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Abstract The asymptotic relative efficiency of the mean deviation with respect to
the standard deviation is 88% at the normal distribution. In his seminal 1960 paper
A survey of sampling from contaminated distributions, J. W. Tukey points out that, if
the normal distribution is contaminated by a small ε-fraction of a normal distribution
with three times the standard deviation, the mean deviation is more efficient than
the standard deviation—already for ε < 1%. In the present article, we examine the
efficiency of Gini’s mean difference (the mean of all pairwise distances). Our results
may be summarized by saying Gini’s mean difference combines the advantages of
the mean deviation and the standard deviation. In particular, an analytic expression
for the finite-sample variance of Gini’s mean difference at the normal mixture model
is derived by means of the residue theorem, which is then used to determine the
contamination fraction in Tukey’s 1:3 normal mixture distribution that renders Gini’s
mean difference and the standard deviation equally efficient. We further compute the
influence function of Gini’s mean difference, and carry out extensive finite-sample
simulations.
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570 C. Gerstenberger, D. Vogel

1 Introduction

Let X be a random variable with distribution F , and define F�
a,b as the distribution of

aX + b. We call any function s that assigns a non-negative number to any univariate
distribution F (potentially restricted to a subset of distributions, e.g. with finite second
moments) a measure of variability, (or a measure of dispersion or simply a scale
measure) if it satisfies

s
(
F�

a,b

) = |a| s(F) for all a, b ∈ R. (1)

In this article, our focus is on three very common descriptive measures of variability,

(i) the standard deviation σ(F) = {E(X − E X)2}1/2,
(ii) themean absolute deviation (ormean deviation for short) d(F) = E |X−md(F)|,

where md(F) denotes the median of F , and
(iii) Gini’s mean difference g(F) = E |X − Y |.
Here, X and Y are independent and identically distributed random variables with
distribution function F . Recall that the variance can also bewritten as σ 2(F) = E(X −
Y )2/2. We define the median md(F) as the center point of the set {x ∈ R | F(x−) ≤
1/2 ≤ F(x)}, where F(x−) denotes the left-hand side limit. Suppose nowwe observe
dataXn = (X1, . . . , Xn), where the Xi , i = 1, . . . , n, are independent and identically
distributed with cdf F . Let F̂n be the corresponding empirical distribution function.
The natural estimates for the above scale measures are the functionals applied to
F̂n . However, we define the sample versions of the standard deviation and the mean
deviation slightly different. Let

(i) σn = σn(Xn) =
{ 1

n − 1

n∑

i=1

(
Xi − X̄n

)2 }1/2

denote the sample standard deviation,

(ii) dn = dn(Xn) = 1

n − 1

n∑

i=1

|Xi − md(F̂n)| the sample mean deviation and

(iii) gn = gn(Xn) = 2

n(n − 1)

∑

1≤i< j≤n

|Xi − X j | the sample mean difference.

While it is common practice to use 1/(n − 1) instead of 1/n in the definition of the
sample variance, due to the thus obtained unbiasedness, it is not so clear which finite-
sample version of the mean deviation to use. The factor 1/(n − 1) does generally not
yield unbiasedness, but it leads to a significantly smaller bias in all our finite-sample
simulations, see Sect. 4. Little appears to be known for which distributions dn as
defined above is indeed unbiased. The computation of E(dn) requires the knowledge
of the expectations of the order statistics, which are known in principle, but generally
rather cumbersome to evaluate analytically. An exception is the uniform distribution,
where the order statistics are known to follow a beta distribution, and it turns out that
dn is unbiased for odd n, but not for even n. For details, see Lemma 1 in “Appendix”.
This is also in line with the simulation results reported in Table 7.
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On the efficiency of Gini’s mean difference 571

Furthermore, there is the question of the location estimator, which applies, in prin-
ciple, to the mean deviation as well as to the standard deviation, and also to their
population versions. While it is again established to use the mean along with the stan-
dard deviation, the picture is less clear for the mean deviation. We propose to use
the median, mainly due to conceptual reasons: the median minimizes the mean devi-
ation as the mean minimizes the standard deviation. This also suggests to apply the
1/(n −1) bias correction in both cases. However, our main results concern asymptotic
efficiencies at symmetric distributions, for which the choice of the location measure
as well as n versus n − 1 question is largely irrelevant.

The standard deviation is, with good cause, the by far most popular measure of
variability. One main reason for considering alternatives is its lack of robustness, i.e.
its susceptibility to outliers and its low efficiency at heavy-tailed distributions. The
two alternatives considered here are—in the modern understanding of the term—
not robust, but they are more robust than the standard deviation. The extreme non-
robustness of the standard deviation, which also emerges when comparing it with
the mean deviation, played a vital role in recognizing the need for robustness and
thus helped to spark the development of robust statistics, cf. e.g. Tukey (1960). The
purpose of this article is to introduce Gini’s mean difference into the old debate of
mean deviation versus standard deviation (e.g. Gorard 2005)—not as a compromise,
but as a consensus.Wewill argue that Gini’s mean difference combines the advantages
of the standard deviation and the mean deviation.

When proposing robust alternatives to any normality-based standard estimator, the
gain in robustness is usually paid by a loss in efficiency at the normal model. The two
aspects, robustness and efficiency, have to be analyzed and be put into relation with
each other.

As far as the robustness properties are concerned, it is fairly easy to see that all three
estimators have an asymptotic breakdown point of zero and an unbounded influence
function. There are some slight advantages for the mean deviation and Gini’s mean
difference: their influence functions increase linearly as compared to the quadratic
increase for the standard deviation, and they require only second moments to be
asymptotically normal, as compared to the 4th moments for the standard deviation.
The influence functions of the three estimators are given explicitly in Sect. 3. For the
standard normal distribution, they are plotted (Fig. 2) and compared to the respective
empirical sensitivity curves (Fig. 3). The influence function of Gini’s mean difference
appears to not have been published elsewhere.

However, the main concern in this paper is the efficiency of the estimators. We
compute and compare their asymptotic variances at several distributions. We restrict
our attention to symmetric distributions, since we are interested primarily in the effect
of the tails of the distribution, which arguably have the most decisive influence on the
behavior of the estimators. We consider in particular the tν distribution and the normal
mixture distribution, which are both prominent examples of heavy-tailed distributions,
and are often employed in robust statistics to investigate the behavior of estimators
in heavy-tailed scenarios. To summarize our findings, in all relevant situations where
Gini’s mean difference does not rank first among the three estimators in terms of
efficiency, it does rank second with very little difference to the respective winner. A
more detailed discussion is deferred to Sect. 5.
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572 C. Gerstenberger, D. Vogel

We complement our findings by also giving the respective values for the median
absolute deviation1 (MAD, Hampel 1974) and the Qn by Rousseeuw and Croux
(1993). The sample version of the median absolute deviation, which we denote by
mn = mn(Xn) is the median of the values |Xi − md(F̂n)|, 1 ≤ i ≤ n, and the
corresponding population valuem(F) is themedian of the distribution of |X−md(F)|,
where X ∼ F . The Qn scale estimator is the kth order statistic of the

(n
2

)
values

|Xi − X j |, 1 ≤ i < j ≤ n, with k = (�n/2�+1
2

)
and will be denoted by Qn(Xn). Its

population version Q(F) is the lower quartile of the distribution of |X − Y |, where X
and Y are independent with distribution F .2 So for theMADaswell as the Qn , we omit
any consistency factors, which are often included to render them consistent for σ at the
normal distribution. These can be deduced from Table 4. However, these estimators
are included in the comparison, but not studied here in detail. For the derivation of the
respective results, we will refer to the literature. We neither attempt a complete review
of scale measures. For background information on robust scale estimation see, e.g.,
Huber and Ronchetti (2009, Chapter 5). A numerical study comparing many robust
scale estimators is given, e.g., by Lax (1985).

The paper is organized as follows: In Sect. 2, asymptotic efficiencies of the scale
estimators are compared. We study in particular their asymptotic variances at the
normal mixture model. In Sect. 3, the influence functions are computed, and finite-
sample simulations results are reported in Sect. 4. Section 5 contains a summary.
Proofs are given in “Appendix”.

2 Asymptotic efficiencies

We gather the general expressions for the population values and asymptotic variances
of the three scale measures (Sect. 2.1) and then evaluate them at several distributions
(Sect. 2.2). We study the two-parameter family of the normal mixture model in some
detail in Sect. 2.3.

2.1 General results

If E X2 < ∞, Gini’s mean difference and the mean deviation are asymptotically
normal. For the asymptotic normality of σn , fourth moments are required. Strong
consistency and asymptotic normality of gn and σ 2

n follow from general U -statistic
theory (Hoeffding 1948), and thus for σn by a subsequent application of the continuous
mapping theorem and the delta method, respectively.
Letting

dn(Xn, t) = 1

n − 1

n∑

i=1

|Xi − t |,

1 Here, the choice of the location estimator is unambiguous: high breakdown point robustness is the main
selling feature of the MAD.
2 For simplicity, we define the p-quantile of distribution F as the value of the quantile function F−1(p) =
inf{x | F(x) ≤ p}. For all population distributionswe consider, there is no ambiguity, but note that F̂−1

n (1/2)
and the sample median md(F̂n) as defined above are generally different.
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On the efficiency of Gini’s mean difference 573

the asymptotic normality of dn(Xn, t) for any fixed location t holds also under the
existence of second moments and is a simple corollary of the central limit theorem.
Consistency and asymptotic normality of dn(Xn, tn), where tn is a location estimator,
is not equally straightforward (cf. e.g. Bickel and Lehmann 1976, Theorem 5 and the
examples below). A set of sufficient conditions is that

√
n(tn − t) is asymptotically

normal and F is symmetric around t . See also Babu and Rao (1992, Theorem 2.5).
Letting sn be any of the estimators above and s the corresponding population value,

we define the asymptotic variance ASV (sn) = ASV (sn; F) of sn at the distribu-
tion F as the variance of the limiting normal distribution of

√
n(sn − s), when sn is

evaluated at an independent sample X1, . . . , Xn drawn from F . We note that, in gen-
eral, convergence in distribution does not imply convergence of the second moments
without further assumptions (uniform integrability), but it is usually the case in situ-
ations encountered in statistical applications. Specifically it is true for the estimators
considered here, and we may write

ASV(sn) = lim
n→∞ n var(sn).

We are going to compute asymptotic relative efficiencies of gn and dn with respect to
σn . Generally, for two estimators an and bn with an

p−→ θ and bn
p−→ θ for some

θ ∈ R, the asymptotic relative efficiency of an with respect to bn at distribution F is
defined as

ARE(an, bn; F) = ASV(bn; F)/ASV(an; F).

In order to make two scale estimators s(1)
n and s(2)

n comparable efficiency-wise, we
have to standardize them appropriately, and define their asymptotic relative efficiency
at the population distribution F as

ARE(s(1)
n , s(2)

n ; F) = ASV(s(2)
n ; F)

ASV(s(1)
n ; F)

{
s(1)(F)

s(2)(F)

}2
, (2)

where s(1)(F) and s(2)(F) denote the corresponding population values of the scale
estimators s(1)

n and s(2)
n , respectively.

The exact finite-sample variance of the empirical variance σ 2
n is

var(σ 2
n ) = 1

n

{
μ4 − 4μ3μ1 + 3μ2

2 − 2σ 4 2n − 3

n − 1

}
, (3)

where μk = E Xk , k ∈ N, is the kth non-central moment of X , in particular σ 2 =
σ 2(F) = μ2 − μ2

1. Thus ASV (σ 2
n ) = μ4 + 3μ2

2 − 4
{
μ3μ1 + σ 4

}
, and hence we

have by the delta method

ASV(σn) = μ4 − 4μ3μ1 + 3μ2
2

4σ 2 − σ 2. (4)
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574 C. Gerstenberger, D. Vogel

Formula (3) appears to be a classical textbook example, but we did not find a reference
for this general form. The special case μ1 = 0 is stated, e.g., in Kenney and Keeping
(1952, p. 164).

If the distribution F is symmetric around E(X) = μ1 and has a Lebesgue density
f , the mean deviation d = d(F) can be written as

d =
∫ ∞

−∞
|x − μ1| f (x) dx = 2

∫ ∞

μ1

(x − μ1) f (x) dx (5)

The asymptotic variance of dn is ASV(dn) = σ 2 − d2. See, e.g., Pham-Gia and Hung
(2001) for a review on the properties of the mean deviation.

For any F possessing a Lebesgue density f , Gini’s mean difference g = g(F) is

g =
∫ ∞

−∞

∫ ∞

−∞
|x − y| f (x) f (y) dy dx = 2

∫ ∞

−∞

∫ ∞

x
(y − x) f (x) f (y) dy dx,

(6)
which can be further reduced to

g = 4
∫ ∞

−∞

∫ ∞

x
y f (y) dy f (x) dx = 8

∫ ∞

0

∫ ∞

x
y f (y) dy f (x) dx (7)

if F is symmetric around 0. Lomnicki (1952) gives the variance of the sample mean
difference gn as

var(gn) = 1

n(n − 1)

{
4(n − 1)σ 2 + 16(n − 2)J − 2(2n − 3)g2

}
, (8)

where

J = J (F) =
∫ ∞

x=−∞

∫ x

y=−∞

∫ ∞

z=x
(x − y)(z − x) f (z) f (y) f (x) dz dy dx . (9)

Thus, the asymptotic variance of gn is ASV (gn) = 4{σ 2 + 4J − g2}.

2.2 Specific distributions

Table 1 lists the densities and first four moments of the following distribution families:
normal, Laplace, uniform, tν and normal mixture.

The normal mixture distribution NM(λ, ε), sometimes also referred to as contam-
inated normal distribution, is defined as

NM(λ, ε) = (1 − ε)N (0, 1) + εN (0, λ2), 0 ≤ ε ≤ 1, λ ≥ 1.

For these distribution families, expressions for σ(F), d(F) and the asymptotic vari-
ances of their sample versions are given in Table 2, and for Gini’s mean difference,
including the integral J , in Table 3. The contents of Table 2 are well known and
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Table 1 Densities and non-central moments of several parametric families

Distribution Density f (x) Parameters Moments

Normal 1√
2πσ2

exp

{
− (x−μ)2

2σ2

}
μ ∈ R, σ 2 >

0

μ1 = μ, μ2 = σ 2 + μ2,

μ3 = μ3 + 3μσ 2,

μ4 = μ4 + 6μ2σ 2 + 3σ 4

Laplace 1
2α exp

{−|x−μ|
α

}
μ ∈ R, α > 0

μ1 = μ, μ2 = μ2 + 2α2,
μ3 = μ3 + 6α2μ,

μ4 = μ4 + 12α2μ2 + 24α4

Uniform
1

b − a
1[a,b](x) −∞ < a <

b < ∞

μ1 = 1
2 (a + b),

μ2 = 1
3

{
(a + b)2 − ab

}
,

μ3 = 1
4 (a + b)(a2 + b2),

μ4 = 1
5

{
(a + b)(a3 + ab2) + b4

}

tν cν

(

1 + x2

ν

)− ν+1
2

ν > 0
μ1 = μ3 = 0,
μ2 = ν/(ν − 2),
μ4 = 3ν2/{(ν − 2)(ν − 4)}

Normal
mixture

ε 1√
2πλ

exp {− x2

2λ2
} +

(1 − ε) 1√
2π

exp {− x2
2 }

0 ≤ ε ≤ 1,
λ ≥ 1

μ1 = μ3 = 0,
μ2 = ελ2 + (1 − ε) ,

μ4 = 3ελ4 + 3 (1 − ε)

The scaling factor for the tν distribution is cν = Γ
(

ν+1
2

)/
(
√

νπ Γ ( ν
2 ))

Table 2 Specific values of σ , d and the respective asymptotic variances for the distribution families given
in Table 1

Distribution σ(F) ASV(σn) d(F) ASV(dn)

Normal σ
σ 2

2

2σ√
2π

σ 2
{
1 − 2

π

}

Laplace
√
2α

5

2
α2 α α2

Uniform
b − a

2
√
3

1
60 (b − a)2

b − a

4
1
48 (b − a)2

tν

√
ν

ν − 2

ν(ν − 1)

2(ν − 2)(ν − 4)

2νcν

ν − 1

ν

ν − 2
−
{
2νcν

ν − 1

}2

Normal
mixture

√
ελ2 + (1 − ε) {4(ελ2 + 1 − ε)}−1

{3(ελ4 + 1 − ε)

−(ελ2 + 1 − ε)2}

√
2
π {ελ +
(1 − ε)}

ελ2 + 1 − ε

− 2
π {ελ + (1 − ε)}2

cν = Γ
(

ν+1
2

)/(√
νπ Γ

(
ν
2
))

straightforward to derive. The results for Gini’s mean difference require the evalu-
ation of the integrals (7) and (9), which is non-trivial for many distributions. The
expressions for the normal case are due to Nair (1936). Results for the normal mixture
distribution and the tν are subject of the following two theorems.

123



576 C. Gerstenberger, D. Vogel

Ta
bl
e
3

Po
pu
la
tio

n
va
lu
es
,c
f.
(6
),
ex
pr
es
si
on

s
fo
r

J
,c
f.
(9
),
an
d
re
su
lti
ng

as
ym

pt
ot
ic
va
ri
an
ce
s
fo
r
G
in
i’s

m
ea
n
di
ff
er
en
ce

at
th
e
pa
ra
m
et
ri
c
fa
m
ili
es

of
Ta
bl
e
1

D
is
tr
ib
ut
io
n

g(
F

)
J

A
S

V
(g

n
)

N
or
m
al

2σ √ π

(
√ 3

2π
−

1 6

)

σ
2

{
4 3

+
8 π
(√ 3

−
2)
} σ

2

L
ap
la
ce

3 2
α

5 24
α
2

7 3
α
2

U
ni
fo
rm

1 3
(b

−
a)

1 12
0
(b

−
a)

2
1 45

(b
−

a)
2

t ν
4√ ν
ν
−1

B
(

ν 2
+

1 2
,
ν
−

1 2

)

B
(

ν 2
,
1 2

)
B
( ν 2

,
ν
)

2
ν

(ν
−1

)2

B
(
3ν 2

−1
,
1 2

)

B
(

ν 2
,
1 2

) 3
−

ν
2(

ν
−2

)
+

K
ν

4{σ
2
+4

J
−g

2
}

N
or
m
al
m
ix
tu
re

2 √ π

{ λ
ε
2

+
(1

−
ε
)2

+ε
(1

−
ε
)√

2
( 1

+
λ
2
)}

(
1 3

+
√ 3

2π

)

{ε3
λ
2

+
(1

−
ε
)3

}−
ε
λ
2

+
1

−
ε

2

+
ε
2
(1

−
ε
)[

λ
2 2

+
1 4

+
3λ

ζ
(λ

)

2π

+
λ
2 π
at
an
(

λ
ζ
(λ

)

)
+

1 2π
at
an
(

1
λ
ζ
(λ

)

)
]

+
ε
(1

−
ε
)2
[

λ
2 4

+
1 2

+
3√

1
+

2λ
2

2π

+
λ
2

2π
at
an
(

λ
ζ
(1

/
λ
)

)
+

1 π
at
an
(

1
λ
ζ
(1

/
λ
)

)
]

4{σ
2

+
4

J
−

g2
}

ζ
(λ

)
=
√
2

+
λ
2
,

K
ν

=
∫

∞ −∞
x2

f ν
(x

)F
2 ν
(x

)
d

x
w
ith

f ν
,

F
ν
be
in
g
de
ns
ity

an
d
cd
f
of

th
e

t ν
di
st
ri
bu
tio

n.
B
(·,

·)d
en
ot
es

th
e
be
ta
fu
nc
tio

n
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Theorem 1 At the normal mixture distribution N M(λ, ε), 0 ≤ ε ≤ 1, λ ≥ 1, the
value of Gini’s mean difference is

g(NM(λ, ε)) = 2√
π

{
λε2 + (1 − ε)2 + ε(1 − ε)

√
2
(
1 + λ2

)}

and the value of the integral J , cf. (9), is

J (NM(λ, ε)) =
(1
3

+
√
3

2π

)
{ε3λ2 + (1 − ε)3} − ελ2 + 1 − ε

2

+ ε2(1 − ε)

[
λ2

2
+ 1

4
+ 3λζ(λ)

2π
+ λ2

π
atan
{ λ

ζ(λ)

}
+ 1

2π
atan
{ 1

λζ(λ)

}]

+ ε(1 − ε)2
[
λ2

4
+ 1

2
+ 3

√
1 + 2λ2

2π
+ λ2

2π
atan
{ λ

ζ(1/λ)

}
+ 1

π
atan
{ 1

λζ(1/λ)

}]
,

where ζ(λ) = √
2 + λ2.

Theorem 2 The value of Gini’s mean difference at the tν distribution, ν > 1, is

g(tν) = 4
√

ν

ν − 1

B
(

ν
2 + 1

2 , ν − 1
2

)

B
(

ν
2 , 1

2

)
B
(

ν
2 , ν
) ,

where B( · , · ) denotes the beta function. The value of the integral J , cf. (9), at the tν
distribution, ν > 2, is

J (tν) = 2 ν

(ν − 1)2
B
( 3ν
2 − 1, 1

2

)

B
(

ν
2 , 1

2

)3 − ν

2(ν − 2)
+
∫ ∞

−∞
x2 fν(x)F2

ν (x) dx .

where Fν and fν are the cdf and the density, respectively, of the tν distribution.

Resulting numerical values of the three scale measures and their asymptotic variances
are listed in Tables 4 and 5. Table 6 contains the corresponding asymptotic relative
efficiencies, cf. (2), with respect to the standard deviation.
In particular, we have at the normal model

ARE(gn, σn) =
{
2

3
π + 4(

√
3 − 2)

}−1

= 0.9779,

ARE(dn, σn) = 1

π − 2
= 0.876,

and at the Laplace (or double exponential) model

ARE(gn, σn) = 135/112 = 1.2054, ARE(dn, σn) = 5/4.
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578 C. Gerstenberger, D. Vogel

Table 4 Values of the standard
deviation σ , Gini’s mean
difference g, the mean absolute
deviation d, the median absolute
deviation m and the Qn scale
measure at the standard normal
distribution N (0, 1), the
standard Laplace distribution
L(0, 1), the uniform distribution
U (0, 1) and several members of
the tν family and the normal
mixture family NM(λ, ε)

Distribution σ g d m Q

N (0, 1) 1 1.128 0.798 0.675 0.451

L(0, 1) 1.414 1.5 1 0.693 0.518

U (0, 1) 0.289 0.333 0.25 0.25 0.134

t5 1.291 1.384 0.949 0.727 0.512

t6 1.225 1.332 0.919 0.718 0.501

t7 1.183 1.297 0.898 0.711 0.494

t10 1.118 1.240 0.865 0.700 0.480

t15 1.074 1.200 0.841 0.691 0.470

t16 1.069 1.195 0.838 0.690 0.469

t25 1.043 1.170 0.823 0.684 0.462

t40 1.026 1.154 0.813 0.681 0.458

t41 1.025 1.153 0.813 0.681 0.458

t100 1.010 1.138 0.804 0.677 0.454

NM(3, 0.008) 1.032 1.151 0.811 0.679 0.457

NM(3, 0.00175) 1.007 1.133 0.801 0.675 0.452

NM(3, 0.000309) 1.001 1.129 0.798 0.675 0.451

Table 5 Asymptotic variances of the standard deviation σn , Gini’s mean difference gn , the mean absolute
deviationdn , themedian absolute deviationmn and the Qn scale estimator at the standard normal distribution
N (0, 1), the standard Laplace distribution L(0, 1), the uniform distribution U (0, 1) and several members
of the tν family and the normal mixture family NM(λ, ε)

Distribution ASV(σn) ASV(gn) ASV(dn) ASV(mn) ASV(Qn)

N (0, 1) 0.5 0.651 0.36 0.619 0.124

L(0, 1) 2.5 2.333 1 1 0.332

U (0, 1) 0.017 0.022 0.021 0.063 0.002

t5 3.333 1.784 0.766 0.792 0.224

t6 1.875 1.453 0.656 0.759 0.204

t7 1.4 1.269 0.593 0.737 0.188

t10 0.938 1.014 0.502 0.698 0.168

t15 0.734 0.865 0.447 0.670 0.152

t16 0.714 0.848 0.441 0.667 0.148

t25 0.621 0.768 0.410 0.649 0.140

t40 0.570 0.721 0.391 0.638 0.132

t41 0.568 0.719 0.391 0.637 0.132

t100 0.526 0.678 0.374 0.626 0.128

NM(3, 0.008) 0.890 0.791 0.407 0.628 0.132

NM(3, 0.00175) 0.590 0.682 0.373 0.621 0.125

NM(3, 0.000309) 0.516 0.656 0.365 0.619 0.124
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Table 6 Asymptotic relative efficiencies of Gini’s mean difference gn , the mean absolute deviation dn ,
the median absolute deviation mn and the Qn scale estimator at the standard normal distribution N (0, 1),
the standard Laplace distribution L(0, 1), the uniform distribution U (0, 1) and several members of the tν
family and the normal mixture family NM(λ, ε)

Distribution ARE(gn , σn) ARE(dn , σn) ARE(mn , σn) ARE(Qn , σn)

N (0, 1) 0.9779 0.876 0.3675 0.8206

L(0, 1) 1.2054 1.25 0.6006 1.0103

U (0, 1) 1 0.6 0.2 1.7950

t5 2.1468 2.3514 1.3332 2.3403

t6 1.5250 1.6071 0.8477 1.5374

t7 1.3256 1.3607 0.6864 1.2985

t10 1.1373 1.1163 0.5259 1.0292

t15 1.0591 1.0064 0.4534 0.9248

t16 1.0517 0.9954 0.4462 0.9286

t25 1.0181 0.9440 0.4123 0.8703

t40 1.0006 0.9156 0.3936 0.8605

t41 1 0.9145 0.3929 0.8591

t100 0.9862 0.8908 0.3773 0.8303

NM(3, 0.008) 1.3995 1.3511 0.6130 1.3220

NM(3, 0.00175) 1.0953 0.9998 0.4272 0.9510

NM(3, 0.000309) 0.9999 0.8988 0.3783 0.8442

The mean deviation (with scaling 1/n) is the maximum likelihood estimator of the
scale parameter α of the Laplace distribution, cf. Table 1. Thus, at the normal as well
as the Laplace distribution, Gini’s mean difference has an efficiency of more than 96%
with respect to the respective maximum likelihood estimator.

Furthermore, we observe that Gini’s mean difference gn is asymptotically more
efficient than the standard deviation σn at the tν distribution for ν ≤ 40. The mean
deviation dn is asymptotically more efficient than σn for ν ≤ 15 and more efficient
than gn for ν ≤ 8. Thus in the range 9 ≤ ν ≤ 40, Gini’s mean difference is the most
efficient of the three.

One can view the uniform distribution as a limiting case of very light tails. While
our focus is on heavy-tailed scenarios, we include the uniform distribution in our study
as a simple approach to compare the estimators under light tails. We find a similar
picture as under normality: Gini’s mean difference and the standard deviation perform
equally well, while themean deviation has a substantially lower efficiency. However, it
must be noted that the uniform distribution itself is rarely encountered in practice. The
limited range is a very strong information, which allows a super-efficient inference.

The numerical results of Tables 1, 2 and 3 are rounded off by the respective values
for the MAD and Qn . Analytical expressions are generally not available for these
estimators, and their population values and asymptotic variances are obtained from
the general expressions given in Hall and Welsh (1985) and Rousseeuw and Croux
(1993), respectively.
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Finally, we take a closer look at the normal mixture distribution and explain our
choices for λ and ε in Table 6.

2.3 The normal mixture distribution

The normal mixture distribution captures the notion that the majority of the data stems
from the normal distribution, except for some small fraction ε which stems from
another, usually heavier-tailed, contamination distribution. In case of the normal mix-
ture model, this contamination distribution is the Gaussian distribution with standard
deviation λ. This type of contamination model has been popularized by Tukey (1960),
who also argues that λ = 3 is a sensible choice in practice.

It is sufficient to consider the case λ ≥ 1, since the parameter pair (λ, ε) yields
(up to scale) the same distribution as (1/λ, 1 − ε). Now, letting λ > 1, the case
where ε is small is the interesting one. In this case the mixture distribution is heavy-
tailed (measured, say, by the kurtosis) which strongly affects the behavior of our
scale measures. The case ε close to 1 is of lesser interest: it corresponds to a normal
distribution with a contamination concentrated at the origin, which affects the scale
measures to a much lesser extent.

From the expressions for σ , d and the corresponding asymptotic variances, as given
in Table 2, we obtain the asymptotic relative efficiency ARE(dn, σn) as a function of
λ and ε. This function is plotted in Fig. 1 (top left). The parameter ε is on a log-scale
since we are primarily interested in small contamination fractions. Fixing λ = 3, we
find that for ε = 0.00175, themean deviation is as efficient as the standard deviation. It
is interesting to note that Tukey (1960) gives a value of ε = 0.008, which is frequently
reported. In Huber and Ronchetti (2009, p. 3), correct values are given. The more
precise value of 0.00175 is also in line with the simulation results of Sect. 4, and it
supports even more so Tukey’s main message: the percentage of contamination in the
1:3 normal mixture model for which the mean deviation becomes more efficient than
the standard deviation is surprisingly low.

The asymptotic relative efficiency ARE(gn, σn) of Gini’s mean difference with
respect to the standard deviation is depicted in the upper right plot of Fig. 1. For
λ = 3, Gini’s mean difference is as efficient as the standard deviation for ε as small as
0.000309. In the lower plot of Fig. 1, equal-efficiency curves are drawn. They represent
those parameter values (λ, ε) for which each two of the scale measures have equal
asymptotic efficiency. So for instance, the solid black line corresponds to the contour
line at height 1 of the 3D surface depicted in the top right plot.

3 Influence functions

The influence function IF(·, s, F) of a statistical functional s at distribution F is
defined as

IF(x, s, F) = lim
ε↘0

1

ε
{s(Fε,x ) − s(F)},
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Fig. 1 Top row asymptotic relative efficiencies of the mean deviation (left) and Gini’s mean difference
(right) wrt the standard deviation in the normal mixture model as a function of λ and log(ε). Bottom the
curves for which values of λ and ε the scale measures have the same asymptotic efficiency

where Fε,x = (1− ε)F + ε�x , 0 ≤ ε ≤ 1, x ∈ R, and �x denotes Dirac’s delta, i.e.,
the probability measure that puts unit mass in x . The influence function describes the
impact of an infinitesimal contamination at point x on the functional s if the latter is
evaluated at distribution F . For further reading see, e.g., Huber and Ronchetti (2009)
or Hampel et al. (1986). The influence functions of the standard deviation and the
mean deviation are well known:

IF(x, σ (·); F) = (2σ(F))−1{(E(X) − x)2 − σ 2(F)},
IF(x, d(·); F) = |x − md(F)| − d(F).

For the formula for d(·) to hold in the last display, F has to fulfill certain regularity
conditions in the vicinity of its median md(F). Specifically, (md(Fε,x ) − md(F)) =
O(ε) as ε → 0 for all x ∈ R and F(md(Fε,x )) → 1/2 are a set of sufficient conditions.
They are fulfilled, e.g., if F possesses a positive Lebesgue density in a neighborhood
of md(F). The influence function of Gini’s mean difference appears to not have been
published before.

Proposition 1 The influence function of Gini’s mean difference g at the distribution
is
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Fig. 2 Influence functions of the standard deviation, the mean deviation and Gini’s mean difference at the
standard normal distribution

IF(x, g(·); F) = 2
{

x[F(x) + F(x−) − 1] + E[X1{X≥x}] − E[X1{X≤x}] − g(F)
}
.

For the standard normal distribution, these expressions for the influence functions
of the three scale measures reduce to

IF(x, σ (·); N (0, 1)) = (x2 − 1)/2,

IF(x, d(·); N (0, 1)) = |x | −√2/π,

IF(x, g(·); N (0, 1)) = 4φ(x) + 2x{2Φ(x) − 1} − 4/
√

π,

where φ and Φ denote the density and the cdf of the standard normal distribution,
respectively. These curves are depicted in Fig. 2. Figure 3 shows empirical versions
of the influence functions. Let Xn be a sample of size n drawn from N (0, 1), and let
X

′
n(x) be the sample obtained from Xn by replacing the first observation by the value

x ∈ R. Then n{sn(X′
n(x)) − sn(Xn)} is called a sensitivity curve for the estimator sn

(e.g. Huber and Ronchetti 2009, p. 15). Sensitivity curves usually strikingly resemble
the corresponding influence function also for very moderate n. In Fig. 3, average
sensitivity curves for σn , dn and gn are drawn (averaged over 10,000 samples of size
n = 100). Figures 2 and 3 confirm the general impression mediated by Table 6 that
Gini’s mean difference is in-between the standard and the mean deviation, and support
our claim that it combines the advantages of the other two: its influence function grows
linearly for large |x |, but it is smooth at the origin.

The influence functions of theMADand the Qn canbe found inHuber andRonchetti
(2009, p. 136) and Rousseeuw and Croux (1993), respectively.

4 Finite sample efficiencies

In a simulation study we want to check if the asymptotic efficiencies computed in
Sect. 2 are useful approximations for the actual efficiencies in finite samples. For this
purpose we consider the following nine distributions: the standard normal N (0, 1), the
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Fig. 3 Empirical influence functions (averaged sensitivity curves for n = 100, averaged over 10,000
samples) of the standard deviation, the mean deviation and Gini’s mean difference at the standard normal
distribution

standard Laplace L(0, 1) (with parametersμ = 0 and α = 1, cf. Table 1), the uniform
distribution U (0, 1) on the unit interval, the tν distribution with ν = 5, 16, 41 and the
normal mixture with the parameter choices as in Tables 4, 5 and 6. The choice ν = 5
serves as a heavy-tailed example, whereas for ν = 16 and ν = 41 we have witnessed
at Table 6 that the mean deviation and the Gini mean difference, respectively, are
asymptotically as efficient as the standard deviation.

For each distribution and each of the sample sizes n = 5, 8, 10, 50, 500, we gen-
erate 100,000 samples and compute from each sample five scale measures: the three
moment-based estimators σn , dn , gn , and the two quantile-based estimators mn and
Qn . The results for N (0, 1), L(0, 1) and U (0, 1) are summarized in Table 7, for the
tν distributions in Table 8, and for the normal mixture distributions in Table 9.

For each estimate, population distribution and sample size, the following numbers
are reported: the sample variance of the 100,000 estimates multiplied by the respective
value of n (the “n-standardized variance” which approaches the asymptotic variance
given inTable 5 as n increases), the squared bias relative to the variance, and the relative
efficiencies with respect to the standard deviation. With this information (variance and
the squared-bias-to-variance ratio) the mean squared error is also implicitly given. For
the relative efficiency computation, it is important to note that the standardization,
cf. (2), is done not by the asymptotic value, but by the empirical finite-sample value, i.e.
the sample mean of the 100,000 estimates. For Gini’s mean difference, the simulated
variances are also compared to the true finite-sample variances, cf. (8).

We observe the following: For large and moderate sample sizes (n = 50, 500),
the simulated values are near the asymptotic ones from Tables 4, 5 and 6, and we
may conclude that the asymptotic efficiency generally provides a useful indication
for the actual efficiency in large samples, although to a much lesser extent for the
quantile-based estimators.

In small samples, however, the simulated relative efficiencies may substantially
differ from the asymptotic values. The ranking of the three moment-based estimators
stays the same, but for the quantile-based estimators the picture is different: they exhibit
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Table 7 Simulated variances, biases and relative efficiencies of σn , gn , dn , mn and Qn at N (0, 1), L(0, 1)
and U (0, 1) for several sample sizes, d∗

n : mean deviation with 1/n scaling

Estimator n = 5 n = 8 n = 10 n = 50 n = 500

N (0, 1)

σn

n·variance 0.577 0.548 0.541 0.507 0.505

bias2/variance 0.031 0.019 0.014 0.003 1.0e−04

gn

n·variance (empirical) 0.850 0.767 0.743 0.666 0.655

n·variance (true) 0.852 0.766 0.740 0.667 0.653

bias2/variance 3.4e−08 4.7e−07 7.8e−06 1.0e−05 4.7e−06

rel. efficiency wrt σn 0.986 0.982 0.980 0.979 0.978

dn

n·variance 0.482 0.454 0.427 0.374 0.365

bias2/variance 0.009 0.020 0.012 0.001 1.2e−04

rel. efficiency wrt σn 0.938 0.902 0.894 0.880 0.876

d∗
n

bias2/variance 0.296 0.118 0.101 0.021 0.002

mn

n·variance 0.524 0.486 0.521 0.603 0.615

bias2/variance 0.140 0.095 0.063 0.010 0.001

rel. efficiency wrt σn 0.385 0.431 0.415 0.375 0.370

Qn

n·variance 0.410 0.431 0.351 0.163 0.126

bias2/variance 0.082 0.912 0.873 0.344 0.042

rel. efficiency wrt σn 0.453 0.619 0.634 0.746 0.810

L(0, 1)

σn

n·variance 1.946 2.076 2.134 2.387 2.495

bias2/variance 0.055 0.034 0.027 0.006 4.8e−04

gn

n·variance (empirical) 2.629 2.514 2.456 2.359 2.345

n·variance (true) 2.625 2.500 2.463 2.357 2.336

bias2/variance 2.8e−06 8.4e−09 8.4e−08 1.3e−05 8.3e−10

rel. efficiency wrt σn 1.037 1.071 1.088 1.167 1.201

dn

n·variance 1.343 1.232 1.169 1.041 1.005

bias2/variance 0.025 0.028 0.021 0.005 4.5e−04

rel. efficiency wrt σn 1.061 1.101 1.123 1.206 1.245

d∗
n

bias2/variance 0.106 0.040 0.031 0.006 0.001
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Table 7 continued

Estimator n = 5 n = 8 n = 10 n = 50 n = 500

mn

n·variance 0.979 0.881 0.897 0.975 0.994

bias2/variance 5.9e−03 1.3e−03 7.6e−04 1.7e−05 2.4e−07

rel. efficiency wrt σn 0.537 0.627 0.622 0.599 0.610

Qn

n·variance 0.869 1.006 0.833 0.412 0.338

bias2/variance 0.116 0.729 0.685 0.249 0.031

rel. efficiency wrt σn 0.607 0.798 0.827 0.944 1.004

U (0, 1)

σn

n·variance 0.031 0.025 0.022 0.018 0.017

bias2/variance 0.021 0.010 0.007 0.001 2.6e−04

gn

n·variance (empirical) 0.045 0.035 0.032 0.024 0.023

n·variance (true) 0.044 0.035 0.032 0.024 0.022

bias2/variance 1.9e−05 6.2e−07 9.4e−07 3.0e−05 5.1e−08

rel. efficiency wrt σn 0.985 0.967 0.962 0.985 0.998

dn

n·variance 0.030 0.028 0.026 0.022 0.021

bias2/variance 6.1e−06 4.7e−03 2.3e−03 6.8e−05 1.7e−05

rel. efficiency wrt σn 0.829 0.694 0.672 0.614 0.603

d∗
n

bias2/variance 0.657 0.285 0.236 0.059 0.006

mn

n·variance 0.040 0.042 0.046 0.059 0.062

bias2/variance 0.880 0.575 0.456 0.082 0.009

rel. efficiency wrt σn 0.275 0.272 0.255 0.210 0.200

Qn

n·variance 0.027 0.024 0.019 0.004 0.002

bias2/variance 0.067 1.310 1.296 0.944 0.210

rel. efficiency wrt σn 0.340 0.483 0.500 0.963 1.875

quite a heavy bias for small samples, potentially of the samemagnitude as the standard
deviation of the estimator, complicating the comparison of the estimators. It is known
that the finite-sample behavior, in terms of bias as well as variance, of robust quantile-
based estimators in general may largely differ from the asymptotic approximation,
particularly so in the case of the Qn . Most striking certainly is the bias increase from
n = 5 to n = 8 for the mean deviation dn and, much more tremendously, for the Qn .
In case of the mean deviation, the reason lies in the different behavior of the sample
median for odd and even numbers of observations, cf. also Lemma 1 in “Appendix”.
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Table 8 Simulated variances, biases and relative efficiencies of σn , gn , dn , mn and Qn at tν distributions
for several sample sizes and values of ν; d∗

n : mean deviation with 1/n scaling

Estimator n = 5 n = 8 n = 10 n = 50 n = 500

t5
σn

n·variance 1.584 1.686 1.762 2.313 2.880

bias2/variance 0.050 0.034 0.028 0.007 0.001

gn

n·variance (empirical) 2.050 1.942 1.890 1.805 1.790

n·variance (true) 2.047 1.935 1.901 1.806 1.787

bias2/variance 4.0e−06 1.3e−05 2.5e−05 5.1e−06 1.4e−05

rel. efficiency wrt σn 1.073 1.150 1.185 1.499 1.811

dn

n·variance 1.036 0.949 0.901 0.791 0.760

bias2/variance 0.014 0.018 0.014 0.003 2.3e−04

rel. efficiency wrt σn 1.105 1.208 1.282 1.673 1.977

d∗
n

bias2/variance 0.160 0.066 0.053 0.011 0.001

mn

n·variance 0.788 0.692 0.717 0.786 0.792

bias2/variance 0.052 0.036 0.025 0.003 2.5e−04

rel. efficiency wrt σn 0.577 0.759 0.781 0.954 1.160

Qn

n·variance 0.678 0.741 0.611 0.282 0.228

bias2/variance 0.101 0.808 0.750 0.294 0.036

rel. efficiency wrt σn 0.664 0.967 1.024 1.560 2.001

t16
σn

n·variance 0.745 0.722 0.722 0.710 0.705

bias2/variance 0.034 0.021 0.015 0.003 2.3e−04

gn

n·variance (empirical) 1.064 0.977 0.949 0.862 0.850

n·variance (true) 1.065 0.972 0.945 0.866 0.850

bias2/variance 1.4e−07 5.0e−06 7.9e−07 7.6e−06 2.4e−05

rel. efficiency wrt σn 0.999 1.009 1.016 1.043 1.050

dn

n·variance 0.588 0.547 0.517 0.454 0.445

bias2/variance 0.012 0.018 0.012 0.002 1.3e−04

rel. efficiency wrt σn 0.972 0.956 0.963 0.989 0.991

d∗
n

bias2/variance 0.259 0.106 0.085 0.017 0.002
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Table 8 continued

Estimator n = 5 n = 8 n = 10 n = 50 n = 500

mn

n·variance 0.596 0.546 0.574 0.649 0.667

bias2/variance 0.105 0.069 0.051 0.007 0.001

rel. efficiency wrt σn 0.421 0.486 0.474 0.452 0.446

Qn

n·variance 0.480 0.513 0.421 0.198 0.154

bias2/variance 0.089 0.877 0.822 0.329 0.039

rel. efficiency wrt σn 0.488 0.670 0.687 0.836 0.906

t41
σn

n·variance 0.640 0.611 0.605 0.574 0.575

bias2/variance 0.032 0.020 0.014 0.003 8.0e−05

gn

n·variance (empirical) 0.925 0.835 0.817 0.740 0.720

n·variance (true) 0.925 0.837 0.811 0.736 0.720

bias2/variance 1.1e−05 3.6e−06 1.5e−06 9.5e−08 7.1e−07

rel. efficiency wrt σn 0.990 0.992 0.991 0.999 1.001

dn

n·variance 0.519 0.482 0.462 0.399 0.390

bias2/variance 0.010 0.018 0.013 0.002 1.1e−04

rel. efficiency wrt σn 0.950 0.918 0.921 0.916 0.919

d∗
n

bias2/variance 0.276 0.113 0.094 0.019 0.002

mn

n·variance 0.555 0.509 0.538 0.617 0.638

bias2/variance 0.120 0.086 0.059 0.008 0.001

rel. efficiency wrt σn 0.396 0.451 0.435 0.403 0.393

Qn

n·variance 0.439 0.457 0.377 0.172 0.137

bias2/variance 0.087 0.910 0.867 0.338 0.041

rel. efficiency wrt σn 0.470 0.638 0.650 0.771 0.841

As for the Qn , the definition of its sample version (see end of Sect. 1) also implies a
qualitatively different behavior depending on whether n is odd or even. Specifically,
for n = 5, the 3rd order statistic of 10 values is taken, whereas for n = 8, the 10th
order statistic out of 28 observations is taken, both being compared to the 1/4 quantile
of the respective population distribution. To reduce the bias as well as finite-sample
variance, a smoothed version of the Qn (i.e. a suitable linear combination of several
order statistics) is certainly worth considering, for which the price to pay would be a
small loss in the breakdown point.
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Table 9 Simulated variances, biases and relative efficiencies of σn , gn , dn , mn and Qn at normal mixture
distributions for λ = 3 and ε = 0.008, 0.00175, 0.000309; d∗

n : mean deviation with 1/n scaling

Estimator n = 5 n = 8 n = 10 n = 50 n = 500

NM(3, 0.008)

σn

n·variance 0.710 0.698 0.711 0.815 0.875

bias2/variance 0.034 0.024 0.018 0.004 0.001

gn

n·variance (empirical) 0.997 0.910 0.876 0.804 0.790

n·variance (true) 0.996 0.908 0.882 0.808 0.793

bias2/variance 4.6e−06 2.1e−10 1.6e−05 3.4e−06 8.4e−07

rel. efficiency wrt σn 1.023 1.060 1.083 1.257 1.385

dn

n·variance 0.540 0.507 0.480 0.423 0.405

bias2/variance 0.010 0.016 0.013 0.002 1.6e−04

rel. efficiency wrt σn 1.000 1.016 1.039 1.204 1.332

d∗
n

bias2/variance 0.264 0.112 0.087 0.020 0.002

mn

n·variance 0.541 0.492 0.526 0.612 0.627

bias2/variance 0.132 0.094 0.067 0.008 0.001

rel. efficiency wrt σn 0.442 0.538 0.527 0.562 0.601

Qn

n·variance 0.429 0.448 0.367 0.168 0.133

bias2/variance 0.079 0.877 0.832 0.300 0.005

rel. efficiency wrt σn 0.523 0.760 0.779 1.092 1.312

NM(3, 0.00175)

σn

n·variance 0.617 0.587 0.576 0.573 0.590

bias2/variance 0.032 0.019 0.017 0.003 3.0e−04

gn

n·variance (empirical) 0.889 0.791 0.764 0.704 0.675

n·variance (true) 0.883 0.797 0.771 0.698 0.684

bias2/variance 1.6e−07 3.0e−07 4.8e−08 1.8e−05 1.0e−05

rel. efficiency wrt σn 0.995 1.002 1.009 1.056 1.092

dn

n·variance 0.500 0.462 0.441 0.385 0.370

bias2/variance 0.011 0.017 0.013 0.002 3.9e−05

rel. efficiency wrt σn 0.951 0.931 0.931 0.971 0.992

d∗
n

bias2/variance 0.283 0.115 0.100 0.022 0.003
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Table 9 continued

Estimator n = 5 n = 8 n = 10 n = 50 n = 500

mn

n·variance 0.532 0.491 0.519 0.602 0.623

bias2/variance 0.133 0.092 0.068 0.010 0.001

rel. efficiency wrt σn 0.397 0.457 0.441 0.418 0.424

Qn

n·variance 0.415 0.433 0.353 0.163 0.128

bias2/variance 0.082 0.911 0.876 0.333 0.031

rel. efficiency wrt σn 0.470 0.648 0.670 0.831 0.935

NM(3, 0.000309)

σn

n·variance 0.584 0.558 0.543 0.517 0.515

bias2/variance 0.031 0.017 0.014 0.003 3.2e−04

gn

n·variance (empirical) 0.853 0.775 0.744 0.667 0.655

n·variance (true) 0.857 0.771 0.746 0.673 0.658

bias2/variance 1.3e−05 4.8e−06 5.1e−07 1.3e−06 8.3e−06

rel. efficiency wrt σn 0.986 0.986 0.985 0.993 0.999

dn

n·variance 0.484 0.452 0.434 0.375 0.365

bias2/variance 0.009 0.018 0.012 0.002 1.8e−04

rel. efficiency wrt σn 0.941 0.900 0.903 0.899 0.903

d∗
n

bias2/variance 0.291 0.122 0.096 0.021 0.002

mn

n·variance 0.527 0.484 0.517 0.600 0.618

bias2/variance 0.133 0.096 0.068 0.009 0.001

rel. efficiency wrt σn 0.388 0.439 0.421 0.384 0.379

Qn

n·variance 0.414 0.432 0.351 0.161 0.126

bias2/variance 0.085 0.919 0.866 0.347 0.042

rel. efficiency wrt σn 0.459 0.626 0.643 0.764 0.835

We also include the mean deviation with factor 1/n instead of 1/(n − 1) in the
study, denoted by d∗

n in the tables. Since dn and d∗
n differ only by multiplicative factor,

the efficiencies are the same, and we only report the (squared) bias (relative to the
variance). We find that d∗

n is quite heavily biased for small samples for all distributions
considered, whereas dn has in all situations a smaller bias than σn . Particularly, note
that the bias of dn at the uniform distribution is indeed zero for n = 5, but not for even
n, cf. Lemma 1 in “Appendix”.
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Finally, the simulations confirm the unbiasedness of Gini’s mean difference and the
formula (8), due to Lomnicki (1952), for its finite-sample variance.

The simulations were done in R (R Development Core Team 2010), using the
functionQn() from the package robustbase (Rousseeuwet al. 2014), the functionmad()
from the standard package stats, and an implementation for Gini’s mean difference
by A. Azzalini.3 The default setting for both functions Qn() and mad() is to multiply
the result by the asymptotic consistency factor for the standard deviation at normality,
which is, for both functions, controlled by the parameter constant. This parameter
was set to 1 in our simulations.

5 Summary and discussion

Several authors have argued that,when comparing the standard deviationwith themean
deviation, the better robustness of the latter is a crucial advantage, which outweighs its
disadvantages, and that the mean deviation is hence to be preferred out of the two. We
share this view. However, we recommend to use Gini’s mean difference instead of the
mean deviation. While it has qualitatively the same robustness and the same efficiency
under long-tailed distributions as the mean deviation, it lacks its main disadvantage
as compared the standard deviation: the lower efficiency at strict normality. For near-
normal distributions—and also for very light-tailed distribution, as the results for
the uniform distribution suggest—Gini’s mean difference and the standard deviation
are for all practical purposes equally efficient. For instance, at the normal and all tν
distributions with ν ≥ 23, the (properly standardized) asymptotic variances of gn

and σn are within a 3% margin of each other. At heavy-tailed distributions, Gini’s
mean difference is, along with the mean deviation, substantially more efficient than
the standard deviation.

To summarize our efficiency comparison, Gini’s mean difference performs well
over a wide range of distributions, including much heavier than normal tails. Here
we basically consider the range up to the t5 distribution, where no higher than fourth
moments exist, and within this range, Gini’s mean difference is clearly non-inferior
to all competitors considered here.

However, the main advantage of Gini’s mean difference is its finite-sample perfor-
mance. First of all, being a U -statistic, it is unbiased—at all distributions with finite
first moments. We do not know any other scale measure satisfying (1) of practical
relevance for which this is true. Second, its finite-sample variance is known, which
allows for instance better approximative confidence intervals. Neither of that is true
for the standard deviation, and one can consequently argue that Gini’s mean difference
is a superior scale estimator even under strict normality. The latter statement is also a
remark on the discussion by Yitzhaki (2003), who compares Gini’s mean difference
primarily to the variance.

When comparing Gini’s mean difference to the mean deviation, both being similar
L1-type measures, the question arises, if an intuitive explanation can be given to why
the former is more efficient at the normal distribution but less efficient at heavy tails.

3 https://stat.ethz.ch/pipermail/r-help/2003-April/032820.html.
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We leave this as an open question here. However, since Gini’s mean difference can
be viewed as a symmetrized version of the mean deviation, we remark that a similar
effect can be observed in many instances of symmetrization. Other examples include
the Hodges–Lehmann location estimator as a symmetrized version of the median, or
Kendall’s tau as a symmetrized verion of the quadrant correlation. In both cases, the
original estimator has a rather low efficiency under normality, which is considerably
increased by symmetrization, but the symmetrized estimator performs slightlyworse at
very heavy-tailedmodels. Themedian, for instance, is more efficient than the Hodges–
Lehmann estimator at a t3 distribution. But in general, symmetrization is a successful
technique to increase the efficiency of highly robust estimators while retaining a large
degree of robustness. The most prominent example may be the Qn , the symmetrized
version of the MAD.

Acknowledgments We are indebted to Herold Dehling for introducing us to the theory of U-statistics,
to Roland Fried for introducing us to robust statistics, and to Alexander Dürre, who has demonstrated the
benefit of complex analysis for solving statistical problems. Both authors were supported in part by the
Collaborative Research Centre 823 Statistical modelling of nonlinear dynamic processes.

Appendix 1: Proofs

Towards the proof of Theorem 1, we spare a few words about the derivation of the
corresponding result for the normal distribution.When evaluating the integral J , cf. (9),
for the standard normal distribution, one encounters the integral

I1 =
∫ ∞

−∞
x2φ(x)Φ(x)2dx,

where φ and Φ denote the density and the cdf of the standard normal distribution,
respectively. Nair (1936) gives the value I1 = 1/3 + 1/(2π

√
3), resulting in J =√

3/(2π) − 1/6, but does not provide a proof. The author refers to the derivation of a
similar integral (integral 8 in Table I, Nair 1936, p. 433), where we find the result as
well as the derivation doubtful, and to an article byHojo (1931), which gives numerical
values for several integrals, but does not contain an explanation for the value of I1
either. We therefore include a proof here. Writing Φ(x) as the integral of its density
and changing the order of the integrals in thus obtained three-dimensional integral
yields

I1 = (2π)−3/2
∫ 0

y=−∞

∫ 0

z=∞

∫ ∞

x=−∞
x2ex2/2e(y+x)2/2e(z+x)2/2 dx dz dy.

Solving the inner integral, we obtain

I1 = (18π
√
3)−1
∫ ∞

y=0

∫ ∞

z=0
[(y + z)2 + 3] exp

{
−1

3

[
y2 + z2 − yz

]}
dz dy.
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Fig. 4 Residue theorem: the
line integral over h along the
closed curve Γ = Γ0 ∪ Γ1 is
determined by the residue of h
in γ2
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Introducing polar coordinates α, r such that y = r cosα, z = r sin α, and solving the
integral with respect to r , we arrive at

I1 = 1

4π
√
3

∫ π

α=0

4 + sin α

(2 − sin α)2
dα.

This remaining integral may be solved by means of the residue theorem (e.g. Ahlfors
1966, p. 149). Substituting γ = eiα and using sin α = (eiα −e−iα)/(2i), we transform
I1 into the following line integral in the complex plane,

I1 = 1

4π
√
3

∫

Γ0

γ 2 + 8iγ − 1

(γ 2 − 4iγ − 1)2
dγ, (10)

where Γ0 is the upper unit half circle in the complex plane, cp. Fig. 4. Let us call
h the integrand in (10), its poles (both of order two) are γ1/2 = (2 ± √

3)i , so that
γ2 lies within the closed upper half unit circle Γ . The residue of h in γ2 is −√

3i/2.
Integrating h along Γ1, i.e. the real line from −1 to 1, cf. Fig. 4, and applying the
residue theorem to the closed line integral along Γ completes the derivation.

Proof (Proof of Theorem 1)
Evaluating the integral J for the normalmixture distribution, we arrive after lengthy

calculations at

J =
[
ε3λ2 + (1 − ε)3

][
2A(1) + C(1) + E(1)

]
− (ελ2 + 1 − ε)B

+ ε2(1 − ε)
[
2(2 + λ2)A(1/λ) + C(λ) + 2λ2D(1/λ) + λ(2 + λ2)E(1/λ)

]

+ ε(1 − ε)2
[
2(2λ2 + 1)A(λ) + λ2C(1/λ) + 2D(λ) + (λ−1 + 2λ)E(λ)

]
,

where

A(λ) =
∫ ∞

−∞
xφ2(x)Φ(x/λ)dx = 1

4π
√
1 + 2λ2

,

B =
∫ ∞

−∞
x2φ(x)Φ(x)dx = 1

2
,

C(λ) =
∫ ∞

−∞
x2φ(x)Φ2(x/λ)dx = 1

4
+ λ

π(1 + λ2)
√
2 + λ2
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+ 1

2π
arctan

(
1

λ
√
2 + λ2

)
,

D(λ) =
∫ ∞

−∞
x2φ(x)Φ(x)Φ(x/λ)dx = 1

4
+ 3λ2 + 1

4π(1 + λ2)
√
2λ2 + 1

+ 1

2π
arctan

(
1√

2λ2 + 1

)
,

E(λ) =
∫ ∞

−∞
φ2(x)φ(x/λ)dx = 1

2π
√
1 + 2λ2

,

for all λ > 0. As before, φ and Φ denote the density and the cdf of standard normal
distribution. The tricky integrals are C(λ) and D(λ), which, for λ = 1, both reduce to
the integral I1 above. Proceeding as before for the integral I1, solving the respective
two inner integrals yields

C(λ) = λ3

2π
√
2 + λ2

∫ π/2

0

3 + λ2 + sin(2α)

{1 + λ2 − sin(2α)}2 dα,

D(λ) = 1

2π
√
1 + 2λ2

∫ π/2

0

2 + λ2(2 + sin(2α)) + (3λ4 − λ2 − 2) sin2(α)

{2 − sin(2α) + (λ2 − 1) sin2(α)}2 dα.

These integrals are again solved by the residue theorem, which completes the proof.
��

For the proof of Theorem 2, the following identities are helpful:

∫
x
(
1 + x2

β

)α
dx = β

2(α+1)

(
1 + x2

β

)α+1
, α �= −1, β �= 0. (11)

∫∞
−∞
(
1 + x2

ν

)−ν

dx = 1
c2ν−1

√
ν

2ν−1 , ν > 0, (12)

∫∞
−∞
(
1 + x2

ν

)− 3ν−1
2

dx = 1
c3ν−2

√
ν

3ν−2 , ν > 0, (13)

where cν is the scaling factor of the tν density, cf. Table 1. The identities (12) and (13)
can be obtained by transforming the respective left-hand sides into a tν-densities by
substituting y = ((2ν − 1)/ν)1/2 x and y = ((3ν − 2)/ν)1/2 x , respectively.

Proof (Proof of Theorem 2) For computing g, we evaluate (7), successively making
use of (11) and (12), and obtain

g = 4
ν c2ν
ν − 1

∫ ∞

−∞

(
1 + x2

ν

)−ν

dx = 4 ν3/2 c2ν
(ν − 1)

√
2ν − 1 c2ν−1

,
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which can be written as in Theorem 2 by using B(x, y) = Γ (x)Γ (y)/Γ (x + y). For
evaluating J , we write J as J = ∫R A(x) fν(x) dx with fν being the tν density and

A(x) =
∫ x

−∞

∫ ∞

x
xz fν(z) fν(y) dz dy −

∫ x

−∞

∫ ∞

x
yz fν(z) fν(y) dz dy

−
∫ x

−∞

∫ ∞

x
x2 fν(z) fν(y) dz dy +

∫ x

−∞

∫ ∞

x
xy fν(z) fν(y) dz dy

= A1(x) − A2(x) − A3(x) + A4(x).

Using (11), we obtain

A1(x) + A4(x) = cν ν x

ν − 1

(
1 + x2

ν

)− ν−1
2
∫ x

−x
fν(y) dy,

and

−A2(x) =
(

cν ν

ν − 1

)2 (
1 + x2

ν

)−ν+1

.

Hence, J = B1 + B2 − B3 with

B1 =
∫ ∞

−∞
cν ν x

ν − 1

(
1 + x2

ν

)− ν−1
2

fν(x)

∫ x

−x
fν(y) dy dx,

B2 = ∫∞
−∞
(

cν ν
ν−1

)2 (
1 + x2

ν

)−ν+1
fν(x) dx,

B3 =
∫ ∞

−∞
x2Fν(x) (1 − Fν(x)) fν(x) dx = ν

2(ν − 2)
−
∫ ∞

−∞
x2 fν(x)F2

ν (x) dx,

where Fν is the cdf of the tν distribution. By employing (11) and (13), we find

B1 = B2 = 2

c3ν−2

(
cν ν

ν − 1

)2 √
ν

3ν − 2

and arrive, again by employing B(x, y) = Γ (x)Γ (y)/Γ (x + y), at the expression for
J given in Theorem 2. ��
The remaining integral

Kν =
∫ ∞

−∞
x2 fν(x)F2

ν (x) dx

cannot be solved by the same means as the analogous integral I1 for the normal
distribution, and we state this as an open problem. However, this one-dimensional
integral can easily be approximated numerically, and the expression is quickly entered
into a mathematical software like R (R Development Core Team 2010).
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Proof (Proof of Proposition 1) We have

g(Fε,x ) = 2
∫ ∞

−∞

∫ ∞

y
(z − y) d Fε,x (z) d Fε,x (y),

= (1 − ε)2g(F) + 2ε(1 − ε)

∫ ∞

−∞
(x − z)

{
1(−∞,x](y) − 1[x,∞)(y)

}
d F(y)

and hence

IF(x, g(·); F) = lim
ε↘0

1

ε
{g(Fε,x ) − g(F)}

= −2g(F) + 2
{

x[F(x) + F(x−) − 1] + E[X1{X≥x}] − E[X1{X≤x}]
}
,

which completes the proof. ��
With the influence function known, it is also possible use the relationship

ASV (sn; F) =
∫

R

IF(x, s, F)2F(dx)

instead of referring to the terms given in Sect. 2 to compute the asymptotic variance
of the estimators. This leads to the same integrals.

Appendix 2: Miscellaneous

Lemma 1 For X1, . . . , Xn being independent and U (a, b) distributed for a, b ∈ R,
a < b, we have for the sample mean deviation (about the median)

E(dn) =
⎧
⎨

⎩

(b − a)/4 for odd n (n ≥ 3),
b − a

4

n2

n2 − 1
for even n.

Proof For notational conveniencewe restrict our attention to the casea = 0,b = 1.Let
X(i) denote the i th order statistic, 1 ≤ i ≤ n. The randomvariable X(i) has aBeta(α, β)

distribution with parameters α = i and β = n +1− i , and hence E(X(i)) = i/(n +1).

If n is odd, we write dn as dn = (n − 1)−1∑�n/2�
i=1 (X(n+1−i) − X(i)) and obtain

E(dn) = 1

n − 1

�n/2�∑

i=1

(
n + 1 − i

n + 1
− i

n + 1

)
= 1

4
.

If n is even, we have dn = (n − 1)−1∑n/2
i=1(X(n+1−i) − X(i)), and hence

E(dn) = 1

n − 1

n/2∑

i=1

(
n + 1 − i

n + 1
− i

n + 1

)
= n2

4(n2 − 1)
,

which completes the proof. ��
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