Di Fonzo and Marini (2013a) studied empirically this issue, showing that PFD and
GRP benchmarked estimates are close when the variability of the preliminary series
and/or its bias are low with respect to the target variable. When this is not the case
(e.g. preliminary series with large growth rates and/or bias), the GRP and PFD results
diverge.

A GRP-benchmarking problem can be solved very efficiently by using Newton’s
optimization methods, which exploit the analytical expressions of the gradient and
the Hessian of fGRP (Di Fonzo and Marini 2012a, 2013b). First, the class of methods
known as interior-point (IP) methods (also referred to as barrier methods, Nocedal and
Wright 2006), which has proved to be fast and accurate formany nonlinear constrained
optimization problems, has been considered. Second, aNewton’smethodwithHessian
modification applied to a suitably reduced-unconstrained problem has been developed.

2.2 Reconciliation (m > 1)

For reconciliation problems, both (2) and (3) can be extended to consider all the m
series in the system. The global GRP criterion is defined as

FGRP =
m∑

j=1

n∑

t=2

(
y j,t − y j,t−1

y j,t−1
− p j,t − p j,t−1

p j,t−1

)2

=
m∑

j=1

n∑

t=2

(
y j,t
y j,t−1

− p j,t

p j,t−1

)2

(5)
whereas the global PFD function is

FPFD =
m∑

j=1

n∑

t=2

(
y j,t − p j,t

p j,t
− y j,t−1 − p j,t−1

p j,t−1

)2

=
m∑

j=1

n∑

t=2

(
y j,t
p j,t

− y j,t−1

p j,t−1

)2

.

(6)
Since there is no cross-sectional interaction between different series in (5) and (6),

the relationship between the global criteria follows straightforward from (4):
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m∑

j=1

n∑

t=2

(
y j,t
p j,t

− y j,t−1

p j,t−1

)2

=
m∑

j=1

n∑

t=2

[
y j,t−1

p j,t

(
y j,t
y j,t−1

− p j,t

p j,t−1

)]2
. (7)

A reconciliation procedure based on FPFD was presented by Di Fonzo and Marini
(2011). Likewise the benchmarked estimates, the reconciled estimates can be derived
as (part of) the solution of a linear system. Compared to the benchmarking case,
however, there are two major complications in the coefficient matrix of the system: (1)
its size tends to be large, increasing exponentially with the number of variables and the
number of periods, and (2) the presence of constraints having different nature causes
rank deficiency. Using very efficient sparse algorithms available in MATLAB, Di
Fonzo andMarini (2011) showed that a simultaneous adjustment of all the variables in
the system is still feasible even when the system is very large. Two-step reconciliation
procedures were also considered, because they are computationally less demanding if
sparse matrices facilities are not available (we will consider them again in Sect. 4).

To our knowledge, a reconciliation procedure minimizing the global GRP criterion
(5) has never been attempted. The two complications mentioned before—large size
and rank deficiency of the system matrix, are likely to make even more difficult, if
not impossible, the application of nonlinear optimization algorithms. However, the
Newton’s algorithms considered for the GRP benchmarking case have proved to be
very efficient and robust for a single series and look promising for dealing with many
variables and many constraints at the same time. Similarly to our previous works on
benchmarking, our main interests in this paper are:

– to verify if reconciliation problems (possibly large and complex) based on themin-
imization of the global GRP criterion (5) can effectively be solved using Newton’s
methods exploiting second-order information;

– once an effective GRP reconciliation procedure is developed, to determine how
close is the presumed approximation of the PFD reconciled estimates using prac-
tical applications.

3 Optimization algorithms for the GRP problem

3.1 Temporal benchmarking

The GRP criterion fGRP is a nonlinear function of the target values. More precisely, it
can be shown that it is a non-convex function (Di Fonzo andMarini 2012a). Differently
from the PFD case, the constrained minimization problem based on the GRP function
does not have linear first-order conditions for a stationary point, and therefore it is not
possible to find an explicit, analytic expression for the solution. On the other hand,
provided that both pt and yt , t = 1, . . . , n − 1, be different from zero,2 fGRP is
a twice continuously differentiable function, making it possible the use of several
iterative minimization algorithms (Nocedal and Wright 2006).

2 It should be noted that the state-space formulation of the PFD benchmarking technique provided by
Quenneville et al. (2013) permits to coveniently deal with zero preliminary values. An extension to GRP
benchmarking will be considered in the future research work.
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The first implementation of an algorithm for the GRP benchmarking problem was
given by Causey and Trager (1981), who used a constrained steepest descent algorithm
based on first-derivatives information (i.e. the gradient) of the GRP function. The
minimization problem is solved in the original variables yt by using a feasible direction
method, according to which at each iteration the unconstrained search direction is
projected onto the feasible set of solutions defined by the constraints of the problem.
TheCausey andTrager’s procedure is implemented in theDOS-executable programme
BMK1, which has been used extensively by theUSCensusBureau. Brown (2010, 2012)
has recently proposed a similar feasible direction method based on the conjugate
gradient algorithm and implemented in SAS. However, according to the results, this
implementation seems to offer little improvements over the original procedure by
Causey and Trager.

As a matter of fact, gradient-based algorithms may result in poorly efficient pro-
cedures, characterized by slow convergence and possible troubles in finding actual
minima of the objective function. Improvements in both efficiency and robustness
may be obtained by considering second-order information from the objective func-
tion, i.e. the Hessian matrix.

Di Fonzo andMarini (2012a) developed an efficient Newton’s methodwith Hessian
modification to solve the GRP benchmarking problem. The algorithm consists of the
following steps. First, the analytical expression of the Hessian of the GRP function
is derived; second, the original constrained (benchmarking) problem is transformed
into an equivalent unconstrained problem; third, a Newton’s method that allows a
modification of the Hessian in order to preserve positive definiteness is applied. The
Newton’s method was compared with different gradient-based procedures (including
the feasible steepest descent algorithm implemented in BMK1) through a benchmark-
ing exercise of hundreds of series. In all the cases considered, the Newton’s method
significantly outperformed gradient-based methods in terms of both accuracy of the
solution and convergence rates.

3.2 Reconciliation of systems of time series

In this paper we extend the GRP approach to the reconciliation of systems of time
series. To our knowledge, the simultaneous reconciliation of time series subject to both
temporal and contemporaneous constraints according to the global GRP criterion has
never been considered in the literature. Due to the large and sparse nature of the
constrained optimization problem for FGRP , we only consider an interior-point (IP)
method, which is a powerful algorithm for solving large-scale nonlinear constrained
problems (Nocedal and Wright 2006).3

The IP method requires the gradient vector and the Hessian matrix of FGRP , whose
analytical expressions are shown in the “Appendix”.

3 In Di Fonzo and Marini (2012b) a Newton’s method with Hessian modification applied to a suitably
reduced unconstrained transformation of the original constrained reconciliation problem is discussed. The
interior-point method has proved to be much faster and reliable than the Newton’s method for reconciliation
problems.
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In a sense, IP methods represent the most advanced methods for solving large
and sparse reconciliation problems based on the global GRP nonlinear function. One
appealing feature of IP methods is that they are “infeasible” algorithms; that is, it is
not required that the method start from a point in the feasible region. This feature is
quite relevant in solving reconciliation problems, because it allows the user to start
the algorithm by using the preliminary series p j,t .4

4 GRP in two-step reconciliation procedures

When the system of time series is very large, a simultaneous solution can be opera-
tionally difficult to apply, mostly if the practitioner either does not intend to or cannot
use sparse matrices computation facilities. Simplified solutions are however possible,
based on a generalization of the two-step approach proposed by Quenneville and Ran-
court (2005) for restoring the additivity of a system of SA time series such that their
sum is in line with directly-derived SA totals: firstly, a univariate benchmarking pro-
cedure (e.g. the modified Denton PFD benchmarking procedure or the more general
regression based benchmarking procedure by Cholette and Dagum 1994) is used to
restore the temporal additivity of every series; in the second step, the component series
are reconciled 1year at a time using a least squares balancing procedure.

Di Fonzo and Marini (2011) discussed and applied to real-life systems of time
series two-step procedures based on the PFD criterion, and compared them with the
simultaneous PFD reconciliation solution based on (6). In the first step, the modified
Denton PFD benchmarking technique is used. In the second step, instead, two alterna-
tive least-squares adjustments of the benchmarked estimates are employed to reconcile
them with the contemporaneous constraints of the system 1year at a time. Denoting
with y j,t the target (reconciled) series, and with yPFDj,t the benchmarked series obtained
at the first step with the modified Denton PFD method, the second step is based on the
following objective criteria (Di Fonzo and Marini 2011):5

FPFD−BB
T =

m∑

j=1

T s∑

t=(T−1)s+1

(
y j,t − yPFDj,t

)2

|yPFD
j,t | , T = 1, . . . , N (8)

FPFD−ST
T =

m∑

j=1

T s∑

t=(T−1)s+1

(
y j,t − yPFDj,t

yPFDj,t

)2

, T = 1, . . . , N (9)

where s is the order of temporal aggregation (e.g. s = 3 formonthly/quarterly aggrega-
tion, s = 4 for quarterly/annual, s = 12 for monthly/annual). For each low-frequency
period T , a constrained optimization of either functions (8) or (9) is performed, with

4 In contrast, feasible methods, like the Newton’s method discussed in Di Fonzo and Marini (2012b),
have to start from a feasible point and then require a set of reconciled series as input. Given that deriving
(preliminary) reconciled estimates to start the algorithmmay be an additional complication for practitioners,
we view this feature as another clear advantage of the IP method.
5 The superscripts ‘BB’ and ‘ST ’ denote distinctive normalization factors of the squared differences at the
numerator, as proposed by Beaulieu and Bartelsman (2004), and Stuckey et al. (2004), respectively.
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constraints given by suitable subsets of the systemconstraints (1), that can bewritten by
analogy asAT yT = bT ,whereAT , yT , andbT have dimensions6 (hT×ms), (ms×1),

and (hT ×1), respectively, and
∑N

T=1
hT = r , which is the row-dimension of matrix

A in (1).
As shown by Di Fonzo and Marini (2011), the choice of the criterion on which the

second step is grounded may have a clear impact on the temporal dynamics of the
reconciled series, the adjustments to the preliminary growth rates due to criterion (8)
being generally larger than those produced by criterion (9).

However, in our previous work we considered only the modified Denton PFD
technique at the first step. We did not investigate other options because our main
concernwas to compare two-step procedureswith the simultaneous PFD reconciliation
procedure. Now we are instead interested in two-step procedures having the GRP
benchmarking technique at the first step, and a least-squares adjustment at the second
step alternatively based on the following two criteria:

FGRP−BB
T =

m∑

j=1

T s∑

t=(T−1)s+1

(
y j,t − yGRPj,t

)2

|yGRPj,t | (10)

FGRP−ST
T =

m∑

j=1

T s∑

t=(T−1)s+1

(
y j,t − yGRPj,t

yGRPj,t

)2

. (11)

As for the PFD case, we wish (1) to assess how much alternative choices of the
criterion adopted in the second step do affect the temporal dynamics of the reconciled
series as compared to the preliminary ones, and (2) to have empirical confirmation to
the expectation that the two-step procedure based on the GRP benchmarking method
at the first step and a least-squares adjustment based on (11) at the second step is a
close approximation to the simultaneous GRP reconciliation procedure.

5 Applications

In this section we consider the reconciliation of two systems of time series:7 (1) the
EUQSA system, 175 quarterly variables of the European Union’s quarterly national
accounts (28 quarters) to be reconciled with known annual totals and 30 accounting
constraints, and (2) the MRTS system, 236 monthly series of Canadian seasonally
adjusted retail trade by provinces (156months) to be reconciledwith annual unadjusted
totals and 32 contemporaneous constraints for geographical aggregations (for more
details on the two datasets, see Di Fonzo and Marini 2011).

Aggregate statistics on both temporal
(∑

t∈T p j,t − Y j,T , j = 1, . . . ,m, T =
1, . . . , N ) and contemporaneous

(∑m
j=1 p j,t − zt , t = 1, . . . , n

)
discrepancies in

6 In general, for each low-frequency period the total number of constraints may differ: that’s why we use
hT to denote them. When this is not the case, it is hT = r

N , T = 1, . . . , N .
7 Data and codes are available at request from the authors.
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Table 1 Average statistics on discrepancy (in % of benchmark values) in the EUQSA and MRTS systems

No. of series/
constraints

Mean Abs. mean SD Min Max Range

EUQSA

Temporal 65a 0.6 2.6 2.6 −2.8 4.9 7.7

Contemporaneous 30 −25.3 38.0 68.5 −304.2 57.0 361.2

MRTS

Temporal 236 −0.1 0.5 0.6 −1.2 1.1 2.3

Contemporaneous 32 −0.1 0.7 0.9 −2.7 2.8 5.5

a Only 65 out of 175 EUQSA series present temporal discrepancies

the two systems are presented in Table 1. The table presents averages of (in order)
mean, absolute mean, standard deviation, minimum, maximum, and range of the dis-
crepancy for both temporal and contemporaneous constraints. The average discrepancy
is expressed in%of the benchmark values.8 It can be noted that EUQSApresentsmuch
higher discrepancies than MRTS in both temporal and contemporaneous constraints.
Discrepancies in EUQSA are mostly generated by the fact that quarterly preliminary
figures are available for just a few member states and not all the countries of the Euro-
pean Union (data-driven discrepancy); on the contrary, MRTS discrepancies come
from the direct application of seasonal adjustment to each component in the system
(procedure-driven discrepancy).

We extend the comparison in Di Fonzo and Marini (2011) by including reconcili-
ation procedures based on the GRP criterion. We apply two simultaneous procedures

– Sim GRP, through the application of the interior-point method presented in Sect. 3
to minimize the global criterion (5);

– Sim PFD, through the direct solution of the linear system coming from the con-
strained minimization of the global criterion (6);

and four two-step procedures

– PFD-BB: the modified Denton PFD benchmarking is applied at the first step, and
a least-squares adjustment based on (8) at the second step;

– PFD-ST: the modified Denton PFD benchmarking is applied at the first step, and
a least-squares adjustment based on (9) at the second step;

– GRP-BB: the GRP benchmarking is applied at the first step, and a least-squares
adjustment based on (10) at the second step;

– GRP-ST: the GRP benchmarking is applied at the first step, and a least-squares
adjustment based on (11) at the second step.

In order to assess the performance of the procedures, for each series we calculate
the Mean Absolute Adjustment (MAA) to the percentage growth rates, that is

8 When the preliminary data presents a non-zero mean difference with the annual series, it is standardized
to the overall level of the annual series according to the bias correction procedure described in Quenneville
et al. (2009).
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Table 2 Summary statistics ofMAA for the EUQSA and MRTS systems

Two-step Simultaneous

PFD-BB GRP-BB PFD-ST GRP-ST Sim PFD Sim GRP

EUQSA

Mean 3.0949 2.9787 1.2717 1.1097 1.2799 1.0883

Median 2.1178 2.1635 0.3874 0.3884 0.4212 0.3780

SD 3.2645 2.9854 2.3604 1.4987 2.3671 1.4641

Max 27.2699 29.1887 24.3963 6.9151 24.4550 6.3662

% Min 8.6 10.9 5.7 20.6 13.1 41.1

MRTS

Mean 1.5312 1.5315 0.7064 0.7030 0.7054 0.6997

Median 1.4222 1.4214 0.4708 0.4601 0.4874 0.4555

SD 0.7417 0.7484 0.6988 0.7021 0.6957 0.6928

Max 5.2620 5.3978 4.3494 4.3495 4.3538 4.3065

% Min 10.2 9.3 5.9 20.8 24.6 29.2

MAAj = 100 × 1

n − 1

n∑

t=2

∣∣∣r yj,t − r pj,t

∣∣∣, j = 1, . . . ,m

where r yj,t = (y j,t − y j,t−1)/y j,t−1 and r
p
j,t = (p j,t − p j,t−1)/p j,t−1 are the growth

rates of the reconciled and preliminary series, respectively. Overall indices for the
whole system of time series are calculated accordingly. In our previous works, we
used the Root Mean Squared Adjustment (RMSA) statistic to assess the adjustment.
The RMSAmeasures the adjustment in terms of growth rates, which is the most natural
choice for assessing the effects of the reconciliation process. The RMSA, however, is
based on the square root of the GRP criterion, which is minimized by construction by
GRP-based procedures. Compared with the RMSA, theMAA represents a more neutral
statistic of growth rates preservation to evaluate and compare the performance of the
GRP and PFD procedures.

Table 2 shows summary statistics on theMAA values for the two systems. Sim GRP
outperforms the other procedures in both systems, with the lowest mean, median and
standard deviation. Sim GRP is also the procedure with the highest number of series
with minimum MAA value (41.1 and 29.2%).

As expected, we note that Sim PFD is a good approximation of Sim GRP. The
median MAA for EUQSA is 0.421% for Sim PFD and 0.378% for Sim GRP; on
MRTS we find 0.487% for Sim PFD versus 0.456% for Sim GRP. Nevertheless,
using Sim PFD we notice a higher standard deviation ofMAA (2.367 vs. 1.464%) and
a maximum equal to 24.455%, much larger than 6.366% of Sim GRP (we come back
on this difference below).

Concerning the two-step procedures, we note that using a GRP benchmarking at
the first step slightly improves the results upon using the modified Denton PFD bench-
marking procedure. However, the choice of the type of adjustment at the second step
is much more important: whatever the first step is, using ST instead of BB guarantees
an overall smaller adjustment in terms of MAA.
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Fig. 1 EUQSA system. MAA by share (%) of variables for Sim GRP, Sim PFD and PFD-BB

Looking at the two-step procedures using ST at the second step (PFD-ST and
GRP-ST), we note a similar difference in the maximum MAA value identified when
comparing SimPFD and SimGRP (24.396% for PFD-ST and 6.915% forGRP-ST). It
appears that using GRPmakes the adjustment process less volatile across the variables
in the system, either when GRP is applied at the first step (provided ST is used) or
when GRP is applied as a simultaneous procedure. Similarly to the already known
relationship between PFD-ST and Sim PFD, the GRP-ST reconciliation procedure
turns out to be a close approximation of Sim GRP.

Our next step is to relate theMAA values to the size of the variables in the system.
We restrict our attention to SimGRP, Sim PFD, and the two-step procedure PFD-BB.9

InDi Fonzo andMarini (2011) it is shown that PFD-BBpreservesmore themovements
in larger variables than in smaller ones (in terms of RMSA statistic), while Sim PFD
distributes the adjustment more uniformly across the variables. We are interested to
see if there is a similar picture using the MAA statistic and, more importantly, how is
the distribution of adjustment resulting from Sim GRP. Figure 1 shows a scatter plot
for EUQSA between the size of the variables (x-axis), each expressed in percentage of
their total sum, and theMAA values (y-axis) for the three procedures. The presence of
‘×’ along the y-axis, and those associated with smallerMAA values along the x-axis,
confirm that PFD-BB tends to over-adjust smaller variables in favour of the larger
ones. The isolated green dot for Sim PFD on the y-axis signals that the maximum
adjustment from this procedure (24.455%) is made to a very small-size variable. It
can be noticed that the adjustments from Sim GRP are more evenly distributed than
Sim PFD.

9 For each two-step procedure using ST at the second step, the obtained results are very close to those of
the relevant simultaneous procedure.
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Fig. 2 EUQSA system.MAA by average temporal discrepancy (in absolute value) for Sim GRP, Sim PFD
and PFD-BB
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Fig. 3 EUQSA system.MAA by coefficient of variation (in absolute value) of variables for Sim GRP, Sim
PFD and PFD-BB

In previous GRP-PFD comparisons on univariate benchmarking (Di Fonzo and
Marini 2013a), GRP was found to outperform PFD when large discrepancies and/or
high variability in the preliminary series were present. It is thus interesting to look
at the scatter plots of MAA versus (1) the average temporal discrepancy (in % and
absolute values, Fig. 2), and (2) the coefficient of variation (in absolute value, Fig.
3), taken as a standardized measure of variability of the series. Moving along the
x-axis we find the variables with higher temporal discrepancy and larger variability,
respectively. In Fig. 2 we notice that the maximum adjustment from Sim PFD moves
to the right-end side of the plot, which identifies that variable as the one presenting the
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Table 3 Average computational times (in seconds) to perform the reconciliation process

Method EUQSA MRTS

Sim GRP 0.8 18.0

Sim PFD 0.1 2.0

GRP-BB/ST 1.3 3.5

PFD-BB/ST 0.1 1.5

Using processor Intel Core i5-2430M @2.40GHz, Ram 6.0GB, Windows 7 OS, Matlab R2008b

highest (percentage) temporal discrepancy in the system. Furthermore, from Fig. 3 we
note that the highest values of MAA for PFD-BB (i.e. the highest ‘×’s in the scatter
plot) are achieved for variables presenting medium–high variability in the system.
These distributional aspects of the adjustment in the two systems confirm that, even
in a reconciliation process of a system of time series, PFD deviates from GRP when
discrepancies are large and the preliminary series is volatile.

Finally, Table 3 presents an indication on the computational timeneeded to complete
the reconciliation of the two systems of time series. Times are expressed in seconds
and are derived as average from five sequential executions of the same reconciliation
process. The simultaneous GRP solution takes <1s to reconcile EUQSA and about
18 s forMRTS. Noting the difference in the computational times between EUQSA and
MRTS, wemay expect that even the interior-point method could become an unfeasible
procedure when the system dimension is huge. In that case, the two-step procedure
GRP-ST would represent a valuable alternative to Sim GRP.

6 Conclusions

In this paper we have proposed simultaneous and two-step reconciliation procedures
based on the GRPmovement principle, which is widely recognized as the most natural
choice for preserving themovements in an economic series. To solve the nonlinearGRP
problem we have made recourse to Newton’s optimization methods that exploit the
full derivative information of the problem, namely the gradient and the Hessian. Using
two systems of economic series with both temporal and cross-sectional constraints, we
have shown that these procedures are accurate, feasible, and time-efficient in finding
an optimal solution of the GRP problem.

This work has largely benefited from our previous findings on benchmarking and
reconciliation. First, we had already solved efficiently the nonlinear GRP problem for
benchmarking (i.e. one variable at a time) using the sameNewton’s optimizationmeth-
ods proposed in this paper. Second, we knew that only by preserving and exploiting
the sparsity structure of the matrices involved would allow us to solve a reconcili-
ation problem with many variables and many observations simultaneously, namely
with all constraints in the system (temporal and contemporaneous) considered at the
same time. Finally, we were aware that a satisfactory approximation of the optimal
simultaneous solution could be obtained through a more convenient and simplified
two-step procedure.
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The purpose of this paper was twofold. First and foremost, we wanted to prove
that the nonlinear GRP reconciliation problem could be solved accurately and effi-
ciently using Newton’s optimization algorithms. Then, we wanted to compare the
GRP solution with the Denton PFD solution to verify, as often claimed, that PFD is a
close approximation of GRP. We believe that both objectives have been successfully
achieved.

On the implementation aspects,we derived the analytical expressions of the gradient
and Hessian of the global GRP function. These expressions are necessary to feed
any Newton’s optimization methods, and to our knowledge they have never been
derived before. Next, we used two different (but related) algorithms to solve the GRP
reconciliation problem: an interior-point algorithm applied to the original constrained
problem, and a Newton’s method with Hessian modification applied to a suitably
reduced unconstrained problem. The interior-point algorithm turned out to be very fast,
accurate and robust, solving both the problems faced in this paper. The only drawback
of the interior-point algorithmused is that it is available through a commercial software,
i.e. Matlab, which is not affordable for many potential “customers” of reconciliation
procedures (in general public data-producing agencies). Being the interior-point an
algorithm very difficult to replicate, we are currently studying a generalization of the
GRP benchmarking procedure described in Di Fonzo and Marini (2012a), which is
based on aNewton’smethodwithHessianmodification for the unconstrained problem.

To assess the GRP and PFD results we compared the two simultaneous solutions
along with four two-step procedures. The latter are derived from using alternatively
the PFD and GRP benchmarking techniques at the first step, and from using the level
or the squared level of the temporal benchmarked series as normalizing factor at the
second step. The comparison, based on a metric different from both the GRP and
PFD criteria, showed that the simultaneous GRP solution is always the best method
at preserving the movements in the preliminary series. We found, in particular, that
using the simultaneous GRP guarantees a less volatile adjustment process across the
variables. In general, the simultaneous PFD solution was shown to be very close to
the GRP; but for a few series in the system, the most volatile ones with large temporal
discrepancies to bedistributed, PFDresulted inmarkedly higher adjustments thanGRP.

As regards the two-step procedures, the same issue of robustness noted above was
noted from using the GRP or the PFD benchmarking techniques at the first step. In
general, choosing GRP at the first step guarantees a less volatile adjustment than PFD.
However, the choice made at the second step counts much more in terms of quality
of the adjustment, as already highlighted by Di Fonzo and Marini (2011) for the PFD
case. The simultaneousGRP solution is best approximatedwhen theGRP is used at the
first step, and the squared temporal benchmarked series is considered as a normalizing
factor at the second step (i.e. the GRP-ST procedure). The use of the (absolute) level,
instead, was found to penalize too much the smaller series in the system in favour of
the larger ones.

Practitioners may want to know which are the implications of our findings on the
GRP on the routine work they conduct in benchmarking and reconciliation. As we
have shown in this paper, and in the companion paper Di Fonzo and Marini (2012a)
on benchmarking, the nonlinear GRP problem can be solved accurately and efficiently
through optimization algorithms exploiting the full derivative information of the prob-
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lem. If one aims at preserving the growth rates of the variables in the system under
adjustment, our simultaneous GRP solution is undoubtedly the most accurate and reli-
able approach. Nonetheless, we have also shown that very similar performance can be
reached by using a two-step procedure where the GRP is more conveniently applied
at the first step on each individual series of the system.

We note, however, that in the great majority of the cases the PFD solution is very
close to theGRP one. Large differences in the adjustment arise onlywhen the series are
volatile and present large discrepancies with respect to their low-frequency benchmark
values. When the series are smooth and discrepancies are consistently small across the
system—two desirable conditions in any reconciliation problem, simultaneous or two-
step reconciliation procedures based on the Denton PFD principle can approximate
very well the GRP results.
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Appendix: Gradient and Hessian of the global GRP criterion

In this appendix we present the analytical expressions of the gradient vector and of
the Hessian matrix for the function FGRP as defined in (5), which can be exploited
by Newton-type nonlinear programming optimization procedures. The derivation is a
straightforward extension of the expressions shown by Di Fonzo and Marini (2013b)
for the univariate GRP criterion.

Let us denote with y j,t and p j,t , respectively, the j th target and preliminary series
of the system observed in the period t , with j = 1, . . . ,m, t = 1, . . . , n, where m is
the number of variables and n the number of the high-frequency periods. The value
{y j,t } is the [i + ( j − 1)n]th element in the stacked nm-dimensional vector y. The
gradient vector of FGRP is the (nm × 1) vector

∇FGRP(y) = g(y) = {gi }nmi=1 ,

where

g1+( j−1)n = −2
y j,2
y2j,1

(
y j,2
y j,1

− p j,2

p j,1

)

gt+( j−1)n = 2

y j,t−1

(
y j,t
y j,t−1

− p j,t

p j,t−1

)
− 2

y j,t+1

y2j,t

(
y j,t+1

y j,t
− p j,t+1

p j,t

)

gn+( j−1)n = 2

y j,n−1

(
y j,n
y j,n−1

− p j,n

p j,n−1

)

for j = 1, . . . ,m and t = 2, . . . , n − 1.
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Let us denote the elements of the Hessian matrix, ∇2FGRP(y) = H(y), as

hr,s = ∂2FGRP (y)
∂ yr∂ ys

= ∂gr
∂ ys

, r, s = 1, . . . , nm.

Notice that the Hessian matrix is both symmetric and tri-diagonal, that is its non-zero
items are hs,s, s = 1, . . . , nm, hs−1,s, s = 2, . . . , nm, and hs+1,s, s = 1, . . . , nm−
1. After some calculations, for j = 1, . . . ,m we find:

h1+( j−1)n,1+( j−1)n = 2
y j,2
y3j,1

(
3
y j,2
y j,1

− 2
p j,2

p j,1

)

hi+( j−1)n,i+( j−1)n = 2

y2j,t−1

+ 2
y j,t+1

y3j,t

(
3
y j,t+1

y j,t
− 2

p j,t+1

p j,t

)
t = 2, . . . , n − 1

hn+( j−1)n,n+( j−1)n = 2

y2j,n−1

hi+( j−1)n,k+( j−1)n = − 2

y2j,i

(
2
y j,k
y j,i

− p j,k

p j,i

)

i = k + 1, k = 1, . . . , n − 1 ∨ i = k − 1, k = 2, . . . , n.
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