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1 Introduction

We congratulate the authors on an interesting paper, and we are delighted to have the
opportunity to comment on the paper.

The authors have succesfully analyzed a large dataset with a complicated time
and space structure and have obtained a dimension reduction via a spatio-temporal
decomposition with clear interpretations. In order to achieve this, two algorithms
from the recent litetature, treelet analysis and Voronoi tesselations, were combined in
a ingenious way and accomodated to the present problem.

2 Smoothing, type of time-decomposition, and sampling

Wewould like to emphasize that many decisions must be taken during complex analy-
ses as the present one. In the following we take the opportunity to discuss some of the
choices that have been made. Some of them, but not all, are already mentioned by the
authors.

Smoothing The first part of the analysis consists of data smoothing. This is common
practice when working with functional data, but (a) it is not always necessary, (b) it
introduces an extra step and in that sense complicates the analysis, and (c) the effect
of smoothing is often ignored later in the evaluation of the results. In the present
application a simpler solution would be to use the raw mean over the two weeks.
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In the end, smoothing would implicitly be obtained in the bagging step where the
compositions from different tesselations are combined. The authors mention missing
data as an argument for smoothing the data, but the treelet algorithm would work on
incomplete data as well since it requires only computation of pairwise correlations
and PCA in two directions.

Basis for time-decomposition The treelet algorithm which is used for the decom-
position in time, is developed for unordered variables (multivariate data). Hence, the
time-ordering of the data is not used for the computations but only for the interpretation
of the components. This may be considered an advantage as no explicit assumptions
are needed on the structure over time; smoothness in the components are driven exclu-
sively by correlation in the data. However, one may also argue that taking advantage
of the inherent time-structure in the data could strengthen the analysis. Moreover, the
data-driven nature of treelets introduces the need for an extra “matching” step in the
bagging algorithm since the order of components is not comparable between different
bootstrap samples.

Functional principal component analysis (FPCA) is discarded by the authors
because it does not yield sparse linear combinations of the variables and therefore
tends to give components that are more difficult to interpret. However, FPCA can be
accomodated to achieve sparse representations. One option is rotation of the selected
principal components. Another is to introduce penalty terms that force PC components
to be localized. An example is the work on fused loadings (Guo et al. 2010). Here,
a so-called fusion penalty is used to create blocks of highly correlated variables and
force loadings for variables in the same block to be identical. The block structure is
determined by the correlation structure of the data; no ordering of the variables is
assumed.

With functional data the natural ordering in time could be utilized by explicitly
penalizing changes in the principal components. More precisely, we suggest to mini-
mize

J∑

j=1

∑

x∈S0

∣∣∣
∣∣∣Ex(t j ) −

K∑

k=1

dk(x)ψk(t j )
∣∣∣
∣∣∣
2

+ λ1

K∑

k=1

J∑

j=1

∣∣ψk(t j )
∣∣ + λ2

K∑

k=1

J−1∑

j=1

∣∣ψk(t j+1) − ψk(t j )
∣∣

subject to orthogonality constraints in order to choose componentsψk . Thefirst penalty
term drives the components to be sparse, whereas the second penalty term drives the
components to be constant on intervals. In other words this approach is data driven,
gives sparse solutions, and takes the time-ordering in the data into account.

Distribution of Voronoi cells The Voronoi cells are sampled according to the uniform
distribution on the lattice, such that all areas of the lattice are represented equally
often. We wonder if it would be more efficient to let the sampling intensity vary over
the grid. For example, there is a high mobile activity at the railway station which is
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covered by a single site in the grid. Supposedly, such a local feature would be easier
to catch if cells around the railway station were selected more often as Voronoi cells.

In relation to this, it could be interesting to study the bootstrap variance of the
sample {d̃bj (x)}Bb=1 site by site, i.e. consider

T Vn(x) =
J∑

j=1

Varb{d̃bj (x)}.

The TAV criterion is the average over sites of TVn(x), and the number n of Voronoi
cells is selected as to minimize TAV. Site-wise minimization of a smoothed version
of TVn(x) wrt. n would suggest regions where the Voronio cells should preferably be
dense and regions where they should preferably be sparse. The analysis would thus
indicate how Voronoi cells could preferably be distributed over the grid.

A related comment is concerned with the computation of local representatives. In
the paper each site is allocated to the closest Voronoi cell and used for the computation
of exactly one local representative. An alternative would be to use a kernel smoother
on all sites in the vicinity of the Voronoi cell as this allows each site to contribute to
several (or none) local representatives.

3 Perspectives and impact

A substantial amount of research on spatially dependent functional data has emerged
recently [see e.g. (Delicado et al. 2010) and references therein]. Two problems have
received much attention: smoothing taking into account the spatial dependence and
prediction of functional signals at unobserved spatial locations. Dimension reduction
for dependent functional data has been studied in various scenarios: time series of
functional data (Hörmann et al. 2015), spatially correlated multilevel functional data
(Staicu et al. 2010), and spatial functional data (Hörmann andKokoszka 2013; Liu et al.
2014). These papersmainly rely on techniques fromFPCA.Althoughwe acknowledge
that the above methods may not solve the present research question, it would be
interesting to know if parts of the approaches from the literature could be accomodated
for an analysis of the mobile data (or vice versa).

We believe that the suggested method may find application in other areas of
applied statistics. One particular example is temporal recording of neural activity
in the brain as response to various stimuli (Harvey and Roland 2013). Strong spa-
tial dependence between signals from co-working areas must be expected, and a
spatio-temporal decomposition of the data may reveal interesting patterns about com-
munication dynamics in the brain.

This example also demonstrates the perspectives of realizing that the role of space
and time may be interchanged in the suggested method. The goal of the analysis may
as well be a decomposition of the form

Et (x) =
K∑

k=1

Dk(t)ψk(x)
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where we look for spatially localized components ψk (in the neuroscience application
representing co-working areas of the brain). The spatial components may be estimated
using treelet analysis in a two-dimensional grid, and the tesselation approach may be
applied along the one-dimension time argument to adapt to local smoothness of the
signals in the time direction.

In summary, we are impressed of the analysis with its extraction of interpretable
information from a large spatio-temporal data set. The paper contains new method-
dology for dependent functional data, and future research will contribute to the
understanding of advantages and disadvantages of the various approaches. We see
a great potential for new data applications and look forward to following the develop-
ment in the field.
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