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Abstract The authors are to be congratulated on a valuable and thought-provoking
contribution on the analysis of geo-referenced high-dimensional data describing the
use over time of the mobile-phone network in the urban area of Milan, Italy. This is
a timely and world-wide problem that opens wide avenues for new methodological
contributions. The authors develop a Bagging Voronoi Treelet Analysis which is a
non-parametric method for the analysis of spatially dependent functional data. This
approach integrates the treelet decomposition with a proper treatment of spatial depen-
dence, obtained through a Bagging Voronoi strategy. In our discussion, we focus on
the following points: (i) a mobre general form of the spatio-temporal model proposed
in Secchi et al. (Stat Methods Appl, 2015), (ii) alternative methods to approach the
smooth temporal functions, (iii) additional methods to reduce the problem of dimen-
sion for spatial dependence data, and (iv) comments on the pros and cons of the
proposed pre-processing methodology.

Keywords Basis functions · Dimension reduction · Gaussian random fields ·
Spatially dependent functional data · Spatio-temporal stochastic models

1 The spatio-temporal model

The approach used in Secchi et al. (2015) for analyzing the spatial and temporal
variability of Erlang data bears strong resemblance to some spatio-temporal models
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proposed by Olives et al. (2014) and Lindström et al. (2014) for studying air pollu-
tion data. Similarly to air pollution data, the spatio-temporal distribution of Erlang
quantities is characterized by both a strong temporal seasonality and a strong spatial
dependence.

Using the approach introduced by Lindström et al. (2014), the spatio-temporal
Erlang data Ex(t) can be modeled in a more general form as

Ex(t) = y(x, t) = μ(x, t) + ε(x, t) (1)

where

μ(x, t) =
K∑

k=1

βk(x)ψk(t). (2)

The {ψk(t)}Kk=1 is a set of (smooth) temporal basis functions with ψ1(t) = 1 that
can be estimated by the modified singular value decomposition method (see Fuentes
et al. 2006; Szpiro et al. 2010). The terms βk(x) are spatially varying coefficients
for the temporal functions that can be estimated using universal kriging (Matheron
1969), where the trend is a linear regression on geographical covariates and the spatial
dependence structure is provided by a set of covariance matrices given by Σβk (θk),
parameterized by an unknown parameter vector θk . In the particular case of Erlang
data, the trend of the regression kriging could contain information about land use (i.e,
university, residential, or industrial areas).

The residual space-time component ε = ε(x, t) is assumed to be independent
in time with stationary, parametric spatial covariance Σ t

ε(θε), for t = 1, . . . , T . In
particular, the residual ε(x, t) consists of a correlated component ε∗(x, t) and a nugget-
effect εnugget (x, t) including small-scale variability and measurement errors, that is,

ε(x, t) = ε∗(x, t) + εnugget (x, t). (3)

Assuming the independence of the components of (3), the spatial covariance of ε(x, t)
can be written as Σε = Σ∗

ε + Σε,nugget, where Σε,nugget is a diagonal matrix.
Then note that the model proposed in Secchi et al. (2015) could be considered

a particular case of (1) where the components βk (denoted in Secchi et al. (2015)
by D1, . . . , DK ) do not take into account the spatial dependence, and the residual
component ε is a random error variable, independent in time and space.

In addition, note that an alternative definition of the mean component μ(x, t) in (1)
has been recently proposed by Olives et al. (2014) as

μ(x, t) =
K∑

k=1

{βk(x) + γk(x)}ψk(t),

where βk(x) are Gaussian spatial random fields distributed as βk(x) ∼ N (0,Σβk (θk))

as in Lindström et al. (2014), and γk(x) are i.i.d. random effects distributed as γk ∼
N (0, σ 2

k I). They can be considered the nugget effect of the βk(x)−fields.
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1.1 Smooth temporal functions

The objective of the smooth temporal basis functions ψk(t) is to capture the temporal
variability in the data using deterministic functions, or functions obtained as smoothed
singular vectors (see Fuentes et al. 2006). Nicolis and Nychka (2012) andMatsuo et al.
(2011) suggest to use the non-orthogonal wavelet basis (such as the W-transform) for
their ability to fit a variety of standard covariancemodels. Themayor drawback of these
approaches is that one needs to specify the functional form of the basisψ . The treelets
used in Secchi et al. (2015) provide an interesting tool to the analysis of the temporal
behavior of Erlang data, especially for their feature of being ‘data-driven’ basis.

However, other methods take different approaches to construct data-driven basis.
The Tree-Based Wavelet (Gavish et al. 2010) and the lifting scheme are some exam-
ples. While the Tree-Based Wavelet transform is defined via a hierarchical tree (built
through and adaptive Haar-like orthonormal basis) which is assumed to capture the
geometry and structure of the input data, the lifting schemes provide a simple and gen-
eral construction of second generation wavelets, where the choice for primal and/or
dual lifting is fully determined by the values of the data (Jansen and Oonincx 2005;
Sweldens 1997).

In particular, the lifting scheme allows one to custom design the filters needed in
the transform algorithms to the situation at hand, that is, the filters generate functions
whose formdepends on each particular case. Finally, lifting scheme leads to a fast, fully
in-place implementation of the wavelet transforms (Sweldens 1997). We think that
these methods could provide alternative tools to the analysis of temporal Erlang data.

1.2 Spatial dependence and dimension reduction

Parameter estimation of a spatio-temporal model tends to be challenging in practice.
Methods for reducing the computational burden are becomingmore commonwhen the
data set is very large. Some recent methods are based on ‘low-rank’ (or ‘reduced rank’)
approaches which aim is to reduce the spatial process to a dimensional subspace of a
lower dimension in order to increase the computational efficiency (see Banerjee et al.
2008; Nicolis and Nychka 2012; Olives et al. 2014). The idea of the low rank approach
proposed by Olives et al. (2014) is to replace the covarianceΣ = {||C(xi −x j )||}i, j∈S
where S is the observed space of spatial locationsx,with a low rank covariance ZΣ̃−1Z
where Z = {||C(xi − κ j )||}i∈S, j∈K, Σ̃ = {||C(κi − κ j )||}i, j∈K, and K is a set of
spatial locations κ , of cardinality n � N (N is the number of observations in the space
S). Then, the βk−fields can be approximated by a vector with dimension n × 1. A
similar approach has been used by Nicolis and Nychka (2012) where the authors use
a multiresolution approach based on non-orthogonal wavelet functions to reduce the
dimension of the original space. The conditional simulation is then used for estimating
the process over all the original space. Banerjee et al. (2008) use ‘knots’ and predictive
processes for reducing the dimension.

In the approach proposed by Secchi et al. (2015) the spatial dependence has been
estimated empirically over several subsets of data using the Voronoi tessellation, and
’low rank’ matrices are produced. Then summary statistics on the simulation results
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(using the bootstrap technique) provides the estimation of the process on the complete
space. We think that the low-rank above mentioned approaches can be considered
an important contribution for the estimation of spatial dependence of non-stationary
processes. For all these approaches the optimal choice of the subset of data n remains
an open problem.

2 Pre-processing of data: denoising with missing data

If some data are missing, several denoising methods cannot be directly implemented.
When the data are spatially and temporally correlated many methods have been
proposed for infilling missing data and smoothing irregular curves (Glasbey 1995;
Haworth and Cheng 2012; Olives et al. 2014; Onorati et al. 2013; Smith et al. 1996,
2003). For example, Smith et al. (1996) use spatial patterns from EOF for reconstruct-
ing the data in a given temporal period, and (Olives et al. 2014; Onorati et al. 2013)
apply cubic smoothing splines to some of the left singular vectors of the singular vec-
tor decomposition. A comparison of methods for smoothing and gap filling in time
series has been proposed by Kandasamy et al. (2013).

Similarly, Erlang data show strong spatial dependence in the principal surfaces that
can be used for infilling temporal data. The Fourier-based technique used by Secchi
et al. (2015) for denoising and infilling missing data have the following advantages: (i)
it transforms discrete data into functionals that can be used in the space-time model;
(ii) it is considered a denoising technique; and (iii) it resolves the problem of missing
data.

However, the main drawbacks of the proposed pre-processing methodology are
that: (i) it needs to choose a basis of very high dimension, in order to be sure to catch
up all relevant localized features, with a consequent increase of the computational
burden, and (ii) it does not consider the spatial dependence among sites.

We think that including denoising and imputation of missing data in the estimation
procedure of the space-time model could improve the computational efficiency of the
algorithm and the precision of the estimates.
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