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Abstract Functional data are occurring more and more often in practice, and various
statistical techniques have been developed to analyze them. In this paper we consider
multivariate functional data, where for each curve and each time point a p-dimensional
vector of measurements is observed. For functional data the study of outlier detection
has started only recently, and was mostly limited to univariate curves (p = 1). In
this paper we set up a taxonomy of functional outliers, and construct new numerical
and graphical techniques for the detection of outliers in multivariate functional data,
with univariate curves included as a special case. Our tools include statistical depth
functions and distance measures derived from them. The methods we study are affine
invariant in p-dimensional space, and do not assume elliptical or any other symmetry.

Keywords Depth ·Diagnostic plot · Functional data ·Graphical display ·Heatmap ·
Robustness

1 Introduction

Functional data are occurring more and more often in practice, and various statistical
techniques have been developed to analyze this type of data. Standard references on
functional data include Ramsay and Silverman (2002, 2006) and Ferraty and Vieu
(2006). A functional data set typically consists of n curves observed on a set of time
points t1, . . . , tT . In this paper we consider multivariate functional data, where for
each curve and each time point a p-dimensional vector of measurements is observed.
Several examples of multivariate functional data can be found in the literature. Popular
examples include the bivariate gait data set containing the simultaneous variation of the
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hip and knee angles of 39 children (Ramsay and Silverman 2006). Berrendero et al.
(2011) analyzed daily temperature data measured at 3, 9 and 12cm below ground
during 21days. Another example is the multi-lead ECG data set analyzed by Pigoli
and Sangalli (2012) for which p = 8. Here, the data contain measurements of the
human heart activity at 8 different places on the body.

Nowadays statisticians are well aware of the potential effects of outliers on data
analysis, and there is an extensive literature on finding outliers and developingmethods
that are robust to their influence; see e.g. Rousseeuw and Leroy (1987) and Maronna
et al. (2006). But for functional data the study of outlier detection has started only
recently, and was mostly limited to univariate curves, i.e. p = 1. Febrero-Bande
et al. (2008) identified two reasons why outliers can be present in functional data.
First, gross errors can be caused by errors in measurements and recording or typing
mistakes, which should be identified and corrected if possible. Second, outliers can be
correctly observed data curves that are suspicious or surprising in the sense that they do
not follow the same pattern as that of the majority of the curves. Using recorded NOx

levels in Barcelona as a case study, Febrero-Bande et al. (2008) proposed the following
outlier detection procedure for univariate functional data (i.e. p = 1), consisting of
three main steps:

1. For each curve, calculate its functional depth (several versions exist);
2. delete observations with depth below a cutoff C ;
3. go back to step 1 with the reduced sample, and repeat until no outliers are found.

Step 3 was added in the hope of avoiding masking effects. The cutoff value C was
obtained by a bootstrap procedure.

A different approach was taken by Hyndman and Shang (2010) who noted that the
above method lacks sensitivity to curves whose pattern is different from the majority
but whose values at each time point look inconspicuous. Hyndman and Shang (2010)
considered the observed curves (Yi (t1), . . . ,Yi (tT )) as multivariate observations in T
dimensions and applied a robust PCA method to them, keeping the first two principal
components.Next they computed the bagplot (Rousseeuwet al. 1999) of these bivariate
points, or their highest density regions (Hyndman 1996). However, it is not guaranteed
that outliers can be detected by looking at the first two principal scores.

To visualize univariate functional data and investigate their spread as well as possi-
ble outliers, Sun andGenton (2011) proposed the functional boxplot. This new boxplot
is a generalization of the univariate boxplot using functional depth as a replacement
for the traditional univariate ranks. It shows, as a function of time, the deepest curve,
the 50% central region (i.e. the envelope of the 50% deepest curves), and the fence.
The latter is obtained by inflating the central region by 1.5 times its range. In this
approach a curve is considered outlying if it ventures outside the fence in at least one
time point.

The aims of this paper are twofold. We first set up a taxonomy of functional outliers
in order to be able to classify different types of outlying behavior. Secondly, we
construct new tools for the detection of outliers in multivariate functional data, with
univariate curves included as a special case. These tools will aid in handling and
interpreting outlying curves. For instance, curves with local gross errors should not
necessarily be flagged as completely outlying, as this would lead to a substantial loss
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of information. The proposed methods will be affine invariant in p-dimensional space,
an important theoretical and practical benefit for multivariate curves. Also, we will
not assume elliptical or any other symmetry.

In the next section we will discuss different types of functional outlyingness and
set up a taxonomy. In Sect. 3 we discuss halfspace depth and extend its use to detect
outliers in multivariate and functional data. Section 4 introduces the skew-adjusted
projection depth and a new diagnostic plot. In Sect. 5 we apply our new techniques to
real data sets, before presenting our conclusions.

2 Functional outliers

2.1 Taxonomy of functional outliers

Functional observations can be deviating from the majority of the curves in various
ways. First of all, we distinguish isolated outliers that exhibit outlying behavior during
a very short time interval. For univariate curves this type of outlyingness reduces to one
or more spikes or peaks. An illustration is given in Fig. 1 which plots proton nuclear
magnetic resonance (NMR) spectra of 40 different wine samples (Larsen et al. 2006).
The full data set contains measurements in the spectral region from 6.00 to 0.50, but
for clarity we focus on the region between wavelengths 5.62 and 5.37 only, for which
T = 397 measurements are available for each curve. The red curve 37 has large peaks
around wavelength 5.4 and can be considered an isolated outlier.

The opposite of isolated outliers are persistent outliers, which we define as func-
tional observations that are outlying on a large part of the domain, the most extreme
case being the whole domain. Within this group we distinguish shift, amplitude and
shape outliers. Shift outliers have the same shape as the majority, but are moved away.
As an example we consider the tablets data set, depicted in Fig. 2. This data set consists
of near infrared spectroscopy responses for a batch of pills, measured at wavenum-

37

0

1

2

5.6 5.55 5.5 5.45 5.4
wavelength 

R
es

po
ns

e 
(1

05 )

Fig. 1 NMR spectra for 40 wine samples with one isolated outlier. (Color figure online)
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Fig. 2 The tablets data with the 90mg tablets col-
ored orange and the 250mg tablets colored purple.
(Color figure online)

Fig. 3 Derivatives of the tablet curves, with the
same color coding. (Color figure online)

bers between 7,398 and 10,507cm−1. (Note that wavenumbers are expressed in units
of inverse length.) They have been analyzed in Dyrby and Engelsen (2002) and can
be downloaded from http://www.models.kvl.dk/tablets. The full data set consists of
tablets of different sizes and different amounts of the active ingredients. We select
the 70 observations corresponding to tablets weighing 90mg (shown in orange) and
add 20 randomly selected observations of the tablets weighing 250mg (in purple).
These two groups of tablets also differ in the amount of active components they con-
tain. In the main group of the 90mg tablets, we note that the lowest curves are very
similar to the others but display a downward shift, hence we can classify them as
shift outliers. The 250mg tablets show an upward shift but they are also more wig-
gly around wavenumber 8,224. This difference becomes more pronounced when we
consider the first derivatives of the curves in Fig. 3. We now see that the blue curves
have a different shape around wavenumber 8,900. Compared to the main group of
the 90mg tablets we can consider the 250mg tablets as shape outliers, i.e. curves
whose shape differs from the majority without necessarily standing out at any time
point.

Another possibility is that a functional observation is outlying in an amplitude
sense, i.e. the curve may have the same shape as the majority but its scale (range,
amplitude) differs. This type of outlyingness is typically found in periodic processes.
An example of an amplitude outlier will be discussed in Sect. 2.2.

Of course it will often happen that an abnormal curve exhibits a combination of
outlying behavior. It can e.g. have several spikes in the first half of the domain, and
a persistent outlying behavior in the second half. Or it can be shape outlying on one
part of the domain and shift outlying on another.

Often functional data are preprocessed with a baseline correction, a warping pro-
cedure or other techniques, see for example Ramsay and Li (1998) and Wang and
Gasser (1997). As a result it might happen that an outlying curve is transformed into
a regular one. Baseline corrections will for example typically transform shift outliers
into regular observations. In this case it can be useful to apply outlier detection tech-
niques to the curves defining the transformation (such as the warping functions) or
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to include these curves in the analysis. This will be illustrated on the tablets data in
Sect. 5.

2.2 Functional outlier detection

All examples shown so far are univariate functional data, for which outliers can often
be detected just by looking at the curves. Automatic detection of isolated and shift
outliers can then easily be carried out with standard outlier detection methods for
univariate data applied to themeasurements at each timepoint. For shape and amplitude
outliers more advanced techniques are needed, such as those mentioned in Sect. 1. For
multivariate functional data the problem ismuch harder. None of the outliers defined in
Sect. 2.1 will necessarily be outlying in one of the marginals, hence it is not sufficient
to analyze the components separately. An example is presented in López-Pintado
et al. (2014) where height and weight curves for boys separately do not show any
marginal outlier, but a bivariate analysis flags one unusual infant. This illustrates that
the correlation structure between the components should not be ignored. See also
Hubert et al. (2012) for other examples.

We illustrate this issue on the bivariate writing data which is a part of the Character
Trajectories data set included in the UCI machine learning repository (Bache and
Lichman 2013). The data measure the horizontal and vertical coordinates of a pen tip
while a person writes the letter ‘i’ (without the dot) n = 174 times. The observed data
were first interpolated to obtain T = 100 equally spaced time points. The resulting
bivariate functional observations are displayed in Fig. 4 for the horizontal coordinates
and in Fig. 5 for the vertical ones. When we plot both coordinates as in Fig. 6 the
character ‘i’ is clearly visible, but this representation does not show the speed of
writing. We highlighted three outlying curves with different behavior on all three
figures. The dot-dashed red curve (case 67) roughly has the same shape as the regular
curves, but it has a smaller scale. This curve can be classified as an amplitude outlier.
The dashed blue observation (curve 41) deviates frommost of the trajectories during a
long period, especially in the vertical component. This is an example of a shape outlier,
which stands out in one component during a substantial time period. Yet another shape
outlier is the solid black curve 132. This curve does not stand out in the marginals but
it is a multivariate outlier during a long time period. To illustrate this, Fig. 7 shows a
bivariate scatterplot of the coordinates at t = 5. On this plot we see that trajectory 132
deviates from the other curves.

To detect outliers in functional data and classify them according to our taxonomy
we will propose several approaches. By analogy with the non-functional case, we will
first estimate the central tendency of the curves using a method which is robust to
outliers. To this end we will use the multivariate functional median based on depth.
Then we will construct an appropriate distance to compute the deviation of the curves
from this center.
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Fig. 4 Time profile of the horizontal coordinate of
the writing data set. (Color figure online)

Fig. 5 Time profile of the vertical coordinate of the
writing data set. (Color figure online)
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Fig. 6 Trajectories of the writing data set. (Color
figure online)

Fig. 7 Cross-sectional scatterplot of the writing
data set at time point 5

3 Outlier detection based on halfspace depth

3.1 Multivariate (functional) halfspace depth

To measure the centrality of a point relative to a multivariate sample, Tukey (1977)
introduced the halfspace depth. For simplicity of notation, we provide the definition
in the population setting. Let Y be a random variable on R

p with distribution PY ,
then the halfspace depth of any point x ∈ R

p relative to PY is defined as the minimal
probability mass contained in a closed halfspace with boundary through x :

HD(x; PY ) = inf||v||=1
PY

{
v′Y � v′x

}
.

Halfspace depth satisfies the requirements of a statistical depth function, as defined
by Zuo and Serfling (2000a): it is affine invariant, attains its maximum value at the
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center of symmetry if there is one, is monotone decreasing along rays emanating from
the center and vanishes at infinity. For any statistical depth function D and for any
α ∈ [0, 1] the α-depth region Dα contains the points whose depth is at least α:

Dα = {
x ∈ R

p; D(x; PY ) � α
}
. (1)

The boundary of Dα is known as the α-depth contour. The halfspace depth regions are
closed, convex and nested for increasing α. The halfspacemedian (or Tukeymedian) is
defined as the center of gravity of the smallest non-empty depth region, i.e. the region
containing the points with maximal halfspace depth. The finite-sample definitions of
the halfspace depth, the Tukey median and the depth regions are obtained by replacing
PY by the empirical probability distribution Pn .

Properties of halfspace depth have been studied extensively. Donoho and Gasko
(1992) derived many finite-sample properties, including the breakdown value of the
Tukey median, whereas Romanazzi (2001) derived the influence function of the half-
space depth. Massé and Theodorescu (1994) and Rousseeuw and Ruts (1999) stud-
ied several properties of the depth and the depth contours at the population level.
The asymptotic distribution of the Tukey median was given in Bai and He (1999),
whereas He and Wang (1997) and Zuo and Serfling (2000c) studied the convergence
of the depth regions and the contours. Continuity of the depth contours and the Tukey
median was investigated in Mizera and Volauf (2002). Struyf and Rousseeuw (1999)
showed that the halfspace depth function of a sample completely characterizes its
empirical distribution, and this was later extended to the population case.

To compute the halfspace depth, several affine invariant algorithms have been devel-
oped. Exact algorithms in two and three dimensions and an approximate algorithm in
higher dimensions have been proposed byRousseeuw andRuts (1996) andRousseeuw
and Struyf (1998). Recently Liu and Zuo (2014) proposed exact algorithms which
are feasible up to p = 5. Algorithms to compute the halfspace median have been
developed by Rousseeuw and Ruts (1998) and Struyf and Rousseeuw (2000). To com-
pute the depth contours the algorithm of Ruts and Rousseeuw (1996) can be used
in the bivariate setting, whereas the algorithms developed in Hallin et al. (2010) and
Paindavaine and Šiman (2012) extend their applicability to at least p = 5.

The bagplot (Rousseeuw et al. 1999) generalizes the univariate boxplot to bivariate
data. As an example, Fig. 8 shows the bagplot of the writing data at time t = 5. The
bag is the smallest Dα which contains 50% of the data points, and is dark-colored. The
halfspace median is plotted as a red diamond. The fence, which itself is never drawn,
is obtained by inflating the bag by a factor 3 relative to the median, and the data points
outside of it are flagged as outliers and plotted as stars. The light-colored loop is the
convex hull of the points inside the fence. This bagplot has the nice property not to
depend on any symmetry assumption: it works just as well for skewed data. That is,
the bag need not be elliptically shaped and the median need not be positioned in the
middle of the bag. In Fig. 8 we see a moderate deviation from symmetry.

With the rise of functional data the notion of depth has been extended to this
more complex situation. For univariate functional data the first proposals include the
integrated depth of Fraiman and Muniz (2001), the h-modal depth of Cuevas et al.
(2006) and the random projection depth (Cuevas et al. 2007). The latter could also
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Fig. 8 Bagplot of the bivariate
writing data at time t = 5.
(Color figure online)
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be applied to bivariate functional data. Later López-Pintado and Romo (2009, 2011)
defined the (modified) band depth and the (modified) epigraph index. Recently the
band depth was extended to multivariate functional data by Ieva and Paganoni (2013)
and López-Pintado et al. (2014). The latter approach can be seen as a particular case
of the multivariate functional depth introduced and studied by Claeskens et al. (2014).

We consider the observed curves as a realization of a p-variate stochastic process
{Y (t), t ∈ U } on R

p with U = [a, b]. We assume that it generates continuous paths
in C(U )p, the space of continuous functions from U to R

p. Following Claeskens
et al. (2014), with D a statistical depth function on R

p and w a function on U which
integrates to one, the Multivariate Functional Depth (MFD) of a curve X ∈ C(U )p

with respect to the distribution PY is defined as

MFD(X; PY ) =
∫

U
D(X (t); PY (t)) w(t) dt . (2)

where PY (t) is the distribution of Y at time t . The MFD thus combines the local
depths at each time point. By incorporating a weight functionw(t) one can emphasize
or downweight certain time regions. Similarly to themultivariate setting, the functional
median Θ(t) is defined as the curve with maximal MFD. The multivariate functional
halfspace depth (MFHD) is obtained by taking the halfspace depth as the underlying
depth function in (2). Properties of MFD, MFHD and the resulting medians have been
studied by Claeskens et al. (2014). In particular, if the multivariate depth D has a
unique maximum at each time point, say θ(t), then the MFDmedian Θ(t) equals θ(t)
and the curve is continuous.

For a functional data sample (Y1, . . . ,Yn)measured at (not necessarily equidistant)
time points t1, . . . , tT the finite-sample MFD of a curve X is given by

MFDn(X; Pn) =
T∑

j=1

D(X (t j ); Pn(t j )) Wj (3)
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with Wj =
∫ (t j+t j+1)/2

(t j−1+t j)/2
w(t) dt (and t0 = t1, tT+1 = tT ) and Pn(t j ) the empirical

distribution of the observed curves at time t j . For simplicity a uniformweight function
will be used throughout this paper.

Since depth functions give an outward-center ordering, we expect that outliers will
have a low depth value. The ‘vanishing at infinity property’ of a statistical depth
function ensures that an observation will receive zero depth when it moves away from
the center. The same holds for the MFD when the curve goes to infinity at almost all
time points in the domain. Simulations in Claeskens et al. (2014) have illustrated that
several types of outliers, among which shifted outliers, indeed obtain a low MFHD
depth. So it seems natural to use functional depth values for outlier detection. This was
the underlying idea in Febrero-Bande et al. (2008) where critical values were derived
in a nonparametric way. A parametric approach was considered in Dang and Serfling
(2010) but requires knowledge about the data distribution.

However, the depth values alone do not always provide sufficient information for
outlier detection. First of all, not all observations with a low depth are indeed outlying.
For example, observations on the boundary of the convex hull of a multivariate sample
only have depth 1/n. In the functional setting the problem is even more challenging.
In particular, isolated outliers will be very hard to detect using the MFD alone, as
they will have a small multivariate depth value in only a small part of the domain. For
instance, the hugely outlying curve 37 in Fig. 1 has an MFHD value of 0.0973 while
5 of the 40 observations have a lower MFHD value.

Additional insight can be obtained by looking at the values of the depth at each time
point. We illustrate this on the Octane data set consisting of 39 near infrared (NIR)
spectra of gasoline samples (Esbensen 2001; Rousseeuw et al. 2006). It is known that
observations 25, 26 and 36–39 have a very different spectrum as they contain added
ethanol, which is required in some states. Figure 9 clearly shows the six shape outliers,
which are persistently outlying from wavelength 1,390 onward.

When we order the spectra according to their MFHD, the six outliers have ranks 16,
3, 12, 10, 5 and 15 respectively, hence they do not have the lowest functional depth.
On the other hand spectrum 34 has the smallest depth since most of the time it lies
near the lower edge of the regular data. Let us also look at the cross-sectional depth
values by constructing a heatmap with n rows and T columns. Each cell of this map is
colored according to HD(Yi (t j )) for i = 1, . . . , n and j = 1, . . . , T , with the smallest
depth value shown as white and the overall highest depth value colored dark green.
On the vertical axis we rank the curves from top to bottom according to their MFHD
value, thereby putting the deepest curve at the bottom. The color of the cell on the i th
row and the j th column thus shows the halfspace depth at time t j of the curve with
i th smallest MFHD. This yields the halfspace depth heatmap in Fig. 10.

Even with the HD heatmap it is still not easy to flag the outlying curves. We
note several light regions in the heatmap, but they are scattered over many rows
(curves) while some of the outliers (e.g. curve 25) even have a higher HD at the higher
wavelengths than some of the regular curves. This is of course caused by the nature
of halfspace depth which ranks the data from the outside inwards without considering
their distance from the median. When the focus is on outlier detection, including
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Fig. 10 Halfspace depth heatmap of the octane data. (Color figure online)

a distance-based ranking is thus indispensable. This motivates the construction of a
distance measure based on halfspace depth.

3.2 The bagdistance

We first define a new statistical distance from a multivariate point x ∈ R
p to a random

variable Y , based on the halfspace depth. This distance uses both the center and the
dispersion of Y . As in the bagplot we define the bag B as the 50% central region. This
is the smallest depth region with at least 50% probability mass, i.e. B = Dα̃ with
PY (B) � 0.5, and PY (Dα) < 0.5 for all α > α̃. Next, we consider the ray from the
halfspace median θ through x , and we define c(x) := cx as the intersection of this ray
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Fig. 11 Illustration of the
bagdistance between an arbitrary
point and a multivariate sample.
(Color figure online) x1
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and the boundary of B. The bagdistance of x to Y is then given by the ratio between
the Euclidean distance of x to the halfspace median and the Euclidean distance of cx
to the halfspace median:

bd(x; PY ) =
{

0 i f x = θ

‖x − θ‖ / ‖cx − θ‖ elsewhere.
(4)

The denominator in (4) accounts for the dispersion of Y in the direction of x . It is
obvious that the bagdistance does not assume symmetry and is affine invariant.

The finite-sample definition is similar and is illustrated in Fig. 11. The gray colored
bag is the smallest depth region that covers half of the sample points. For two points x1
and x2 their Euclidean distance to the halfspace median (red diamond) is marked with
a dark blue line, whereas the orange lines correspond to the denominator of (4) and
reflect how these distances are scaled differently. Whereas the lengths of the blue lines
are the same, the bagdistance of x1 is 2.01 and that of x2 is only 0.63. These values
reflect the position of the points relative to the sample, one lying somewhat away from
the most central half of the data and the other lying well within the central part. Note
that the bagdistance is implicitly used in the bagplot, as the fence consists of the points
whose bagdistance is at most 3. Also note that the bagdistance is a very different notion
from the halfspace-outlyingness OH (x; PY ) = 1−2HD(x; PY ) defined by Dang and
Serfling (2010). The OH contains exactly the same ranking information as HD and is
not very helpful for outlier detection either, as noted by the authors.

To compute the bagdistance of a point x with respect to a p-variate sample we
can indeed compute the bag and then the intersection point cx . In small dimensions
computing the bag is feasible, and it is worth the effort if the bagdistance needs to be
computed for many points. In higher dimensions computing the bag is hard, and then
a simpler and faster algorithm is to search for the multivariate point c∗ on the ray from
θ through x such that
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HD(c∗; Pn) = median
i

{HD(xi ; Pn)} .

Since HD is monotone decreasing on the ray this is fairly fast, e.g. by means of the
bisection algorithm.

When applied to elliptically symmetric distributions, the bagdistance is proportional
to the Mahalanobis distance:

Theorem 1 If PY is an elliptically symmetric distribution with center μ and shape
matrixΣ , i.e. fY (y) ∼ |Σ |−1/2h((x−μ)′Σ−1(x−μ)) for some nonnegative function
h, then bd(x; PY ) = k

√
(x − μ)′Σ−1(x − μ) for some constant k.

Proof We first note that under elliptical symmetry the halfspace median equals μ.
Next it is well-known that the halfspace depth regions are ellipsoids Dα = {x; (x −
μ)′Σ−1(x − μ) � kα} for some constant kα depending on α, see e.g. Massé (2004),
from which the result follows. ��

The bagdistance can be used to construct a metric on the space Rp in the following
way. Assume that the halfspace median is contained in the interior of the bag, that is,
there exists a ball of radius ε > 0 with center θ which lies entirely inside the bag.
Then define the function

g : Rp → R
p : x 
→ g(x) =

{
0 if x = θ

(x − θ)/||cx − θ || elsewhere

with cx as in (4). The function g is well-defined since our assumption implies that
||cx − θ || > 0 for every x �= θ . Now define the bagdistance between two arbitrary
points as

bd(x1, x2) = ||g(x1) − g(x2)||. (5)

Theorem 2 If the halfspace median θ of a distribution P lies in the interior of the
bag, the bagdistance (5) is a metric on R

p.

Proof It is clear that bd(x1, x2) iswell-defined and symmetric in its arguments. The tri-
angle inequality follows readily from the triangle inequality for the Euclidean distance.
Finally we note that bd(x1, x2) = 0 implies g(x1) = g(x2). Since the multivariate
points g(x1) and g(x2) have the same direction it follows that cx1 = cx2 implying
x1 = x2. ��

This result continues to hold in the finite-sample case. We can also extend the
bagdistance to the functional setting. The functional bagdistance of a curve to (the
distribution of) a stochastic process Y is defined as

f bd(X; PY ) =
∫

U
bd(X (t); PY (t)) dt . (6)

Note that in general it is possible that this distance becomes infinite.
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As in the multivariate setting, the functional bagdistance can be extended to a
distance between two arbitrary continuous functions X1 and X2 using the formula

f bd(X1, X2) =
∫

U
bd(X1(t), X2(t)) dt . (7)

Under some weak conditions this is a metric:

Theorem 3 Assume Y generates continuous paths in C(U )p such that

m := inf
t∈U inf

x∈Rp\Θ(t)
||cx − Θ(t)|| > 0 (8)

with Θ(t) the MFHD median. Then the functional bagdistance (7) is a metric on
C(U )p.

Proof Condition (8) implies that the bagdistance is defined for every t ∈ U . Without
loss of generality we assume thatΘ(t) = 0. Since X1, X2 ∈ C(U )p andU is compact,
it follows for all t ∈ U that ||X1(t) − X2(t)|| � ||X1(t)|| + ||X2(t)|| � M for some
M < ∞. Therefore

f bd(X1, X2) =
∫

U
bd(X1(t), X2(t)) dt =

∫

U
dE

(
X1(t)

||cX1(t)||
,

X2(t)

||cX2(t)||
)

dt

�
∫

U

||X1(t)||
m

+ ||X2(t)||
m

dt � 2
∫

U

M

m
dt .

SinceU is compact the latter integral is finite.Clearly f bd is symmetric and the triangle
inequality holds. Finally f bd(X1, X2) = 0 implies that bd(X1(t), X2(t)) = 0 for
almost every time point since bd is positive. This in turn implies that X1(t) = X2(t)
at almost every time point, and since they are continuous, X1 = X2. ��

The multivariate and functional bagdistance now allow us to construct a diagnostic
plot which shows the global outlyingness of the curve as well as the local outlyingness
at each time point. We again construct a heatmap, where now we color the cells of
each row according to the cross-sectional bagdistance of the corresponding curve. The
rows are sorted in decreasing order of their functional bagdistance, so that the outliers
should typically be on top (as in the depth heatmap). The color of the cell on the i th
row and the j th column thus corresponds to the bagdistance at time t j of the curve
with i th largest functional bagdistance. To emphasize that this plot focuses on the
outlyingness of curves we use red tints. The depth heatmap of Sect. 3.1 used green
tints instead, as it shows the degree of centrality.

The bagdistance heatmap of the octane data set in Fig. 12 now clearly flags the
six outliers. They have the highest functional bagdistance, and they become outlying
from the same time point onward.
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Fig. 12 Bagdistance heatmap of the octane data set. (Color figure online)

4 Outlier detection based on adjusted outlyingness

4.1 Skew-adjusted projection depth

As an alternative to the HD based heatmaps, we also construct diagnostic plots based
on a different depth function. Since the introduction of halfspace depth various other
affine invariant depth functions have been defined, among which simplicial depth (Liu
1990) and projection depth (Zuo 2003) which is essentially the inverse of the Stahel–
Donoho outlyingness (SDO). An overview of depth functions can be found in Mosler
(2013). The SDO is based on the geometrical insight that a multivariate outlier should
be outlying in at least one direction. The idea is to project the data onto many lines and
to use a robust univariate measure of outlyingness on the projections (Stahel 1981;
Donoho 1982). The population SDO of an arbitrary point x with respect to a random
variable Y with distribution PY is defined as

SDO(x; PY ) = sup
||v||=1

| v′x − median(v′Y ) |
MAD(v′Y )

from which the projection depth is derived:

PD(x; PY ) = 1

1 + SDO(x; PY )
. (9)

Since the SDO has an absolute deviation in the numerator and uses the MAD in its
denominator it is best suited for symmetric distributions. For asymmetric distribu-
tions Brys et al. (2005) proposed the adjusted outlyingness (AO) in the context of
robust independent component analysis. The AO uses the medcouple (MC) of (Brys
et al. 2004) as a robust measure of skewness. The medcouple of a univariate dataset
{z1, . . . , zn} is defined as
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MC(z1, . . . , zn) = median
i, j

(z j − mediank zk) − (mediank zk − zi )

z j − zi
(10)

where i and j have to satisfy zi � mediank(zk) � z j and zi �= z j . Note that −1 <

MC < 1 and MC = 0 for symmetric distributions, whereas MC > 0 indicates right
skewness and MC < 0 indicates left skewness.

The adjusted outlyingness AO is defined as:

AO(x; PY ) = sup
||v||=1

⎧
⎨

⎩

v′x−median(v′Y )

w2(v′Y )−median(v′Y )
if v′x > median(v′Y )

median(v′Y )−v′x
median(v′Y )−w1(v′Y )

if v′x < median(v′Y )
(11)

where

w1(Z) = Q1(Z) − 1.5 e−4MC(Z) IQR(Z)

w2(Z) = Q3(Z) + 1.5 e+3MC(Z) IQR(Z)

if MC(Z) � 0, where Q1(Z) and Q3(Z) denote the first and third quartile of a
univariate random variable Z , and IQR(Z) = Q3(Z) − Q1(Z). If MC(v′Y ) < 0, we
replace v by−v. The denominator of (11) corresponds to thewhiskers of the univariate
adjusted boxplot proposed by Hubert and Vandervieren (2008). Other applications of
the AO were studied by Hubert and Van der Veeken (2008, 2010).

We now define the skew-adjusted projection depth (SPD) as

SPD(x; PY ) = 1

1 + AO(x; PY )
. (12)

Theorem 4 Let P be the set of all probability distribution functions on R
p. The

mapping D(·, ·) : Rp ×P → R : (x, P) 
→ SPD(x, P) is a statistical depth function
according to Definition 2.1 of Zuo and Serfling (2000a) and its depth regions are
convex.

Proof It is clear that D(·, ·) is bounded and non-negative. Since AO is affine invariant,
the skew-adjusted projection depth will be so as well. It is further evident that SPD
vanishes at infinity. Note that being an H -symmetric distribution about a unique point
θ ∈ R

p is equivalent to saying that median(v′Y ) = v′θ for any unit vector v ∈ R
p

(Zuo and Serfling 2000b). Maximality at the center and monotonicity relative to the
deepest point follow immediately.

The convexity of the depth regions follows from the convexity of the adjusted
outlyingness function AO(· ; P). For univariate data, the AO is a piecewise linear
function composed of a downward sloping line ending in the point (median(P), 0) and
an upward sloping line starting in the same point, so it is convex. For multivariate data,
the AO relative to a single direction v is thus convex too. Therefore the multivariate
AO is a supremum (over all v) of convex functions. ��

To compute the finite-sample SPD we have to rely on approximate algorithms as
it is infeasible to consider all directions v. A convenient affine invariant procedure
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Fig. 13 Skew-adjusted projection depth (SPD) heatmap of the octane data. (Color figure online)

is obtained by considering directions v which are orthogonal to an affine hyperplane
through p+1 randomly drawn data points. In our implementation we use 250p direc-
tions.

Since the SPD is a bona fide depth function, we can plug it into (2) yielding themul-
tivariate functional skew-adjusted projection depth (MFSPD). The MFSPD therefore
satisfies the properties in Claeskens et al. (2014). In particular, the resulting median is
continuous when at each time point the multivariate depth D has a unique maximum.

On the other hand we can also integrate the AO itself, yielding the functional
adjusted outlyingness

FAO(x; PY ) =
∫

U
AO(X (t); PY (t)) dt . (13)

Throughout this paper we will use the skewness-adjusted AO and SPD and their
functional versions instead of the original SDO and PD, because the new tools can deal
with symmetric as well as asymmetric data, and they have the same good properties.
This is a kind of ‘insurance policy’ against skewness. As suggested by a referee, we
could easily monitor the amount of skewness over time, for instance by plotting the
largest absolute value of the medcouple encountered in the computation at each time
point.

Similar to the heatmaps based on halfspace depth and the bagdistance we can
construct the skew-adjusted projection depth heatmap and the adjusted outlyingness
heatmap. The SPD heatmap of the octane data is shown in Fig. 13. The six outliers
are now clearly identifiable. In this example the outliers also have the lowest MFSPD,
as they have a high AO over a rather long period.

The AO heatmap of the wine data is shown in Fig. 14. Instead of showing all 40
rows of the heatmap, which would make the labels harder to read, we have zoomed
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Fig. 14 Adjusted outlyingness (AO) heatmap of the wine data (top 24 rows). (Color figure online)
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Fig. 15 Wine data: rescaled AO heatmap (by blanking out the top row). (Color figure online)

in on the top 24 rows. Curve 37 jumps out immediately, as the two peaks we clearly
saw in the raw data are dark colored. To make the details of the other curves more
visible, we also display the same heatmap by setting the colors of curve 37 to white,
and rescaling the colors of the other cells. The result is in Fig. 15. We now also see
the wiggly behavior of several curves.

Let us now take a closer look at the curves 35, 23, 3, and 2 which are at the top of
the heatmap. Curves 35 and 23 show increased cross-sectional outlyingness around
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Fig. 16 Wine data with some curves showing outlying behavior

wavelengths 5.37, 5.43 and 5.50. At other wavelengths these spectra have almost
constant outlyingness. In Fig. 16 we see that they are mild shift outliers. Curves 2 and
3 have an even more stable adjusted outlyingness profile. They can be recognized as
the bottom curves in Fig. 16.

4.2 Centrality-stability plot

The relation (12) between SPD and AO will allow us to construct another diagnostic
plot. We start by rewriting the MFSPDn of a curve X as

MFSPDn(X; Pn) =
T∑

j=1

SPDn(X (t j ); Pn(t j )) Wj

=
T∑

j=1

1

(1 + AO(X (t j ); Pn(t j )) W−1
j

= T

[
hmean

j

(
(1 + AO(X (t j ); Pn(t j )) W−1

j

)]−1

where we use the abbreviation hmean j for the harmonic mean over j = 1, . . . , T .
The MFSPD can thus be seen as the inverse of the harmonic mean of the weighted
adjusted outlyingness in cross-sections. When we make a scatterplot of

(
MFSPDn(Yi ; Pn) ; ave

j

(
(1 + AO(Yi (t j ); Pn(t j )) W−1

j

))
(14)

for all i = 1, . . . , n, the points are bounded from below by the function z → T
z since

the arithmetic mean is always larger than or equal to the harmonic mean.
This scatterplot is shown in Fig. 17 for the octane data and in Fig. 18 for the wine

data. The red curve is the theoretical lower bound. We see in both examples that the
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Fig. 17 Scatterplot of (14) for the octane data.
(Color figure online)

Fig. 18 Scatterplot of (14) for thewine data. (Color
figure online)

outliers stand out very clearly on the vertical axis. To understand this behavior, we
reconsider the relation between the hmean and the arithmetic mean of a set of positive
values. These means can only be equal if all values coincide. Therefore a curve would
be represented by a point on the lower bound if and only if its AO values would
be constant over time. The vertical deviation from the lower bound thus reflects the
variability of the degree of outlyingness over time.

Finally we construct the centrality-stability plot as the scatterplot of
(
1 − MFSPDn(Yi ; Pn) ; ave

j

(
(1 + AO(Yi (t j ); Pn(t j )) W−1

j

)
− T

MFSPDn(Yi ; Pn)
)

for all i = 1, . . . , n. The horizontal axis thusmeasures a curve’s overall deviation from
centrality, and the vertical axis its AO’s deviation from stability. The deepest curves
will lie in the left part of the plot, while the less central ones are to the right. Typically
an isolated outlier will be in the upper region, as it is well-known that the arithmetic
mean of positive numbers is more sensitive to outlying values than the harmonic mean.
We expect shift outliers in the lower right region of this diagnostic plot (as they have
a rather constant AO) and shape/amplitude outliers in the upper right region.

Figure 19 shows the centrality-stability plot of the wine data. The isolated outlier
37 is again very visible. This curve is not very central either, as also outside of the two
peaks it is in the outskirts of the curves. Curves 2, 3, 23 and 35 are at the bottom right of

Fig. 19 Centrality-stability plot
of the wine data
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Fig. 20 Centrality-stability plot of the writing data Fig. 21 Writing data with some outliers colored.

(Color figure online)
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Fig. 22 Horizontal coordinate of the writing data
with some outliers colored. (Color figure online)

Fig. 23 Vertical coordinate of the writing data with
some outliers colored. (Color figure online)

the plot. We already noted in Fig. 16 that curves 2 and 3 have stable adjusted outlying-
ness profiles across wavelengths. This is confirmed by their low vertical coordinates
in the centrality-stability plot.

5 Real data analysis

Whereas the examples in Sects. 3 and 4 were univariate functional data sets, we now
apply our new methodology to two multivariate data sets.

5.1 Writing data

The writing data were introduced in Sect. 2.2, where we also described the outlying
behavior of some of the curves (41, 67 and 132). The centrality-stability plot of this
bivariate functional data set is shown in Fig. 20, the trajectories are displayed in Fig. 21
and their marginals in Figs. 22 and 23. In the centrality-stability plot observations 41
and 132 indeed stand out. The MFSPD depth of the blue curve 41 is not extremely
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Fig. 24 Baseline correction functions of the tablets
data. (Color figure online)

Fig. 25 The baseline-corrected spectra (Color fig-
ure online)

small (as seen on the horizontal axis of the centrality-stability plot), but its outlyingness
is quite variable, resulting in a high vertical coordinate in Fig. 20.

The solid black curve 132 has the lowest MFSPD although it does not look very
outlying in the marginals, but it is outlying in the multivariate sense as we saw in
Figs. 7 and 8. From its vertical coordinate in the centrality-stability plot we conclude
that the cross-sectional outlyingness does vary somewhat over time. The dot-dashed
red curve 67 is in the outskirts of the data judging from its MFSPD on the horizontal
axis in Fig. 20, and its vertical position in that plot tells us that its AO values are quite
variable. Curves 30 (dashed green), 95 (solid purple) and 121 (dot-dashed orange) are
even higher in the centrality-stability plot, and we see that they are mostly outlying in
the right hand side of Fig. 21.

5.2 Tablets data

As explained in Sect. 2.1 the tablets data consists of two groups of pills, and the data
contains shift outliers and shape outliers. A common practice in chemometrics is to
first apply a baseline correction, so from each curve we subtract its mean (over all
wavenumbers). These baseline corrections are constant functions shown in Fig. 24.
The corrected spectra are displayed in Fig. 25. From this plot it can already be seen
that the lower curves (the shift outliers) are transformed to regular curves. If we do
not want to lose the information that some of the curves were outlying prior to the
preprocessing step, we can include the baseline functions in our analysis. Moreover,
to increase the potential of finding shape outliers, we include the derivatives of the
curves (shown in Fig. 3) as well. All together we thus perform our analysis on a
three-dimensional functional data set.

First we look at the SPD heatmap in Fig. 26 and the AO heatmap in Fig. 27. Both
show the top 50 rows out of 90. These heatmaps reveal interesting structures in the
data. Curves 71 through 90 show an increased cross-sectional outlyingness between
wavenumbers 8,850 and 8,950. Among the rows with the highest functional AO we
also find curves 1 through 10. A similar pattern can be seen in the depth heatmap.
However, there is a difference between these two groups. The cross-sectional adjusted
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Fig. 28 Centrality-stability plot of the tablets data.
(Color figure online)

Fig. 29 Raw tablet curves colored according to
their type. (Color figure online)

outlyingness of the first 10 observations is mostly stable across wavenumbers, whereas
the other outliers show more variability in their AO values.

This difference becomes more explicit in the centrality-stability plot (Fig. 28). We
clearly distinguish three groups of observations: regular ones, curves with low depth
and stable outlyingness, and those with low depth and highly variable AO values. They
correspond nicely to the three types of curves that could be seen on the raw data: the
90 mg pills (orange), the downward shifted 90 mg (red), and the 250 mg (purple),
see Fig. 29. As expected the shifted outliers have an almost constant deviation from
the functional median and thus are situated in the lower right corner of the centrality-
stability plot. The wiggly behavior of the 250 mg tablets causes them to be located in
the upper right part.

One might wonder whether these groups could also be found by applying existing
univariate outlier detection tools to the marginal curves. We first apply the functional
boxplot of Sun and Genton (2011) to each of the three univariate functional data sets.
On the baseline functions (Fig. 24), observations 1, 2, 4–6, 71–74, 79, 83, 88 and
90 are flagged as outliers. On the baseline-corrected spectra the functional boxplot
indicates tablets 1, 4, 73, 76, 79, 83 and 90 as outliers. Applied to the derivatives it
flags observations 1, 4, 5, 71–84 and 87–90. Even if we combine the results from the
three components, tablets 3, 7–10, 85 and 86 are not detected.

Next we apply the outliergram which has recently been proposed by Arribas-Gil
and Romo (2014). It combines two univariate functional depth methods: the modified
band depth (MBD) and the modified epigraph index (MEI). Arribas-Gil and Romo
(2014) show that for each curve

MBD � a0 + a1MEI + a2n
2MEI2

with a0, a1, a2 depending on n only. Using this relation they propose to plot the depths
of the observations in the (MBD,MEI)-plane. They then define shape outliers as those
observations whose distance di = a0 + a1MEIi + a2n2MEI2i −MBD is flagged as an
outlier on the boxplot of the di .

If we apply this technique to the marginals of our three-dimensional functional
data set, no outliers are detected from the baseline functions or the baseline-corrected
spectra. Figure 30 shows the outliergram (right) of the derivatives of the spectra (left).

123



200 M. Hubert et al.

7500 8000 8500 9000 9500 10000

−0
.1

0
−0

.0
5

0.
00

0.
05

Observations
R

es
po

ns

0.40 0.45 0.50 0.55 0.60 0.65

0.
1

0.
2

0.
3

0.
4

0.
5

Outliergram

Modified Epigraph Index
M

od
ifi

ed
 B

an
d 

D
ep

th

90

Fig. 30 Derivatives of the tablet spectra (left) and their outliergram (right). Curve 90 is shown in black in
the left

Only observation 90 is flagged as a shape outlier and is marked on the left plot. Our
multivariate analysis is thus much more powerful here.

6 Conclusion and outlook

We extend the toolbox of multivariate functional data analysis by new techniques for
outlier detection. Functional data can have various kinds of outlyingness. A curve
can have isolated or persistent outlying behavior, and the latter can be of the shift,
amplitude, or shape variety, or a combination of those. The multivariate nature of the
data makes these harder to detect than in the univariate functional case.

Our new tools are based on depth-related notions so they do not have to assume
any symmetry. We introduce the bagdistance, a metric based on halfspace depth.
Even in the simpler case of multivariate nonfunctional data this is a new concept.
The functional bagdistance carries more numerical information than the functional
halfspace depth alone, and the new bagdistance heatmap helps to distinguish between
isolated and persistent outlyingness.

A second approach is to extend the well-known projection depth to skewed dis-
tributions by basing it on the adjusted outlyingness (AO). In the multivariate case
this skewness-adjusted projection depth (SPD) satisfies the depth axioms of Zuo and
Serfling (2000a) and has convex depth regions. Integrating the SPD over time yields
the functional SPD, as well as the SPD heatmap which can reveal detailed structure
in the data. Combining information from the AO with the functional SPD we obtain a
new diagnostic plot, which we call the centrality-stability plot because it contrasts the
overall depth of a curve with the time-variability of its cross-sectional outlyingness.
In the examples we illustrate the power of these multivariate functional tools, also
compared to univariate analysis of the marginals.

We are currently working on a package for R and a corresponding toolbox for
MATLAB implementing the techniques described in this paper. In future work we
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will investigate how these new tools can be used for other purposes such as supervised
classification of multivariate data and of functional data.
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