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Abstract In several applied disciplines, as Economics, Marketing, Business, Soci-
ology, Psychology, Political science, Environmental research and Medicine, it is
common to collect data in the form of ordered categorical observations. In this paper,
we introduce a class of models based on mixtures of discrete random variables in
order to specify a general framework for the statistical analysis of this kind of data.
The structure of these models allows the interpretation of the final response as related
to feeling, uncertainty and a possible shelter option and the expression of the rela-
tionship among these components and subjects’ covariates. Such a model may be
effectively estimated by maximum likelihood methods leading to asymptotically effi-
cient inference. We present a simulation experiment and discuss a real case study to
check the consistency and the usefulness of the approach. Some final considerations
conclude the paper.

Keywords Ordinal data · Rating survey · cub models · Shelter choices ·
gecub models

1 Introduction

In several applied researches data are collected as categorical ordinal observations.
Sometimes they are genuine ordered assessments (judgements, preferences, degree of
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adhesion to a sentence, etc.) whereas in other circumstances they are categorized for
convenience (age of people in classes, measures of objects in block of constant size,
education achievement, levels of blood pressure for classifying heart health status,
etc.). In both cases, an effective statistical analysis should take the ordinal nature of
the responses into account, as discussed by Agresti (2010), Powers and Xie (2000),
Tutz (2012), among others. Although the results of this paper may be loosely applied
in any context where ordinal data and subjects’ covariates are involved, it is more
immediate to focus the subsequent discussion in case of rating surveys.

Different lines of attack to the problem have been raised in the literature and some of
them stem from the well known historical debate between Pearson and Yule: the main
distinctions lie in considering ordinal data as generated by a latent continuous variable
or as an intrinsically discrete phenomenon. In fact, the boundary line between these
two approaches is not so sharp as it is evident when we face with logistic regression
which can be safely introduced within the logic of both paradigms.

In the last decades, several contributions have been proposed and the leading trend
is to convey the statistical analysis of ordinal data to the Generalized Linear Models
(GLM) framework as proposed by McCullagh (1980) and deepened by Nelder and
Wedderburn (1972), McCullagh and Nelder (1989) and extended with several variants
by Peterson and Harrell (1990) and Cox (1995), among others. According to this line
of reasoning, wemodel the probability of a response not superior to a given category as
a function of selected covariates; in fact, the distribution function induces an ordered
constraint among the categories.

An alternative approach, mainly motivated by the investigation of respondents’
psychology, has been introduced by Piccolo (2003) and D’Elia and Piccolo (2005)
and consists in the so-called cub models. They have been successfully applied in
several fields since they allow for easy interpretation and visualization of the estimation
results, and also for designing profiles and specifying clusters of respondents (Corduas
2008a, b, 2011). Then, these models have been extended in several directions and
form the basis of the generalization we will pursue in this paper according to the
suggestions of Corduas et al. (2009) and the analysis of Iannario (2012a) who support
the introduction of a further component, denoted as shelter effect. The novelty of the
class of models, discussed hereafter and denoted as gecub , is the ability to estimate
the effect of subjects’ covariates for all the components of the extended mixture.

The paper is organized as follows: in the next section, we set notations and motiva-
tions for the model whereas in Sect. 3 gecub models are specified and their usage is
emphasized. Then, the main derivation of the maximum likelihood (ML) estimators is
outlined in Sect. 4. A limited simulation experiment is performed in Sect. 5 to confirm
themain properties of theML procedures for finite sample sizes. Section 6 investigates
the usefulness and the interpretation of these models in a real case study. Some final
remarks conclude the paper.

2 Motivations and notation for the proposed mixture

Sample data consist of a collection of ordered scores (r1, r2, . . . , rn) anchored to
the integers of the support Im = {1, 2, . . . ,m}, for some known m. The ordered

123



A framework for modelling ordinal data 165

evaluation may concern opinions, judgments, degrees of liking/preference, and even
a qualitative mapping of some continuous variable, but for simplifying the discussion
we assume that responses are some sort of ratings in one-to-one correspondence with
integers belonging to Im . Thus, respondents choose a qualitative assessment on a
graduated sequence of verbal definitions (for instance, “extremely dissatisfied”, “very
dissatisfied”, …, “very satisfied”, “extremely satisfied”) which are coded as numbers
just for convenience.

In statistical surveys further information are also collected, and we will speak of
ratings and subjects’ covariates to refer to ordinal responses and information regarding
the respondents, respectively. Our objective is to explain, fit, and predict the probability
Pr (R = r) that a discrete random variable R assumes values r = 1, 2, . . . ,m. When
significant, subjects’ covariates should improve the performance and the interpretation
of such a model. For this purpose, we introduce a probability structure where the final
outcomeof the evaluation process is a discrete observation generated by an investigated
trait which is intrinsically continuous.

In this regard, two possible interpretations are admissible for explaining the mental
process by which respondents rate their opinion/evaluation about an item by means
of a finite and graduated scale.

According to the first interpretation, it may be conjectured that the i-th respondent
adopts the following two-step strategy:

– First of all, he/she chooses between a simplistic option (consisting in the selection
of amodalitywhich he/she considers very attractive by the nature of verbalwording
and/or the numbering of the scale, for example) and a meditated response (which
requires some thinking about). We assume that the selection between these two
main alternatives happens with probabilities δi and 1 − δi , respectively, for i =
1, 2, . . . , n. This choice may be motivated by a lazy behaviour of the respondent
who takes refuge in a category which is judged as convenient, safe, attractive,
politically-correct, etc. Such an option has been called shelter choice and it may
be represented by a degenerate random variable located at R = c, where c ∈ Im
is a known category depending on the specific question at hand:

D(c)
r =

{
1, if r = c;
0, otherwise; r = 1, 2, . . . ,m. (1)

– If he/she selects the secondoption, thefinal selected category is abalanceddecision
between his/her feeling towards the item and a totally random choice, with propen-
sities πi and 1−πi , respectively. This choice assumes amore involved respondent,
thus the final decision is a weighted determination between a positive/negative
sensation related to the item and a light/heavy indecision/fuzziness. In fact, the
selection of an ordered modality among several ones is a very complex mental
process since it involves several factors influencing the final choice (Tourangeau
et al. 2000). Thus, a simplified version of such a psychological process should
limit the analysis only to relevant components. As fully discussed with reference
to cub models (Piccolo 2003; Iannario and Piccolo 2012a), the attractiveness (or
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the repulsion) towards the item (= feeling) and the indecision (fuzziness) in the
response (= uncertainty) have been considered as the relevant ones.

We consider feeling as an internal/personal attitude concerning the opinion of the
subject towards the object and, depending on the circumstances, it may be named as
degree of perception, measure of closeness, level of satisfaction/preference, assess-
ment of proficiency, rating of concern, index of selectiveness, pain threshold, risk
awareness, subjective probability, degree of confidence, etc.

On the other side, uncertainty pertains to the operational modes of the final choice
and to the external facts affecting and surrounding the final decision. Thus, uncer-
tainty is not the “randomness” related to the sampling experiment, but it depends on
convergent and related factors as: limited set of information about the topic, personal
interest/engagement in activities related to the problem, amount of time devoted to the
response, nature of the scale in terms of range and wording, tiredness or fatigue for
a correct comprehension of the question, willingness to joke and fake, lack of self-
confidence, laziness/apathy/boredom of the respondent. Also, the “response style”
may be interpreted as a component of uncertainty in the response (see Gottard et al.
2015 for a discussion of these and related topics).

In addition, uncertainty is also related to the “satisficing” behaviour (Simon 1957),
which is generated by respondents who choose an adequate answer that may not be the
optimal one, in the attempt to minimize the burden of the question (Krosnick 1991).
This attitude generates a varying degree of indecision to answer a specific item and it
ranges from a complete lack of satisficing (= completely accurate response) to strong
satisficing behaviour (= completely random response). Then, we are assuming that
uncertainty affects any individual choice and it can be, at worst, constituted by a purely
random choice among categories. In intermediate cases, each respondent acts with a
propensity to adhere to a thoughtful and to a completely random choice, and we will
weigh such a propensity with quantities (πi ) and (1 − πi ), respectively.

A second interpretation may be proposed and again it assumes a two-step strategy
for the i-th respondent:

– First of all, he/she decides to activate his/her personal feeling towards the itemwith
a meditated choice (as previously detailed) or to adopt a lazy behavior derived
by a global indecision mood with probabilities λi and 1 − λi , respectively, for
i = 1, 2, . . . , n.

– If he/she selects the second option, then he/she may activate a random selection
over the support Im or refuge in a shelter category, and this happens with propen-
sities ηi and 1 − ηi , respectively.

The second interpretation is conceptually simpler and it is consistent with the “sat-
isficing” behaviour. In the next section, the equivalence between the two conceptual
models will be formally proved.

Turning these interpretations into a statistical framework, several distributions may
adequately fit the implied components. The family of cub models (Piccolo 2003) is
characterized by the shifted Binomial and the discrete Uniform random variable for
modelling feeling and uncertainty, respectively, as defined by:
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br (ξi ) =
(
m − 1

r − 1

)
ξm−r
i (1 − ξi )

r−1; pUr = 1

m
; r = 1, 2, . . . ,m.

To support these choices pragmatic and statistical points of view may be advanced.
The shiftedBinomial distribution involves a single parameter (ξi ) and presents amodal
value located everywhere over the support {1, 2, . . . ,m}. It allows a parsimonious
parameterization when we have to fit observed distributions with different shapes
in terms of skewness and flatness. Then, the Binomial distribution (and the shifted
one) may be generated by a continuous unimodal distribution by selecting appropriate
ordered cutpoints. Thus, this choice is consistent with the common hypothesis that a
continuous latent variable moves the final selection of a discrete modality. Finally, the
choice of the Binomial random variable may be also justified on the basis of statistical
motivations, as detailed in “Appendix 1”.

As far as the discrete Uniform distribution is concerned, we adopt this random vari-
able just as the extreme building block for the respondent choice since it is maximally
uninformative and maximizes entropy over the class of discrete distribution with a
given finite support. In addition, no parameter is added to the model (m is known)
and we may judge the resoluteness of the respondent in respect to this extreme choice
since it represents the maximum heterogeneity among the responses.

These arguments are behind the introduction of a discrete mixture (Piccolo 2003)
defined by

Pr (R = r) = πi br (ξi ) + (1 − πi ) p
U
r , i = 1, 2, . . . , n, (2)

and called cubmodel since it is a convex Combination of discrete Uniform and shifted
Binomial random variable.

3 Specification of a GeCUB model

For a given c ∈ Im and known m, we will consider the observed response r as the
realization of a random variable R whose probability distribution for any i-th subject
-according to the first interpretation- is defined by:

Pr (R = r) = δi

[
D(c)
r

]
+ (1−δi )

[
πi br (ξi )+ (1−πi ) p

U
r

]
, r = 1, 2, , . . . ,m.

(3)
In absence of covariates, this model has been denoted as cub model with a shelter

effect by Iannario (2012a), who discusses properties, estimation issues and related
topics.

If we adhere to the second interpretation, an alternative specification may be
obtained:

Pr (R = r) = λi br (ξi ) + (1 − λi )

[
ηi p

U
r + (1 − ηi ) D

(c)
r

]
, r = 1, 2, , . . . ,m.

(4)
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Given the one-to-one mapping

⎧⎨
⎩

λi = πi (1 − δi );
ηi = (1 − πi )(1 − δi )

1 − πi (1 − δi )
; ⇐⇒

⎧⎨
⎩

πi = λi

λi + ηi (1 − λi )
;

δi = (1 − λi )(1 − ηi );
i = 1, 2, . . . , n;

it is indifferent to discuss either of gecub specifications (3) and (4). Hereafter, we
focus on the model (3) since it gives an immediate weight (δi ) to quantify the shelter
effect.

In standard cub random variables, thanks to the one-to-one correspondence
between the parameters (π, ξ) and the probability distribution, we plot the estimated
models as points in the unit square in order to interpret the behaviour of respondents
when faced to different items, for varying circumstances of space, time and contexts.
If we wish to add the additional parameter (δ) to this representation we may increase
the size of the point (π, ξ) or add an horizontal line starting at (π, ξ) and proportional
to δ, for instance.

In presence of covariates, model (3) allows to interpret the parameters in relation
to the feeling (1 − ξi ) of the respondent, the uncertainty (1 − πi ) of the responses
and a possible shelter effect δi . Briefly, this effect is the weight of the shelter choice
and it quantifies the increase of probability of the category (R = c) with respect to
a cub model (where δi = 0). Thus, cub models are nested into cub models with a
shelter effect.

Suppose that information on the n subjects are summarized by a set of v variables
and collected in the matrix

T = ||ti j , i = 1, 2, . . . , n; j = 1, 2, . . . , v|| .

which summarizes the available subjects’ covariates (the so-called concomitant vari-
ables). We consider sub-matrices Y , W , X obtained from T by selecting convenient
columns. Then, we denote by yi ,wi , and xi , for i = 1, 2, . . . , n, the i-th rows of the
Y ,W and X matrices, respectively, that is:

yi = (yi0, yi1, yi2, . . . , yip); wi = (wi0, wi1, wi2, . . . , wiq);
xi = (xi0, xi1, xi2, . . . , xis) .

We let: yi0 = wi0 = xi0 = 1, for i = 1, 2, . . . , n. These rows contain all available
sample information on the i-th subject related to the model components and they are
necessary and sufficient for the model specification.

Then, for i = 1, 2, . . . , n, we introduce a direct logistic link among parameters and
covariates:

πi = πi (β) = 1

1 + e− yiβ
; ξi = ξi (γ ) = 1

1 + e−wiγ
; δi = δi (ω) = 1

1 + e−xiω
;
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where β = (β0, β1, . . . , βp)
′, γ = (γ0, γ1, . . . , γq)

′ and ω = (ω0, ω1, . . . , ωs)
′,

respectively. According to the logistic function: logi t (p) = log (p/(1 − p)), previous
relationships are equivalent to:

logit (πi ) = yiβ ; logit (ξi ) = wiγ ; logit (δi ) = xiω ; i = 1, 2, . . . , n. (5)

Alternative links are admissible but we found that the logistic function is a
convenient mapping in most real circumstances. Notice that, given the previous para-
meterization, the matrices Y , W , X may or may not possess an arbitrary number of
common columns.

To see how a single covariate affects the probability of the response, we may plot
this probability mass function for any prefixed value of the discrete covariates or for
some specific values of the continuous variables. Alternatively, we may consider the
modification of the points in the parametric space for varying values of covariates or
to study the behaviour of (1− πi ), (1− ξi ) and δi as functions of selected covariates,
as it will be pursued in the real case study, for instance.

Finally, a Generalized cub (=gecub ) model is fully specified by (3) and (5).
For this model the length of the vector (β ′, γ ′,ω′)′ is (p + q + s + 3). If some or
all subjects’ covariates (or components) are absent, analysis is greatly simplified. In
these circumstances, it is more convenient to refer to cub models without and with
shelter effect, respectively, as derived by Piccolo (2006) and Iannario (2012a).

A critical point is that the model assumes c as a known constant. In princi-
ple, one might test a cub model with a possible shelter effect for any admissible
c = 1, 2, . . . ,m and then accept the model with the best fitting and significant para-
meters. Indeed, in real case studies concerning a specific scientific field, researchers
have nearly always accumulated evidence about a category c where people tend to
give a response more often than that predicted by the standard model. This happens
for psychological motivations, biased or sensible questions, mass media pressure,
difficulty of comprehension of the item, desire of privacy, specific wording, and
so on. Thus, the knowledge of c is not a severe constraint in most of the current
surveys.

4 Statistical inference for the GeCUB model

The sample ratings r = (r1, r2, . . . , rn)′ are considered as realizations of the random
sample (R1, R2, . . . , Rn)

′ where each Ri is independently distributed as a discrete
random variable over the support Im .

In a mixture distribution, it is useful to characterize the notation of the parameters
according to their roles. Thus, we denote by θ = (ψ ′, η′)′ the full parameter vec-
tor of a gecub model where ψ and η are the parameter vectors of weights (αg) of
the probability distributions

(
Pg

)
, respectively, for the g = 1, 2, 3 components (as

summarized in Table 1).
Given the sample r and the information set of covariates Ci = ( yi ,wi , xi ), for

i = 1, 2, . . . , n, the log-likelihood function may be written as:
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Table 1 Notation for the components of the mixture in the gecub model

g αgi = αgi (ψg) pgi = pg(ri ; ηg) ψg ηg

1 δi D(c)
ri ψ1 = ω

2 πi (1 − δi ) bri (γ ) ψ2 = (β ′, ω′)′ η2 = γ

3 (1 − πi )(1 − δi ) pUri ψ3 = (β ′, ω′)′

�(θ) =
n∑

i=1

log (Pr (R = ri |Ci , θ)) =
n∑

i=1

log

⎛
⎝ 3∑

g=1

αgi pg(ri ; ηg)

⎞
⎠

=
n∑

i=1

log

[
α1i p1(ri ; η1) + α2i p2(ri ; η2) + α3i p3(ri ; η3)

]

=
n∑

i=1

log

[
δi D

(c)
ri + πi (1 − δi ) bri (γ ) + (1 − πi )(1 − δi ) p

U
ri

]
.

As for all mixture distributions, ML estimators are effectively obtained from �(θ)

by exploiting the EM procedure proposed by Dempster et al. (1977) and specifically
oriented to finitemixtures (McLachlan andKrishnan 2008;McLachlan andPeel 2000).
Such a procedure is detailed for gecubmodels in “Appendix 2”. Asymptotic inference
requires the knowledge of the information matrix for gecub models and this step is
generally achieved by numerical computations or by simulation devices (bootstrap,
for instance). However, it is more accurate to compute the second order derivatives of
�(θ) by analytic methods.

All estimation procedures have been derived for the parameters of gecub models
specified by (3). Given the invariance properties of ML estimators (Serfling 1980,
p.43), it is immediate to get any estimation result of thismodel in termsof the alternative
specification (4).

Then, the validation of the estimated model relies on several points:

– parameters significance: this is achieved by comparing estimates to their standard
errors (Wald test). Some caution should be considered when we test on the border
of the parametric space since significance must be modified: a detailed account
and related references for testing H0 : δ = 0 for the shelter effect are discussed
by Iannario (2012a).

– log-likelihood comparisons: in presence of nested models, we test the increase
in log-likelihoods with respect to the standard χ2 percentiles to see if the most
complex model is a valuable choice. Likelihood ratio tests, deviance and related
statistics may be defined as in the current literature (Agresti 2010, pp. 67–75)

– global indices: we consider measures as BIC = −2 �(θ̂)+(p+q+s+3) log(n),
for instance, to take into account both the improvement in the log-likelihood and
the penalty given by an increase of parameters of the model.

– residuals diagnostic: Pearson and relative residuals may be defined and con-
veniently checked. In addition, further analyses based on the the definition of
generalized residuals (Di Iorio and Iannario 2012) may be pursued as well.
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A fitting index which compares observed relative frequencies fr and expected
p̂r = pr (θ̂) is based on normalized dissimilarity measures as

F 2 = 1 − 1

2

m∑
r=1

| fr − p̂r |.

It may be interpreted as the proportion of correct predicted responses (Iannario
2009). In presence of discrete covariates with k categories, with obvious notation, this
quantity may be generalized by means of

F 2 = 1 − 1

2

k∑
j=1

n j

n

m∑
r=1

| fr j − p̂r j |.

From a predictive point of view, several problems have to be facedwhen ordinal data
are involved. As a matter of fact, all modelling approaches are able to predict a whole
probability distribution given the subjects’ covariates; indeed, most of the methods
(as involved by log-likelihood computations and analysis of deviance) concern the
comparison of predicted and observed proportions of the ordinal categories.

On the other side, the main purpose of the researcher is to predict the rat-
ing of a respondent, given his/her characteristics. Thus, we have to synthesize

Pr
(
R = r | θ̂, Ci

)
by a predictor r̂i of ri , for i = 1, 2, . . . , n. Expectation, modal

value (mode) and median of the estimated probability distribution, conditional to
selected covariates Ci , are candidates for r̂i . For any selection of a predictor, a Root
Mean Square Error (RMSE) is defined by:

RMSE =
√√√√1

n

n∑
i=1

(
ri − r̂i

)2
. (6)

This measure should be critically considered since it is based on a point estimate;
although it is useful to compare different predictors derived by different models, it
should not be used to discriminate models belonging to different classes.

5 A simulation experiment

To check the ability of the proposed modelling approach to detect the presence of a
possible shelter the case of a finite sample size, a limited experimental design has been
planned with a subjects’ covariate which, for simplicity, we suppose dichotomous.
More precisely, in a rating survey with m = 7 categories, we assume the existence
of two subgroups G0 and G1 characterized by the parameters: θ0 = (π0, ξ0, δ0)

′ and
θ1 = (π1, ξ1, δ1)

′, respectively, with a shelter effect at the fifth category, so that
c = 5.

Table 2 lists θ i = (πi , ξi , δi )
′, i = 0, 1 according to cub and shelter parame-

terization and to the implied gecub parameters (when the dichotomous covariate is
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Table 2 Experimental design for the simulation of gecub models

Mod. Param. Uncertainty parameters Feeling parameters Shelter parameters

1 cub & sh. π0 = 0.550 π1 = 0.850 ξ0 = 0.800 ξ1 = 0.400 δ0 = 0.150 δ1 = 0.200

gecub β0 = 0.201 β1 = 1.534 γ0 = 1.386 γ1 = −1.792 ω0 = −1.735 ω1 = 0.348

2 cub & sh. π0 = 0.350 π1 = 0.750 ξ0 = 0.300 ξ1 = 0.700 δ0 = 0.100 δ1 = 0.150

gecub β0 = −0.619 β1 = 1.718 γ0 = −0.847 γ1 = 1.695 ω0 = −2.197 ω1 = 0.463

3 cub & sh. π0 = 0.550 π1 = 0.650 ξ0 = 0.200 ξ1 = 0.800 δ0 = 0.150 δ1 = 0.050

gecub β0 = 0.201 β1 = 0.418 γ0 = −1.386 γ1 = 2.773 ω0 = −1.735 ω1 = −1.210

explicitly inserted). To express this basic structure in terms of gecub models, we
exploit the relationships among π0, π1 and β = (β0, β1)

′ parameters when a dichoto-
mous covariate Di , i = 1, 2, . . . , n is present:

πi = [
1 + exp(−β0 − β1 Di )

]−1 ;
Di = 0, 1 �⇒ β0 = log

π0

1 − π0
;

β1 = log
π1

1 − π1
− β0;

similar relationships hold between ξi , δi , i = 0, 1 and γ = (γ0, γ1)
′,ω = (ω0, ω1)

′,
respectively.

The experiment is characterized by different configurations of location and shape
of the probability distributions as shown in Fig. 1, where the contribution of the shelter
effect at R = 5 has been emphasized.

For each simulation run, sample data consist of two samples of n0 = n1 = 500
observations (ri , di ), i = 1, 2, . . . , n where ri is generated by the groups G0 and G1,
and di assumes values 0 and 1 for the first and the second subgroups, respectively.
Then, the following steps have been performed:

1. Generate n0 and n1 observations from the “true” model.
2. From the global sample (r1, r2, . . . , rn) of n = n0 + n1 observations, estimate

a gecub model by the ML method on the basis of the information (ri , di ), for
i = 1, 2, . . . , n and collect estimates in the vector

θ [ j] =
(
β

[ j]
0 , β

[ j]
1 , γ

[ j]
0 , γ

[ j]
1 , ω

[ j]
0 , ω

[ j]
1

)′
.

3. Repeat 1-2 for j = 1, 2, . . . , nsimul = 1000 times.

We report the estimates of bias and mean square error (MSE) of the parameters in
Table 3 and we briefly comment on the main results of this experiment.

– The bias of the estimates is always very limited; thus, MSE is mainly due to the
variability of the estimates. In fact,MSE is generally small but for some parameters
it deserves some consideration.

– MSE of estimators β̂1 seemsmore extreme in the experiments 1 and 2; the ratios of
the parameters to the square root of MSE are 3.182 and 4.516, respectively. These
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Experiment 1, Group 0 Experiment 1, Group 1

Experiment 2, Group 0 Experiment 2, Group 1

Experiment 3, Group 0

1 2 3 4 5 6 7 1 2 3 4 5 6 7
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Experiment 3, Group 1

Fig. 1 Population distributions (shelter at R = 5) of two subgroups: G0 (left) and G1 (right)

Table 3 Bias and mean square error for the simulation experiments

Estimates Experiment 1 Experiment 2 Experiment 3

Bias MSE Bias MSE Bias MSE

β̂0 −0.00560 0.04414 −0.02063 0.08606 0.01074 0.04384

β̂1 0.08720 0.23241 0.03254 0.14475 −0.00709 0.07998

γ̂0 0.00313 0.01041 −0.01567 0.02271 −0.00445 0.01741

γ̂1 −0.00414 0.01360 0.01828 0.02862 0.00097 0.02508

ω̂0 −0.01061 0.02894 −0.03626 0.13154 −0.01712 0.06823

ω̂1 −0.00887 0.07739 0.02362 0.15684 −0.06551 0.32499

MSEs are larger than expected as a consequence of few atypical values observed
in these experiments. A similar consideration applies for the MSE of the estimator
ω̂0 in the experiment 2 for which the ratio of the parameters to the square root of
MSE is −6.059.
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Fig. 2 Histograms and approximating normal distributions for simulated estimates of Experiment 3. Each
panel row represents the distributions of β̂i , γ̂i , ω̂i , for i = 0 (left) and i = 1 (right), respectively

– A different problem arises for the estimation of ω1 in the experiments 2 and
3 for which the mentioned ratios are 1.169 and −2.123, respectively. In these
situations, the proportions of the shelter effect (estimated by ω1) at R = 5 and
expressed by δ = 0.15 and δ = 0.05, respectively, are important with respect
to the basic probabilities. Here, the values of Pr (R = 5) are 0.218 and 0.107,
and the shelter effect represents 69% and 47% of the probability of the category
R = 5, respectively. In these cases, a large number of observations is required for
a more accurate estimation.

– The asymptotic Normality of all estimators is sufficiently accurate as shown by the
histograms reported in Fig. 2 for the more extreme case (Experiment 3). Only the
distribution of ω̂1, for the aforementioned motivations, presents a left tails which
is too long for a Gaussian distribution as a consequence of a limited set of atypical
values. If we omit them, the resulting distribution is almost perfectly Normal.

Although the parameters of the distributions have been selected in order to
scatter different shapes, more extensive simulations are required. We report that
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further experiments (here not discussed for brevity) have been performed for dif-
ferent number of categories, different proportions of the groups and varying sample
size. They confirmed the adequacy of the ML estimation method and support the
ability of the approach to detect different groups for samples of moderate/large
size.

6 A real case study

We check the approach so far discussed with a real case study related to the political
orientation in a surveyplannedwith the students ofUniversity ofNaplesFederico II and
their families and friends, during 2010. Since the research is based on an observational
sample the study cannot be considered as representative of the Italian population but
it is an instance of the capability of the gecub model approach in terms of fitting and
interpretation of similar results.

It is generally difficult to collect reliable answers about political orientation, and
this is particularly true if the research considers a finer disaggregation than a coarse
definition of “Conservative”, “Moderate”, and “Liberal”. This happens, for instance,
in Italy where the galaxy of political parties is extremely varied; thus, it is important
to predict the political orientation of a person by means of related questions and/or
different covariates which are strongly related to such an orientation.

The sample data consist of n = 707 questionnaires where respondents care-
fully expressed their (self-assessed) Political orientation as an ordinal variable R
with m = 9 categories, where 1, 5, 9 stand for “Extremely to Left”, “Center” and
“Extremely to Right”, respectively. In addition, several concomitant variables related
to personal socio-demographic and economic situation, opinions, ranking of nation-
wide newspapers, etc. have been collected. Thus, 48% of respondents are women and
their average age is 38 (derived from a larger group of young university students and
a smaller one of their relatives). Then, education is higher than the average of the
population since about one half of interviewees has got a (secondary) diploma degree
and about 40% has a university degree.

After a preliminary analysis based on stepwise regression approaches, we found the
following covariates as relevant to explain Political orientation: Age (=the respon-
dents’ age transformed as deviations from the average of logged years), Rank (=the
ranking assigned to a historic Italian newspaper, “L’Unità”, well known for Left posi-
tions; here, Rank = 1 means it is the most preferred, Rank = 7 means that it is
considered the worst), and Demo (=a dummy variable which denotes if the respon-
dent has participated to public demonstrations in the last year).

All computations have been implemented by a programm written in the GAUSS
language by using ML methods and exploiting the EM procedure for convergence.
Standard errors have been computed by analytical derivation of the observed infor-
mation matrix with ML estimates plugged into: details of these formal developments
are reported in Iannario and Piccolo (2012b).

A gecub model may be considered as the final step of several statistical analyses,
including exploratory and correlation methods, cub models fitting with and without
covariates, and cub model with a dummy to check for a possible shelter effect in
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Table 4 Estimation of cub and gecub models for the Political orientation

Models Covariates Uncertainty parameters Feeling parameters Shelter parameters

cub π̂ = 0.428 (0.041) ξ̂ = 0.648 (0.017)

cub + shelter π̂ = 0.374 (0.041) ξ̂ = 0.717 (0.021) δ̂ = 0.089 (0.019)

cub + covariates Constant β̂0 = 0.676 (0.159) γ̂0 = 2.018 (0.145)

˜Age β̂1 = 1.363 (0.463)

Rank γ̂2 = −0.362 (0.029)

Demo γ̂3 = 0.652 (0.126)

Gender × Rank γ̂4 = 0.037 (0.019)

gecub Constant β̂0 = 2.133 (0.461) γ̂0 = 2.127 (0.158) ω̂0 = −2.843 (0.320)

˜Age ω̂1 = −4.603 (1.629)

Rank β̂2 = −0.355 (0.096) γ̂2 = −0.360 (0.033)

Demo γ̂3 = 0.641 (0.136)

˜Age × Rank ω̂4 = 1.357 (0.320)

a definite category (see Table 4 for the estimates of these different models. Standard
errors are in parentheses). Figure 3 summarizes different aspects of these investigations
which we briefly comment.

Data set are characterized by a serious uncertainty in the responses since we get
(1−π̂ ) = 0.57 after fitting a cubmodel. The observed distribution shows a prominent
shelter effect at R = 5 (see Fig. 3, top-left panel): an appreciable proportion of
people, estimated by δ̂ = 0.089, choices an intermediate position which corresponds
also to a non-selective choice. This option represents a genuine shelter option. By
missing this point, one might deduce that the Political orientation of the interviewees
is strongly anchored to a “Centre” position (about 1/5 of the respondents), a statement
not confirmed by electoral results and other empirical analyses.

Moreover, a significant relationship has been found between the expressed Political
orientation and the covariate Demo, as confirmed by the estimated cub model which
includes Demo as a covariate for feeling: Fig. 3 (bottom-left panel). Similarly, there is
a sharp evidence of a connection between Political orientation and the covariate Rank
as supported by the conditional box-plots of Fig. 3 (top-right panel): here the location
of the distribution of the responses changes with Rank in a non-linear fashion.

In the framework of cubmodels, (1− π) can be considered as a direct measure of
indecision and π is strongly related to the heterogeneity of the distribution (Iannario
2012c, pp.169–171). Thus, to check if the heterogeneity is related to some subjects’
covariate we compute this measure on the ordinal data split by a categorical variable,
as Rank for instance. We choose the normalized Laakso and Taagepera (1989) index
which, for a discrete probability mass function {p1, p2, . . . , pm}, is defined by

H = 1

m − 1

⎡
⎣
(

m∑
i=1

p 2
i

)−1

− 1

⎤
⎦ .
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Fig. 3 Observed distribution of Political orientation, with estimated shelter effect, (top-left). Box-plots of
Political orientation with respect to Rank (top-right). cub models distributions conditional to Demo=0,1
(bottom-left). Heterogeneity index of Political orientation with respect to Rank (bottom-right)

The estimate of this index for the Political orientation conditional to Rank is shown
in Fig. 3 (bottom-right). Although non-linear, we see a definite increase ofH with the
covariate Rank so we may expect a relationship of the uncertainty with this variable.

Finally, observe thatwhen ξ → 1 (ξ → 0) people express preference for an extreme
left (right) position; thus, the parameter ξ is a direct measure of “Left” orientation.

A cubmodel with covariates presents a good fit but it does not take the shelter effect
into account. In fact, as the log-likelihood and BIC measures confirm (see Table 5),
it is relevant to introduce a shelter effect with significant covariates by means of a
gecub model.

The final gecub model interprets such a relationship between the dependent vari-
able and Age, Demo and Rank, with a significant contribution of the interaction
between Age and Rank due to the different personal history of the respondents (which
regarded such a newspaper with extreme positive/negative feeling according to their
Political orientation). This circumstance is confirmed by the fact that a cub model
with covariates (and no shelter component) assumes Age as a significant covariate
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Table 5 Fitting measures of estimated models for the Political orientation

Models Number of parameters �(θ̂) BIC Root mean square error

Mode Mean

cub 2 −1503.0 3019.1 2.211 2.202

cub + shelter 3 −1492.6 3004.9 2.306 2.196

cub + covariates 6 −1403.6 2846.6 2.076 2.057

gecub 8 −1383.6 2819.6 2.041 1.942

pom 12 −1390.0 2858.7 2.045 1.936

for explaining uncertainty whereas the introduction of a shelter component considers
Age as an useful covariate to explain this effect. We observe that the introduction of
a shelter effect removes a significant role of Gender and emphasizes the importance
of Rank for assessing the distribution of the responses.

An immediate visualization consists in plotting the estimated probability distribu-
tions of the gecub models conditional to the significant subjects’ covariates, that is
Demo, Rank and Age, as in Fig. 4. It is evident that the participation to demonstra-
tions (Demo=1) increases the probability of being Left oriented (=low categories of
the support). Rank is strongly related to Political orientation since a low rank for the
selected newspaper is strictly related toLeft orientation; noticeably, young respondents
who give high consideration to this newspaper also have a considerable shelter effect.
Age has a double effect: with increasing age people moves towards Right and the
shelter effect becomes so prominent that it accounts for about 50% of the probability
of response.

A more stringent evidence of the shelter effect turns out by considering the role of
the parameters δi in the estimated gecub model:

δ̂i = 1

1 + e2.842+˜Agei (4.603−1.357 Ranki )
, i = 1, 2, . . . , n.

The shelter effect δi adds a positive probability at modality R = 5 (the so-called
“Centre” choice) and this effect changes with Age and with the interaction between
Age and Rank: the interaction acts positively with Age if Rank = 1, 2 (people
who substantially agree with the positions of the selected newspaper) and negatively
elsewhere. The behaviour of δi explains this composite effect for varying Age and
Rank.

Figure 5 suggests that for people aged less than 34years the shelter effect is quite
moderate when they have low reputation towards the newspaper (=high rank). A more
important contribution is registered for people aged more than 34years (especially
when respondents are elderly): the shelter effect systematically increases if they rank
the newspaper in a highposition (=bad consideration). Thus, the refugeposition attracts
with more decision people who negatively consider the selected newspaper and are
not so young (again this is related to the heated political debate in Italy during the last
50years).
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Fig. 6 Global indecision of the estimated gecub model for varying Age and Rank

A further interpretation may be derived if we exploit the second specification (4) of
a gecub model where the weight of the combination of uncertainty and shelter effect
(a sort of global indecision) is measured by 1 − λi and estimated as:

1 − λ̂i = 1 −
(
1 − δ̂i

) 1

1 + e−2.133+ 0.355 Ranki
, i = 1, 2, . . . , n.

This quantity is shown in Fig. 6 and confirms that the global indecision suddenly
decreases for young people up to 30years, then it remains substantially constant. On
the contrary, this global effect regularly increases with years as far as respondents are
right-oriented.

For a comparative analysis, some results obtained by using a more consolidated
approach, as the proportional odds models (pom) (Agresti 2010, p.53), are discussed
and the main fitting measures are reported in the last line of Table 5. The procedure for
selecting significant explanatory variables leads to the set of covariates {Age, Rank,
Demo, Age × Rank} as for gecubmodels. The inclusion of Gender does not raise
significantly the likelihood.

Finally, two expected profiles according to pom and gecubmodels (fitted with the
same explanatory covariates) are compared to see the effect of the different structures
on the probabilities of responses. These results are summarized in Fig. 7 for a young
left-oriented respondent who declares to participate to demonstrations (profile A: left
panel) and for an elderly right-oriented respondent who does not participate to demon-
strations (profile B: right panel). It seems evident that both models capture a similar
pattern in the probabilities of responses; however, the gecub model includes more
uncertainty in the expected probabilities and gives special importance to the shelter
option, which is only partially captured by a pom. In addition, gecub model relates
this effect to significant covariates as already shown in Fig. 5.
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Fig. 7 Expected profiles of responses according to pom and gecub models. Profile A concerns a young
left-oriented respondent who participates to demonstrations (left panel). Profile B concerns an elderly
right-oriented respondent who does not participate to demonstrations (right panel)

Few considerations may be added: first, the estimation of 8 additional cutpoints
in pom induces a serious loss in parsimony and, secondly, these models transfer the
effect of the respondents’ indecision in the global effect of covariates on the responses.
This may bias the interpretation of the results and the corresponding prediction of the
respondents’ behaviour. Thus, although maximum log-likelihood values are definitely
comparable, thegecubmodel seemsmore convenient in termsoffittingand parsimony
(as measured by BIC).

The prediction of ordinal data is generally assessed by comparing the observed pro-
portions of categorical responses with the fitted ones: this is performed by computing
deviance measures which are related to the previous log-likelihood considerations. In
fact, these models may be used also for predicting the responses of a single respondent
given the covariates by means of the estimated significant relationships. More specifi-
cally, we use the estimated r̂i computed from the gecubmodel to predict the Political
orientation of any respondent, given the knowledge of Age, Rank and Demo. In Table
5, we list the RMSE obtained by different estimated models.

In our case study, the modal value as a predictor outperforms the expected value
(in fact, modal value is also easier to interpret since it is a proper category). The
improvement of a gecubwith respect to a cubmodelwith covariates is quitemoderate;
however, fromapredictive point of view,gecub should bepreferred ifweuse themodal
value as point predictor for the response and it is comparable to pom if we use the
mean.

A common problem arises in the setting of point prediction: although the estimated
probability distribution fits the observed ones in a satisfactory measure, it is difficult to
predict the single response with high confidence given the appreciable level of uncer-
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tainty which surrounds these options. The estimated gecub model is able to predict
the response exactly or around ±1 category in more than 60% of cases. However, the
substitution of the whole estimated probability distribution with a single value (mode,
mean, or median) misses at least one aspect of the features of the responses: in our
data set the observed data are positively skewed and it is almost impossible to predict
responses as R = 7, 8, 9 (which have been observed in 124 cases, a relative frequency
of 0.175). In fact, the prediction of these high categories requires the knowledge of
further covariates which are explicitly related to these extreme values.

7 Concluding remarks

gecub models share with GLM framework the presence of stochastic and systematic
components (given by (3) and (5), respectively) but differentiate in several aspects and
a comparative discussion has been pursued by Iannario and Piccolo (2015). The main
points are the following:

– Data generating process for gecub models concerns a probability mass function,
whereas a distribution function is involved in the derivation of cumulative models.

– gecub and cub models do not belong to the exponential family.
– In gecubmodels the link among parameters and covariates is a direct one, without
involving moments.

– Parsimony of gecub models is an added value since no cutpoints are required in
the estimation procedures; thus, gecub models should be preferred for larger m.

The specification of gecub models may be extended in several directions and we
list few of them according to the current research.

– Some interesting relationships between the shelter choice and the presence of
“don’t know” responses in rating surveys have been recently emphasized by Man-
isera and Zuccolotto (2014a) with special reference to cub models.

– TheBinomial distribution for the feeling has beengeneralizedwith the introduction
of a Beta-Binomial random variable to take into account a possible overdispersion
in the ordinal data (Iannario 2012b, 2014), also with subjects’ covariates (Piccolo
2015). A similar approach would lead to gecube models.

– The standard structure of cub and gecub models assumes a constant uncertainty
for all categories. Some interesting improvements have been recently obtained by
Gottard et al. (2015) who considered a varying uncertainty in the model by spec-
ifying an a priori distribution for the subjects’ indecision. Similar considerations
may be pursued by inserting a varying uncertainty in the gecub structure and this
extension does not require further parameters to be estimated.

– In some circumstances, as in sensometric studies, it is convenient to introduce
objects’ covariates (Piccolo and D’Elia 2008) in the link of the parameters since
consumers’ preferences are undoubtedly conditioned by the sensory characteristics
of the items under scrutiny (food or beverage, for instance). This proposal may be
usefully applied to gecub models.

– When data are organized according to a hierarchical structure, it may be effective
to consider multilevel models: thus, hierarchical cubmodels have been introduced
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(Iannario 2012d). This random effect might be extended to the gecub models in
order to capture hierarchical structures and clusters variability.

To summarize, in this paper themain statistical issues of gecubmodels for studying
ordinal data have been presented and this has been pursued according to a general
framework derived by an interpretation of the data generating process for this kind
of observations. More experience is necessary to implement some design able to
detect and test the components of these mixtures. In addition, convenient and effective
starting values for the EM procedure are required, as already obtained for cubmodels
(Iannario 2012c).

Both reported simulations and empirical analysis, although limited, suggest that this
framework can accomplish the standard goals of the analysis of ordinal data with an
added value in terms of interpretation of the components and their effects, parameters
parsimony and immediate graphical facilities. As in any scientific investigation, a
multiple perspective for modelling real phenomena should be considered a positive
improvement of knowledge.
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Appendix 1: Justification for the shifted Binomial distribution

For a given m, respondents are requested to rate an item I over an ordinal scale
consisting of the categories {A1, A2, . . . , Am}. We introduce the mapping A j ↔ j ,
for j = 1, 2, . . . ,m, as a convenient simplification.

Let us assume that ξ ∈ [0, 1] is a real number such that (1 − ξ) is a (normalized)
synthesis of the strength of attraction or the common consensus that the respondent
feels towards the item I . Depending on the specific context, this may be considered
as a measure of agreeableness, preference, liking, etc. For easiness we denote it as
feeling. Then, ξ → 0 (ξ → 1) means that respondents have a very much positive
(negative) opinion towards the item.

Let X be the random variable generated by the selection of an ordinal category
x ∈ {1, 2, . . . ,m} such that x increases with the feeling towards the item. Let us
define E j the event “Ax is preferred to A j” for any j 	= x . Then, a respondent selects
the category Ax if “A j are considered too weak with respect to Ax to express his/her
preference” for j = 1, 2, . . . , x − 1 and “A j are considered too strong with respect
to Ax to express his/her preference” for j = x + 1, x + 2, . . . ,m.

Any typical sequence:

Ei1 ∩ Ei2 ∩ · · · ∩ Eix−1 ∩ Eix+1 ∩ Eix+2 ∩ · · · ∩ Eim

generates the selection of the category Ax and it consists of (x − 1) “successes”
(when Ax is considered more adequate than A j to express preference) and of (m − x)
“failures” (when Ax is considered less adequate than A j to express preference).
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The realization X = x corresponds to one of those sequences whose number are
the permutations with replacement of the (m − 1) paired comparisons A j versus
Ax , ∀ j 	= x with (x − 1) “successes” and (m − x) “failures”, that is: (m−1)!

(x−1)! (m−x)! =(m−1
x−1

) = (m−1
m−x

)
, for x = 1, 2, . . . ,m.

If we define, for any x = 1, 2, . . . ,m,

1 − ξ j = Pr
(
Ax is preferred toA j

) = Pr
(
E j

)
, j 	= x ,

then

Pr (X = x) =
(
m − 1

x − 1

)
(1 − ξ1) (1 − ξ2) . . . (1 − ξx−1) ξx+1 ξx+2 . . . ξm ,

x = 1, 2, . . . ,m .

The previous argument supports the very nature of a (shifted) Binomial random
variable X since it “counts” the number of successes of a sequence of paired compar-
ison experiments, which we assume to be independent to simplify the derivation. In
a sense, the proposed (shifted) Binomial random variable counts the “successes” in
repeated trials that is, in our interpretation, it counts the number of times a category
“wins” against the lower ones.

We observe that theBinomial component induces an ordinal restraint in themixture
model since each value X = x may be interpreted as the result of cumulated choices
against different alternatives. As an instance, for m = 9, the event (X = 7) is related
to the event (X = 6) since in the former choice we reject more low values than in the
latter one.

Independence is not a severe constraint since the sum of non-independent experi-
ments may be approximated by an equivalent sum of independent experiments.

The whole family of cub models may be derived upon the specification of the
sequence ξk, k = 1, 2, . . . ,m.

1. cub models (Piccolo 2003) implies: ξ1 = ξ2 = · · · = ξm = ξ . This is a strong
assumption but it may be maintained if one considers the constant ξ as an average
of different ξ j . In fact, all these quantities are high (low) when feeling is small
(large).

2. cub models with a shelter effect (Iannario 2012a) assume that a category c ∈
{1, 2, . . . ,m} has an additional probability to be chosen since it is considered as a
“safer” or “more convincing” choice.

3. cube models (Iannario 2014) assume that ξ is a Beta random variable so that X
is the predictive distribution (=Beta-Binomial).

4. Non-linear cub models (Manisera and Zuccolotto 2014b) assume non-constant
transition probabilities between a category and the adjacent one.

Notice that Pr
(
E j

)
is defined in terms of 1 − ξ j (and not of ξ j ) since the first

interpretation of this approach has been derived in a ranking context; then, the pref-
erence for the item is higher when it is located in the first positions of the scale. As a
consequence, the ratings interpretation of ξ j is reversed.
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The shifted Binomial distribution for fitting ordinal data has been first elaborated in
a ranking framework as a tool for modelling choices generated by a paired comparison
mechanism: D’Elia (2000a, pp. 179–181, 2000b). Then, Piccolo (2003) and D’Elia
and Piccolo (2005) extended the approach to preference analysis.

More recently, it has been used by Zhou and Lange (2009) who interpret multiple
ratings expressed by panellists on movies as a mixture of a “common consensus”
(anchored to respondents by means of an individual shifted Binomial distribution) and
a “quirkiness behaviour” which corresponds to feeling and uncertainty, respectively.
Differently from cub models with subjects’ and objects’ covariates (Iannario and
Piccolo 2012a; Piccolo and D’Elia 2008), their approach requires a huge number of
parameters (in fact, the paper is mainly motivated by a computational burden) since no
relationships about subjects’ characteristics have been introduced. Finally, a discussion
and interpretation of the (shifted) Binomial distribution has been advanced by Allik
(2014) to support the idea of a genuinely discrete generating process of the responses
to a given item in the context of Likert-type personality measures.

Appendix 2: EM algorithm for a GeCUB model

Given the sample data r = (r1, r2, . . . , rn)′, we introduce the unobservable vector
z = (z1, z2, . . . , zn)′ where zi = (z1i , z2i , z3i )′ is a three-dimensional vector such
that, for g = 1, 2, 3:

zgi =
{
1, if the i-th subject belongs to the g componentPg;
0, otherwise.

Then, according to the specification of Sect. 4, the likelihood function of the
complete-data vector (r ′, z′)′ is given by:

Lc(θ) =
3∏

g=1

n∏
i=1

[
αgi (ψg) pg(ri ; ηg)

]zgi ,

and the complete-data log-likelihood function is:

�c(θ) =
3∑

g=1

n∑
i=1

[
zgi log(αgi (ψg)) + zgi log(pg(ri ; ηg))

]
.

If we specify starting values θ (0), the EM algorithm at the (k + 1)-th iteration is
made up of the following steps:

• E-step:

The conditional expectation of the indicator randomvariable Zgi , defined inTable 3,
given the observed sample r , is:
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E

(
Zgi | r, θ (k)

)
= Pr

(
Zgi = 1 | r, θ (k)

)
= αgi (ψ

(k)
g ) pg(r; η

(k)
g )

3∑
j=1

α j i (ψ
(k)
j ) p j (r; η

(k)
j )

= τ
(k)
gi = τgi ,

for g = 1, 2, 3 and i = 1, 2, . . . , n. Hereafter, when this causes no confusion, we
will omit the reference to the iteration number (k) in τgi . Observe that, for any g, the
quantity τgi is the posterior probability that the i-th subject of the sample with the
observed ri belongs to the g-th component Pg of the mixture.

Given observed sample r and parameters θ , these probabilities may be assembled
in a 3 × n matrix Π defined by:

Π =
⎛
⎝τ11 τ12 . . . τ1n

τ21 τ22 . . . τ2n
τ31 τ32 . . . τ3n

⎞
⎠ .

Since the columns of Π sum to 1, τ3i = 1 − τ1i − τ2i , i = 1, 2, . . . , n.
The expected log-likelihood of the complete-data vector is obtained as:

E

(
�c(θ

(k))
)

=
3∑

g=1

n∑
i=1

τgi

[
log(αgi (ψ

(k)
g )) + log(pg(ri ; η(k)

g ))
]

=
n∑

i=1

[
τ1i log(α1i (ψ

(k)
1 )) + τ2i log(α2i (ψ

(k)
2 )) + τ3i log(α3i (ψ

(k)
3 ))

]

+
n∑

i=1

[
τ1i log(p1(ri ; η

(k)
1 )) + τ2i log(p2(ri ; η

(k)
2 )) + τ3i log(p3(ri ; η

(k)
3 ))

]

=
n∑

i=1

τ1i log
(
δi (ω

(k))
) +

n∑
i=1

τ2i log
[
π(β(k))(1 − δi (ω

(k)))
]

+
n∑

i=1

(1 − τ1i − τ2i ) log
[
(1 − π(β(k)))(1 − δi (ω

(k)))
] + Q∗

where Q∗ is independent from α
(k)
gi parameters. Then, we let:

E

(
�c(θ

(k))
)

= Q1(β
(k),ω(k)) + Q∗ .

• M-step:

At the (k + 1)-th iteration, we have to maximize the function:

Q1(β
(k),ω(k)) =

n∑
i=1

τ1i log
(
δi (ω

(k))
) +

n∑
i=1

τ2i log
[
π(β(k))(1 − δi (ω

(k)))
]

+
n∑

i=1

(1 − τ1i − τ2i ) log
[
(1 − π(β(k)))(1 − δi (ω

(k)))
]
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with respect to the parameter vector ψ (k) = (β ′(k), ω ′(k))′.
Similarly, to find the parameter vector γ (k), we need to maximize the function:

Q2(γ
(k)) =

n∑
i=1

τ2i log(p2(ri ; η
(k)
2 )) =

n∑
i=1

τ2i log(bri (γ
(k)))

∝ −
n∑

i=1

τ2i (ri − 1)(wi γ
(k)) − (m − 1)

n∑
i=1

τ2i log(1 + e−wi γ (k)
)

Thus, the maximization step solves in finding parameter vectors such that:

(
β ′(k+1), ω ′(k+1))′ = argmax

β, ω

Q1(β
(k),ω(k));

γ (k+1) = argmax
γ

Q2(γ
(k)).

These optimizations, generally, requires numerical methods.
Then, the updated parameter vector θ (k+1) = (

β ′(k+1), γ ′(k+1),ω ′(k+1)
)
will be

used and the E- and M-step are repeated until a convergence criterion is satisfied.
The previous derivation may be conveniently expressed by means of a step-by-step

implementation (in any formal computer language) as follows. Here, we have to set a
fixed tolerance ε (= 10−6, for instance) and assume that integers m and c are given.

0. θ (0) =
(
β ′(0), γ ′(0), ω′(0)

)′ ; l(0) = �
(
θ (0)

)
; ε = 10−6.

1. α
(k)
1i = 1

1 + e−xiω(k) ; α
(k)
2i = (1 − α

(k)
1i )

1

1 + e− yiβ
(k) ; α

(k)
3i = 1 − α

(k)
1i − α

(k)
2i ;

i = 1, 2, . . . , n.

2. p(k)
1i = D(c)

ri ; p(k)
2i = p2i (γ (k)) =

(
m − 1

ri − 1

)
e− (ri−1) wiγ

(k)

(
1 + e−wiγ (k)

)m−1 ; p(k)
3i = 1

m
;

i = 1, 2, . . . , n.

3. ν
(k)
gi = α

(k)
gi p(k)

gi , g = 1, 2, 3; den(k)
i = ν

(k)
i1 + ν

(k)
i2 + ν

(k)
i3 ; i = 1, 2, . . . , n.

4. τ
(k)
gi = τg(ri ; θ (k)) = ν

(k)
gi

den(k)
i

, g = 1, 2; τ
(k)
3i = 1 − τ

(k)
1i − τ

(k)
2i ; i =

1, 2, . . . , n.

5.

⎧⎪⎪⎨
⎪⎪⎩
S1(ω(k)) = ∑n

i=1 τ
(k)
1i log

(
α

(k)
1i

);
S2(β

(k),ω(k)) = ∑n
i=1 τ2i log

(
α

(k)
2i

);
S3(β

(k),ω(k)) = ∑n
i=1

(
1 − τ

(k)
1i − τ

(k)
2i

)
log

(
1 − α

(k)
1i − α

(k)
2i

)
.

6. Q1(β
(k),ω(k)) = S1(ω(k)) + S2(β

(k),ω(k)) + S3(β
(k),ω(k)).

7. Q2(γ
(k)) = −∑n

i=1 τ
(k)
2i (ri −1)(wi γ

(k))−(m−1)
∑n

i=1 τ
(k)
2i log(1+e−wi γ (k)

).
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8.
(
β ′(k+1), ω ′(k+1)

)′ = argmax
β, ω

Q1(β
(k),ω(k)); γ (k+1) = argmax

γ
Q2(γ

(k)).

9. θ (k+1) = (
β ′(k+1), γ ′(k+1), ω ′(k+1)

)′
; l(k+1) = �

(
θ (k+1)

)
.

10.

{
if l(k+1) − l(k) ≥ ε, k → k + 1; go to 1;
if l(k+1) − l(k) < ε, θ̂ = θ (k+1); stop.

Accurate initial values θ (0) for an effective starting of the EM algorithm would
accelerate the convergence of the EM algorithm towards the ML estimates, as empha-
sized by McLachlan and Peel (2000), pp. 47–49 and Karlis and Xekalaki (2003) in
general contexts, and confirmed by Iannario (2012c) for cub models.

This issue deserves more studies and extensive experiments; in case of large sample
size, initial values derived by simplified cub models (without and with covariates
and/or without covariates in the shelter effect) may be suggested. In absence of any
information we might use θ (0) = (0.1, 0.1, . . . , 0.1)′. However, it is more effective to
start with a random sampling of a subset of the full data set and to plug the obtained
parameter estimates into the EM procedure as the preliminary ones.
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