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Abstract We study the statistical performance of different tests for comparing the
mean effect of two treatments. Given a reference classical test T0, we determine which
sample size and proportion allocation guarantee to a testT , based on response-adaptive
design, to be better than T0, in terms of (a) higher power and (b) fewer subjects
assigned to the inferior treatment. The adoption of a response-adaptive design to
implement the random allocation procedure is necessary to ensure that both (a) and
(b) are satisfied. In particular, we propose to use aModified Randomly Reinforced Urn
design and we show how to perform the model parameters selection for the purpose of
this paper. Then, the opportunity of relaxing some assumptions on treatment response
distributions is presented. Results of simulation studies on the test performance are
reported and a real case study is analyzed.

Keywords Response adaptive designs · Clinical trials · Randomly reinforced urns ·
Tests based on adaptive procedures

1 Introduction

In this paper, we focus on the statistical performances of an hypothesis test that com-
pares the means of the responses to two treatments. The procedure studied in the paper
is illustrated within the framework of clinical trials. However, the generality of the
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mathematical setting would allow the method to be applied to a wider set of applica-
tions. So, we consider a clinical trial to compare the mean effect of two competing
treatments, say R and W . We consider a classical test T0 = (p0, n0) that involves n0
patients with a fixed proportion p0 of subjects allocated to treatment R. In Sect. 2 we
consider a test T based on a response-adaptive design with different sample size and
proportion allocation andwemake a comparison among their statistical performances.
In particular, the analysis aims at determining which characteristics guarantees a test
T to perform better than T0, in terms of (a) higher power and (b) fewer subjects
assigned to the inferior treatment. Response-adaptive designs, in a clinical setting,
are very attractive since they aim at achieving simultaneously two different goals,
concerning both statistical and ethical purposes: (i) collecting evidence to determine
the superior treatment, and (ii) minimizing the number of subjects allocated to the
inferior treatment. For a complete literature review on response-adaptive designs see
Lachin and Rosenberger (2002), Hu and Rosenberger (2006), Flournoy et al. (2012),
Atkinson and Biswas (2014). The adaptive procedure we propose is theModified Ran-
domly Reinforced Urn (MRRU) design introduced in Aletti et al. (2013). A wide class
of response-adaptive randomized designs is based on urn models, that are classical
tools to guarantee a randomized device Rosenberger (2002), Cheung et al. (2006).
Asymptotic results concerning urn models with an irreducible reinforcement mean
matrix could be found in Rosenberger (2002), Bai et al. (2002), Janson (2004), Bai
and Hu (2005), Cheung et al. (2006). Recently, in Laruelle and Pags (2013) the ran-
domized urn designs proposed in Bai et al. (2002), Bai and Hu (2005) have been
studied by applying stochastic approximation algorithms, and asymptotic results have
been obtained using these techniques. Moreover, a general class of immigrated urn
models has been proposed in Cheung et al. (2011), which provides a unified view of
various urn models with irreducible mean reinforcement matrix. However, all these
urn processes are based on the assumption that the replacement matrix is irreducible,
which is not satisfied by the Randomly Reinforced Urn (RRU) studied in May et al.
(2005), Muliere et al. (2006), Paganoni and Secchi (2007), Flournoy and May (2009),
which has a diagonal mean reinforcement matrix. The RRU models have been intro-
duced in Durham and Yu (1990) for binary responses, applied to the dose-finding
problems in Durham et al (1996), Durham et al. (1998) and then extended to the case
of continuous responses in Beggs (2005), Muliere et al. (2006). An interesting result
concerning RRU models states that the probability to allocate units to the superior
treatment converges to one as the sample size increases. This property is very attrac-
tive from an ethical point of view. However, because of this asymptotic behavior, RRU
models are not in the class of designs targeting a proportion in (0, 1), that usually is
previously fixed or computed to optimize some suitable criteria. Hence, all the asymp-
totic properties concerning these procedures presented in literature [see for instance
Melfi and Page (2000), Melfi et al. (2001)], are not straightforwardly fulfilled by the
RRU designs.

So, in Aletti et al. (2013) the urn scheme of the RRU model has been conveniently
modified, in order to construct a newurnmodel, calledModifiedRandomlyReinforced
Urn (MRRU), that asymptotically targets a fixed allocation proportion in (0, 1), and at
the same time reduces the number of subjects allocated to the inferior treatment. This
goal has been realizedby introducing two thresholds δ andη, 0 < δ ≤ η < 1 for the urn
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proportion. These parameters modify the reinforcement’s process. A brief discussion
on theMRRUdesign is reported at the end of Sect. 2. In general, δ represents the desired
asymptotic proportion of subjects to allocate to R when W is the superior treatment,
i.e.mR < mW , while ηwill be the desired asymptotic proportion of subjects to allocate
to R when R is the superior treatment, i.e. mR > mW . The asymptotic properties of
MRRU studied in Aletti et al. (2013) and Ghiglietti and Paganoni (2014), together
with results about adaptive estimators proved in Melfi et al. (2001), are crucial for the
procedure presented in this paper.

In Sect. 2 we describe the frameworkwe deal with, considering the case of Gaussian
responses with known variances, and we discuss the selection of the parameters for
the MRRU model. In Sect. 3 some assumptions on the distributions of the reinforce-
ments required in Sect. 2 are relaxed: specifically, Gaussian responses with unknown
variances and Exponential and Bernoulli responses are considered. Section 4 gathers
some simulation studies and Sect. 5 contains the analysis of a real case study.
A short conclusion ends the paper (Sect. 6). Data analysis and simulations have been
carried out using the statistical software R Development Core Team (2011).

2 The proportion-sample size space

Consider the classical hypothesis test for comparing the means of two Gaussian sam-
ples with known variances. Consider a classical procedure that assigns a proportion
p0 of patients to treatment R, 1 − p0 to treatment W , with p0 ∈ (0, 1). Let n0 ∈ N

be the total number of subjects involved in the experiment. Let n0 be the sample size
that guarantees a minimum power (β0) evaluated at a specific difference of the means
(±�0). In what follows, n0,R := n0 p0 and n0,W := n0(1 − p0) indicate the number
of subjects assigned to treatments R and W , respectively. Moreover,

– responses to treatment R: M1, M2, .., Mn0,R i.i.d. ∼ N (mR, σ 2
R).

– responses to treatment W : N1, N2, .., Nn0,W i.i.d. ∼ N (mW , σ 2
W ).

For the classical hypothesis test

H0 : mR − mW = 0 vs H1 : mR − mW �= 0 (1)

the critical region of the Likelihood Ratio Test (LRT) T0 with level α is:

Rα =
⎧
⎨

⎩

∣
∣Mn0,R − Nn0,W

∣
∣ >

√

σ 2
R

n0,R
+ σ 2

W

n0,W
z α
2

⎫
⎬

⎭
(2)

where Mn0,R = ∑n0,R
i=1 Mi/n0,R and Nn0,W = ∑n0,W

i=1 Ni/n0,W and z α
2
is the quantile

of order 1 − α/2 of a standard normal distribution. The power function of the test T0
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is the following

βT0(�) = P

⎛

⎜
⎜
⎝Z < −z α

2
− �

√
σ 2
R

n0,R
+ σ 2

W
n0,W

⎞

⎟
⎟
⎠ + P

⎛

⎜
⎜
⎝Z > z α

2
− �

√
σ 2
R

n0,R
+ σ 2

W
n0,W

⎞

⎟
⎟
⎠ ,

where � = mR −mW . The test T0 could be represented in the space ((0, 1)×N), that
we call proportion-sample size space, by a pair (p0, n0). Any other point (p, n) in the
same space represents a test T with sample size equal to n and allocation proportion to
treatment R equal to p. The goal is to individuate regions of this space characterized
by tests T performing better than T0, i.e.

(a) T has a power function βT (�) uniformly higher than the power function of T0,
i.e. βT0(�);

(b) T assigns fewer patients to the inferior treatment than T0.

To achieve condition (a) we impose the following constraint

βT (�) ≥ βT0(�) ∀� ∈ R ⇔ σ 2
R

np
+ σ 2

W

n(1 − p)
≤ σ 2

R

n0 p0
+ σ 2

W

n0(1 − p0)
. (3)

From (3) we compute the function nβ that separates two regions in the proportion-
sample size space

nβ(p) =
(

ρ2

p
+ (1 − ρ)2

1 − p

)(
ρ2

n0 p0
+ (1 − ρ)2

n0(1 − p0)

)−1

(4)

where ρ indicates the Neyman allocation proportion σR
σR+σW

, that, for any fixed sample
size, provides the test with highest power.

In Fig. 1, points above the curvenβ (red line) indicate testsT with a power uniformly
higher than T0. To satisfy condition (b) we distinguish two different cases, depending
on which the superior treatment is:

– if the superior treatment is R, we impose

n(1 − p) < n0(1 − p0) ⇔ p > 1 − n0
n

(1 − p0); (5)

– if the superior treatment is W , we impose

np < n0 p0 ⇔ p <
n0
n
p0. (6)

Both these constraints are depicted in blue in the proportion-sample size space.
Below each of these lines, either (5) or (6) are verified. In conclusion, we divide the
proportion-sample size space in three regions:
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Fig. 1 The picture represents the regions A, B and C , on the proportion-sample size space, with: α =
0.05, p0 = 0.5, n0 = 70, σR = 1, σW = 1.5. The red line represents the function nβ in (4); it separates
the tests T with power βT (�) > βT0 (�), from the tests with power βT (�) < βT0 (�).Blue lines separate
tests according on the number of patients allocated to the treatments R and W , with respect to n0,R and
n0,W . (Color figure online)

– Region A:

A =
{
(x, y) ∈ (0, 1) × (0,∞) : nβ(x) < y <

p0
x
n0
}

tests T ∈ A having a power uniformly higher and assigning fewer patients to
treatment R than T0.

– Region B:

B =
{

(x, y) ∈ (0, 1) × (0,∞) : y > max

{
p0
x

; 1 − p0
1 − x

}

· n0
}

tests T ∈ B having a power uniformly higher and assigning more patients to both
treatments than T0.

– Region C :

C =
{

(x, y) ∈ (0, 1) × (0,∞) : nβ(x) < y <
1 − p0
1 − x

n0

}

tests T ∈ C having a power uniformly higher and assigning fewer patients to
treatment W than T0.

Hence, a test T = (p, n) is considered better than T0 if (p, n) ∈ A and the superior
treatment is W , or if (p, n) ∈ C and the superior treatment is R. Unfortunately, the
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experimenter doesn’t know which the superior treatment is before the trial is con-
ducted. For this reason, it is reasonable to set a response-adaptive design to construct
the test T . Let us introduce a vector (X1, X2, ..., Xn) ∈ {0; 1}n composed by the allo-
cations to the treatments according to the adaptive design, i.e. Xi = 1 if the subject i
receives treatment R or Xi = 0 if the subject i receives treatment W . The quantities
NR(n) = ∑n

i=1 Xi and NW (n) = ∑n
i=1(1− Xi ) are the number of patients allocated

to treatments R and W , respectively. Let us define the adaptive estimators based on
responses collected at time n

M(n) =
∑n

i=1 Xi Mi

NR(n)
and N (n) =

∑n
i=1(1 − Xi )Ni

NW (n)
. (7)

Then, the test T is defined by the following critical region

Radaptive
α =

⎧
⎨

⎩
|M(n) − N (n)| >

√

σ 2
R

NR(n)
+ σ 2

W

NW (n)
z α
2

⎫
⎬

⎭
(8)

whose properties (in terms of power, level and asymptotic distribution of the test
statistic) depend on the type of adaptive design has been adopted in the trial.

The authors propose to adopt as response-adaptive design the Modified Randomly
Reinforced Urn design (MRRU) introduced in Aletti et al. (2013). In this model, an
urn containing red and white ball is sequentially sampled and subjects are assigned
to treatments corresponding to the colors of the sampled balls. After any allocation,
the urn is virtually reinforced with a random real number of balls depending on the
response given by the patient just assigned.We call Zn the proportion of red balls in the
urn, which is also the probability of assigning the (n + 1)-patient to treatment R. We
reinforce the number of red (white) balls only if Zn < η (Zn > δ),with 0 < δ ≤ η < 1,
fixed parameters. In Aletti et al. (2013) and Ghiglietti and Paganoni (2014) theoretical
results concerning theMRRUmodel have been proved and the asymptotic behavior of
the urn process has been discussed. In particular, when mR �= mW it has been proved
that

lim
n→∞ Zn = lim

n→∞
NR(n)

n
= η1{mR>mW } + δ1{mR<mW } a.s. (9)

Moreover, from (9) both the sequences NR(n) = ∑n
i=1 Xi and NW (n) = ∑n

i=1(1−
Xi ) diverge to infinity a.s. For this reason we can apply Proposition 3.1 of Aletti et al.
(2013) concerning the adaptive estimators M(n) and N (n) defined in (7), which is a
consequence of Theorem 2 of Melfi et al. (2001), i.e.

Proposition 1 The estimators M(n) and N (n) are consistent estimators of mR and
mW , respectively. Moreover as n → ∞,

(
√
NR(n)

(M(n) − mR)

σR
,
√
NW (n)

(N (n) − mW )

σW

)

→ (ξ1, ξ2)

in distribution, where (ξ1, ξ2) are independent standard normal random variables.
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Fig. 2 The pictures represents the regions A, B and C , with: α = 0.05, p0 = 0.5, n0 = 70, σR =
1, σW = 1.5. For each fixed sample size n, the parameters of the urn model δ, η ∈ (0, 1) are chosen such
that (δ, n) ∈ A and (η, n) ∈ C . a simulations with mR < mW . b simulations with mR > mW . In both
pictures, the black lines represent ten replications of the urn process (Zk , k). (Color figure online)

This result gives us the asymptotic normality of the adaptive estimators M(n) and
N (n). This result is very useful in an inferential setting, when a statistic based on
the adaptive estimators is used. In particular, Proposition 1 provides the asymptotic
normality of the test statistic, which justifies the term z α

2
in (8).

Let us fix a sample size n higher than n0 used in T0 (i.e., n = c · n0 with c > 1). For
any n > n0, we can identify the following intervals

I Rin = { x ∈ (0, 1) : (x, n) ∈ Ri } , with Ri ∈ {A, B,C}.

Observe that (I Rin )i are pairwise disjoints and their union is a subset of (0, 1). We
look for an adaptive test T represented in the proportion-sample size space by a point
in region A (C) when R (W ) is the inferior treatment. This goal is achieved when
NR(n)

n ∈ I Cn when mR > mW , and NR(n)
n ∈ I An when mR < mW . Since (9) holds, we

set δ ∈ I An and η ∈ I Cn . This implies that the test T = (p, n) is in the right region, i.e.
where both condition (a) and (b) are satisfied. In Fig. 2 we show how the urn process
Zn converges towards the right region.

Remark 1 It is worth observing that without loss of generality similar results can be
proved in the case of an one-sided test instead of (1), for instance H0 : mR ≤ mW and
H1 : mR > mW . In this case, the goal (b) is achieved when we assign more patients
to treatment W , so we can arbitrarily fix the parameter δ within the interval (0, η).

3 Different response distributions

In this section we relax some assumptions on response distributions. First, we consider
Gaussian response distributions with unknown variances, then, we discuss the case of
non-Gaussian responses (exponential and Bernoulli).
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When the variances are unknown, the regions A− B −C can’t be defined a priori,
since from (4) nβ depend on ρ = σR

σR+σW
. So, here we describe a convenient procedure

to overcome this problem.
First, consider the adaptive estimators of the unknown variances S2R(n) and S2W (n),

defined as follows

S2R(n) =
∑n

i=1 Xi (Mi − M(n))2

NR(n) − 1
, and S2W (n) =

∑n
i=1(1 − Xi )(Ni − N (n))2

NW (n) − 1
.

Then, in (4) the true variances σ 2
R and σ 2

W with their adaptive estimators S2R(i) and
S2W (i), so obtaining

nβ(p; ρ̂(i)) :=
(

ρ̂2(i)

p
+ (1 − ρ̂(i))2

1 − p

)(
ρ̂2(i)

n0 p0
+ (1 − ρ̂(i))2

n0(1 − p0)

)−1

, (10)

where ρ̂(i) = SR(i)
SR(i)+SW (i) .

We note that nβ(·; ρ̂(i)) in (10) is a time dependent random function, since it
depends on ρ̂(i); at each step i ≤ n, a new response is collected, the adaptive estimators
are updated and the function nβ(·; ρ̂(i)) changes. So, also the intervals I Ai , I Bi , I Ci will
be randomand theywill change for any i ≤ n. This generates two sequences (δi )i , (ηi )i
instead of two parameters δ, η, since we need to maintain the parameters of the urn
model within the corresponding intervals: δi ∈ I Ai and ηi ∈ I Ci .

FromMelfi and Page (2000) we have that the adaptive estimators S2R(n) and S2W (n)

are strongly consistent, since the sequences NR(n) and NW (n) increase to infinity
almost surely. Moreover, since ρ̂(·) and nβ(p, ·) are continuous functions, the consis-
tency of S2R(n) and S2W (n) implies that nβ(p; ρ̂(i))

a.s.−→ nβ(p) for any p ∈ (0, 1). So,

we have that δn
a.s.−→ δ, ηn

a.s.−→ η and δ ∈ I A, η ∈ I C . This implies that Zn converge
a.s. to δ when mR < mW or to η when mR > mW [for further details see Ghiglietti
(2014)].

When we relax the normality assumption on the reinforcements distributions it is
not easy to write the power function of the test in an analytic form, by solving the
condition βT (�) ≥ βT0(�) and then by computing the function nβ . Anyway, this task
can be numerically found; so we will show that the proportion-sample size space can
be partitioned again in the regions A−B−C even with non-Gaussian reinforcements.

Exponential responses:
Let us make the following assumptions on the responses

– responses to treatment R: M1, M2, .., Mn0,R i.i.d. ∼ E(λR).
– responses to treatment W : N1, N2, .., Nn0,W i.i.d. ∼ E(λW ).

Our aim is to perform the following hypothesis test

H0 : λR = λW vs H1 : λR �= λW . (11)
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The likelihood function of the whole sample is

L(λR,λW , data) = λ
n0,R
R λ

n0,W
W exp

(

−λR

n0,R∑

i=1

Mi − λW

n0,W∑

i=1

Ni

)

=
(

λ
p0
R λ

1−p0
W exp

(−λRMn0,R p0 − λW Nn0,W (1 − p0)
) )n

where Mn0,R = ∑n0,R
i=1 Mi/n0,R and Nn0,W = ∑n0,W

i=1 Ni/n0,W . Then, the likelihood
ratio test (see Lehmann and Romano 2005) gives us the following critical region

{
supλR=λW∈(0,∞) L(λR,λW , data)

sup(λR ,λW )∈(0,∞)2 L(λR,λW , data)
< cα

}

=
⎧
⎨

⎩

M
p0
n0,R · N

1−p0
n0,W

Mn0,R · p0 + Nn0,W · (1 − p0)
< n

√
cα

⎫
⎬

⎭

where cα ∈ (0, 1) can be determined to set the level of this critical region equal to α.

Bernoulli responses:
Let us make the following assumptions on patients’ responses

– responses to treatment R: M1, M2, .., Mn0,R i.i.d. ∼ B(pR).
– responses to treatment W : N1, N2, .., Nn0,W i.i.d. ∼ B(pW ).

Let us consider now the following hypothesis test

H0 : pR = pW vs H1 : pR �= pW . (12)

The likelihood function for two samples of Bernoulli variables is

L(pR, pW , data)

=
(

p
Mn0,R p0
R (1 − pR)

(1−Mn0,R )p0 p
Nn0,W (1−p0)

W (1 − pW )
(1−Nn0,W )(1−p0)

)n

Then, the likelihood ratio test, see Lehmann and Romano (2005), gives us the
following critical region

{
suppR=pW∈(0,1) L(pR , pW , data)

sup(pR ,pW )∈(0,1)2 L(pR , pW , data)
< cα

}

=

⎧
⎪⎨

⎪⎩

P
P
(1 − P)1−P

M
Mn0,R p0
n0,R (1 − Mn0,R )

(1−Mn0,R )p0N
Nn0,W (1−p0)
n0,W (1 − Nn0,W )

(1−Nn0,W )(1−p0)
< n√cα

⎫
⎪⎬

⎪⎭
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Fig. 3 Left panel: exponential responses with λR = 2 and λW = 1. The parameters of test T0 are:
α = 0.05, 1 − β0 = 0.2, �0 = � = 1/2, allocation proportion p0 = 1/2 and sample size n0 = 67. Right
panel: Bernoulli responseswith pR = 0.2 and pW = 0.5. The parameters of testT0 are:α = 0.05, 1−β0 =
0.2,�0 = � = 0.3, allocation proportion p0 = 1/2 and sample size n0 = 76. a Exponential responses.
b Bernoulli responses

where

P =
∑n0,R

i=1 Mi + ∑n0,W
i=1 Ni

n
= Mn0,R p0 + Nn0,W (1 − p0).

Also in this case, cα ∈ (0, 1) can be determined to set the level of this critical region
equal to α.
The power function (β̂(p0,n0)) in both cases (11) and (12) can be numerically computed.
For any p ∈ (0, 1), we define

nβ(p) := min
{
n ≥ 1 : β̂(p,n) ≥ β̂(p0,n0)

}

Oncewe have computed the function nβ(·), we partition the proportion-sample size
space, we introduce the intervals I Cn and I An and we fix the parameters η and δ. As we
can see from Fig. 3, the shape of the regions is the same of those computed in the case
of Gaussian responses.

4 Simulation studies

In this section we show some simulation studies that aim at illustrating the theory
presented in the previous sections of the paper. Let us consider the two-sidedhypothesis
test (1), for comparing the mean effect of two treatments R and W . We simulated
Gaussian responses to treatments R and W with parameters:

– mW = 10,
– mR ∈ {5, 7, 9, 9.5, 10.5, 11, 13, 15},
– equal variances: σ 2

R = σ 2
W = 1.52,
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Table 1 Proportion of simulation runs in which T performs better than T0 in terms of power (first column)
and subjects assigned to the inferior treatment (second/third column).

mR � #{βT ≥ βT0 } #{NR(n) < n0,R} #{NW (n) < n0,W }
5 −5 0.954 0.766 (0.011)

7 −3 0.967 0.573 (0.057)

9 −1 0.970 0.320 (0.178)

9.5 −0.5 0.973 0.301 (0.201)

10.5 0.5 0.969 (0.210) 0.283

11 1 0.976 (0.182) 0.319

13 3 0.961 (0.083) 0.486

15 5 0.962 (0.040) 0.608

The parenthesis indicate the values corresponding to the superior treatment. Here, the case of equal variances
has been reported: σ 2

R = σ 2
W = 1.52

– different variances: σ 2
R = 1, σ 2

W = 22.

The test T0 is computed by setting the following parameters: α = 0.05, β0 =
0.9,�0 = 1, p0 = 0.5. Then, the sample size for T0 can been computed and it is
n0 = 96 when the variances are equal and n0 = 106 when the variances are different.
At this point, we apply the procedure described in Sect. 2 to get an adaptive test T
based on MRRU design performing better than T0. The sample size of T has been
increased by 25% (n = 1.25 · n0), obtaining n = 120 in the case of equal variances
and n = 132 in the case of different variances. In both cases, we can design the regions
A, B and C and the corresponding intervals I An , I Bn and I Cn

– σ 2
R = 1.52, σ 2

W = 1.52 ⇒ I A120 = (0.127, 0.402), I C120 = (0.598, 0.632).
– σ 2

R = 1, σ 2
W = 4 ⇒ I A132 = (0.279, 0.403), I C132 = (0.597, 0.721)

In all simulations, the urn has been initialized with a total number of balls equal
to d0 = (mR + mW )/2; the initial urn proportion z0 has been set at the center of the
interval (δ, η). Then, for each value of mR ∈ {5, 7, 9, 9.5, 10.5, 11, 13, 15}, we have
run 1000 urn processes (Zk)k stopped at time n.

In Table 1 (equal variances) and in Table 2 (different variances), we report the
proportion of simulation runs in which the power of T is higher than the power of T0
(first column) and the proportion of replications in which T assigns fewer subjects
than T0 to treatment R and W (second/third column). The parenthesis indicate the
allocations to the superior treatment. In Fig. 4, we report the flanked boxplots of the
number of subjects assigned to the inferior treatment in the 1000 replications of the
urn design, for different values of �.

It is interesting to investigate the procedure described in Sect. 2 when the test
T0 adopts an allocation related with the treatment performances. Let us consider the
Optimal Adaptive Design for Bernoulli responses (RSIHR) presented in Rosenberger

et al. (2001). The allocation proportion of this model converges to p0 =
√
pR√

pR+√
pW

that is the allocation that minmizes the number of expected failures at fixed power β0,
where pR and pW are the success probabilities of R and W , respectively. Let us fix
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Table 2 Proportion of simulation runs in which T performs better than T0 in terms of power (first column)
and subjects assigned to the inferior treatment (second/third column).

mR � #{βT ≥ βT0 } #{NR(n) < n0,R} #{NW (n) < n0,W }
5 −5 1.000 0.895 (0.003)

7 −3 0.98 0.636 (0.042)

9 −1 0.928 0.364 (0.131)

9.5 −0.5 0.930 0.345 (0.136)

10.5 0.5 0.887 (0.222) 0.232

11 1 0.876 (0.205) 0.265

13 3 0.847 (0.092) 0.361

15 5 0.799 (0.064) 0.447

The parenthesis indicate the allocations to the superior treatment. Here, the case of different variances has
been considered: σ 2

R = 1 and σ 2
W = 4
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(a) (b)

Fig. 4 Flanked boxplots of the number of subjects allocated to the inferior treatment by T for � ∈
{−5,−3,−1,−0.5, 0.5, 1, 3, 5}. The red line represents the number of subject allocated to the inferior
treatment by T0. Left panel: case of equal variances (σ 2

R = σ 2
W = 1.52). Right panel: case of different

variances (σ 2
R = 1 and σ 2

W = 4). a Equal variances. b Different variances

– Significance level α = 0.05 and the power β0 = 0.9
– Success probabilities: pR = 0.2, pW = 0.1

Then, T0 should have an allocation proportion p0 =
√
pR√

pR+√
pW

= 0.586 and

sample size n0 = 516.
By following the procedure described in Sect. 2, we construct the test T with

MRRU model with sample size n = 645, η = 0.724 and δ = 0.402. We realized
200 replications and the results are reported in Fig. 5. For both test T and T0, red
boxplots indicate the power, blue boxplots represent the number of subjects assigned
to the inferior treatment and green boxplots indicate the number of failures for n =
645 subjects. Since T0 uses only n0 = 516, we have considered the failures of the
n − n0 = 129 subjects as if they had been assigned to the superior treatment.
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Fig. 5 Boxplots representing the empirical power (left), the number of subjects assigned to the inferior
treatment (center) and the number of failures (right) from 200 replications of T0 (RSIHR model) and T
(MRRU model)

5 Real case study

In this section we show a real case study, also presented in Ghiglietti and Paganoni
(2014), where the application of the methodology presented in the paper would have
improved the performance of a classical test, from both the statistical and ethical
point of view. We consider data concerning treatment times of patients affected by
ST- Elevation Myocardial gathered in the MOMI2 (MOnth MOnitoring Myocardial
Infarction in MIlan) study, (see Grieco et al. 2012). The main rescue procedure for
these patients is the Primary Angioplasty. It is well known that the time between
the arrival at ER (called Door) and the time of intervention (called Baloon) must be
reduced as much as possible in order to improve the outcome of patients and reduce
the in-hospital mortality. So in this case the Door to Baloon time (DB) is the treatment
response. We have two different treatments: the patients managed by the 118 (free-toll
number for emergency in Italy) and the self presented ones. We design our experiment
to allocate the majority of patients to treatment performing better, and simultaneously
collect evidence in comparing the distributions of DB times.

Data are door-to-baloon times (DB) in minutes of 1179 patients. Among them, 657
subjects have been managed by 118, while the others 522 subjects reached the hospital
by themselves. We identify the treatment W with the choice of calling 118 and the
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Fig. 6 Black lines represent ten
replications of the urn
proportion process (Zn)n . Each
replication uses responses taken
at random from the data at our
disposal. The proportion-sample
size space has been partitioned
assuming known variances.
(Color figure online)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

proportion

sa
m

pl
e 

si
ze

p0δ η

n
n0

A B C

treatment R with choice of going to the hospital by themselves. Treatment responses
are represented by DB times. Since lower are the responses (DB time) better is the
treatment, without loss of generality we transform the responses through a monotonic
decreasing function. The true means and variances of populations R andW have been
computed using all data, obtaining: mR = 1.503,mW = 1.996, σR = 0.518, σW =
0.760. The true difference of the means � = mR − mW = −0.493 is negative, so W
is the superior treatment in this case.

Initially, we consider a test T0 to compare the mean effects to treatments R and W .
Let us fix α = 0.01, β0 = 0.95,�0 = 0.5. The allocation proportion is empirically
set equal to p0 = 0.468. Response distributions are verified to be Gaussian. Then,
for a two-sided t-test we need a total of n0 = 119 subjects, n0 p0 = 56 allocated to
treatment R and n0(1 − p0) = 63 allocated to treatment W . The power of test T0
evaluated � is βT0(�) = 0.945.

Now, consider the MRRU model to construct the adaptive test T . T involves more
subject in the experiment than T0, in particular n is computed as 1.25 × n0 = 148.
Nevertheless, since in practice variances are unknown, n0 and n are computed from
variance estimators. As a consequence, the sample size of T is random and each
replication of T has a different value of n.

We realized 500 simulation runs of the urn procedure. Each replication uses a subset
of responses selected by permutation from the whole dataset. In Fig. 6, ten replications
of the urn proportion process (Zn)n are represented.

Aswe can see fromFig. 6, the urn process seems to target region A, where parameter
δ is set. Then, test T has higher power and assigns to treatment R fewer patients than
T0. This is our goal, since R is the inferior treatment in this case (mR < mW ).

For each one of 500 replications we compute analytically the power evaluated at�.
In Fig. 7 we show a boxplot with the power of the 500 replications of the urn model,
to be compared with the power of T0. Moreover, we show for each simulation the
proportion of subjects assigned to treatment R, to be compared with the proportion of
subjects assigned to treatment R by T0.
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Fig. 7 On the left: boxplot
representing 500 values of power
evaluated at the true difference
of the means � = −0.493 using
T : βT (�). The red line
represents the power obtained
with T0: βT0 (�) = 0.945. On
the right: boxplot representing
500 values of the proportion of
subjects assigned to treatment R
by T : NR/n. The red line
represents the proportion of
subjects assigned to treatment R
by T0: p0 = 0.468
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From Fig. 7, we note that the MRRU design constructs a test T with power higher
than T0. This occurs in more than 99% of replications, and the average power over
the replications is

1

500

500∑

i=1

βT i (�) = 0.975 > 0.945 = βT0(�).

Even if T uses a sample size n larger than T0, in the 52.6% of the runs the number
of subjects allocated to the inferior treatment R by T is less that by T0. Besides, the
average number of units assigned to treatment R is almost the same of the number
computed with T0

1

500

500∑

i=1

NRi = 56.43 
 56 = n0 · p0.

6 Conclusions

In this paper we conduct an analysis on the statistical properties of tests that compares
the means of the responses to two treatments. Given a test T0, we point out which
features a response-adaptive test T should have in order to perform better than T0. In
a clinical trials framework, this goal is achieved when T has (a) higher power and (b)
assigns to the inferior treatment fewer subjects than T0. Specifically, we individuate
in the proportion-sample size space the subregions where selecting the allocation
proportion p and the sample size n of the test T .

The test T can be implemented by using a response-adaptive design.We propose an
urn procedure (MRRU) that is able to target a fixed proportion allocation in (0, 1). This
urnmodel identifies the test T in a specific region, depending on the inferior treatment,
and both the goals (a) and (b) are accomplished. We show that the assumption of
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Gaussian responses and known variances can be relaxed. We report some simulations
and a case study that highlight the goodness of the procedure.
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