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Abstract We propose new affine invariant tests for multivariate normality, based on
independence characterizations of the sample moments of the normal distribution.
The test statistics are obtained using canonical correlations between sets of sample
moments in a way that resembles the construction of Mardia’s skewness measure and
generalizes the Lin–Mudholkar test for univariate normality. The tests are compared to
some popular tests based on Mardia’s skewness and kurtosis measures in an extensive
simulation power study and are found to offer higher power against many of the
alternatives.

Keywords Goodness-of-fit · Kurtosis · Multivariate normality · Skewness ·
Test for normality

1 Introduction

Many classical multivariate statistical methods are based on the assumption that the
data comes from a multivariate normal distribution. Consequently, the use of such
methods should be followed by an investigation of the assumption of normality. A
number of tests for multivariate normality can be found in the literature, but the field
has not been investigated to the same extent as have tests for univariate normality.

Let γ = E(X −μ)3/σ 3 denote the skewness of a univariate random variable X and
κ = E(X − μ)4/σ 4 − 3 denote its (excess) kurtosis. Both these quantities are 0 for
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190 M. Thulin

the normal distribution but nonzero for many other distributions, and some common
tests for univariate normality are therefore based on γ and κ .

Different analog multivariate measures of skewness and kurtosis have been pro-
posed, perhaps most notably by Mardia (1970). Said measures have been used for
various tests for multivariate normality in the last few decades. Some of these tests,
in particular the tests that use Mardia’s skewness and kurtosis measures as test sta-
tistics, have proved to have high power in many simulation studies (e.g. Mecklin and
Mundfrom 2004, 2005) and new tests for normality based on multivariate skewness
and kurtosis continue to be published today (Doornik and Hansen 2008; Kankainen
et al. 2007).

In many inferential situations, some types of departures from normality are a more
serious concern than are others. For instance, MANOVA is known to be sensitive
to deviations from normality in the form of asymmetry, but to be relatively robust
against deviations in the form of heavy tails. Using skewness and kurtosis allows us to
construct tests that are directed toward some particular class of alternatives: skewness is
used to detect asymmetric alternatives whereas kurtosis is used to detect alternatives
with either short or long tails. This typically results in tests that, in comparison to
omnibus tests that are directed to all alternatives, have higher power against the class
of alternatives that they are directed to.

While more directed toward certain alternatives, such tests may however still be
prone to reject alternatives from other classes. The sample skewness and sample kur-
tosis are correlated, which for instance can cause a skewness-based test to reject
normality for a symmetric distribution with heavy tails. Henze (2002) and others have
argued that this is a reason to avoid directed tests for normality. Directed tests will
however in general have comparatively low power against alternatives that they are not
directed to, lowering the risk of rejecting normality because of an unimportant devi-
ation from normality. It is arguably better to have a test that has high power against
interesting alternatives and lower power against uninteresting alternatives, rather than
a test that has medium high power against all alternatives.

In this paper six new directed tests for normality, all related to multivariate skewness
or kurtosis, are proposed. Their common basis is independence characterizations of
sample moments of the multivariate normal distribution.

In Sect. 2 we reexamine Mardia’s measure of multivariate skewness, which leads to
two new classes of tests for multivariate normality. In Sect. 3 we state explicit expres-
sions for covariances between multivariate sample moments in terms of moments of
X = (X1, . . . , X p)

′. This will allow us to estimate the moments involved and to test
whether these sample moments are correlated.

In Sect. 4 we study the first class of new tests for normality, all of which are
related to multivariate skewness. These can be viewed as multivariate generalizations
of the univariate Z ′

2 test (Thulin 2010), which in turn is a modified version of the
Lin and Mudholkar (1980) test. In Sect. 5 we study the second class of tests, related
to multivariate kurtosis. These, in turn, are generalizations of the Thulin (2010) Z ′

3
modification of a test proposed by Mudholkar et al. (2002). The tests are applied to
the Iris data in Sect. 6. The results of a simulation study comparing the new tests
with tests based on Mardia’s skewness and kurtosis measures is presented in Sect. 7,
which is followed by a discussion in Sect. 8. The text concludes with an appendix
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Tests for multivariate normality 191

containing proofs and tables. Additional tables and figures are included in two online
supplements.

2 Mardia’s multivariate skewness and kurtosis measures revisited

2.1 Multivariate skewness

A well-known characterization of the multivariate normal distributions is that the i.i.d.
p-variate variables X1, . . . , Xn are normal if and only if the sample mean vector
X̄ = (X̄1, X̄2, . . . , X̄ p)

′ and the sample covariance matrix S are independent. Our
aim is to test this independence in order to assess the normality of a population. As
testing independence is difficult, we will resort to testing correlations instead.

Assume that X1, . . . , Xn are i.i.d. p-variate random variables with nonsingular
covariance matrix �. Let X̄ = (X̄1, X̄2, . . . , X̄ p)

′ be the sample mean vector and let

S =

⎡
⎢⎢⎢⎣

S11 S12 · · · S1p

S12 S22 · · · S2p
...

...
. . .

...

S1p S2p · · · Spp

⎤
⎥⎥⎥⎦

be the sample covariance matrix with Si j = (n − 1)−1 ∑n
k=1(Xk,i − X̄i )(Xk, j − X̄ j ).

Define

u = vech(S) = (S11, S12, . . . , S1p, S22, S23, . . . , S2p, S33, . . . , Sp−1,p, Spp)
′

so that u is a vector containing the q = p(p + 1)/2 distinct elements of S. Now,
consider the covariance matrix of the vector (X̄ ′, u′)′, in the following denoted (X̄, u):

Cov((X̄, u)) =
[

�11 �12
�21 �22

]
(1)

where �11 = Cov(X̄), �22 = Cov(u), �21 = �
′
12 and �12 contains covariances of

the type Cov(X̄i , S jk), i, j, k = 1, . . . , p. If X̄ and u are uncorrelated, then �12 = 0.
Mardia (1970, 1974) noted that for univariate random variables, asymptotically

cor(X̄ , S2) ≈ 1√
2
γ if κ is assumed to be negligible. Based on this, he used Cov((X̄, u))

to construct a multivariate skewness measure. Studying the canonical correlations (see
e.g. Mardia et al. 1979) between X̄ and u he proposed the measure

β1,p = 2
p∑

i=1

λ2
i

where λ1, . . . , λp are the canonical correlations. This expression reduces to 2cor
(X̄ , S2)2 ≈ γ 2 for univariate random variables.
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From the theory of canonical correlations we have that λ2
1, . . . , λ

2
p are the eigen-

values of �11
−1�12�22

−1�21 and thus

β1,p = 2tr(�11
−1�12�22

−1�21).

Taking these moments to order n−1 Mardia showed that

β1,p ≈ E
(
(X − μ)′�−1(Y − μ)

)3

where X and Y are independent and identical random vectors. The sample counterpart
of the above expression,

b1,p = 1

n2

n∑
i, j=1

(
(Xi − X̄)′S−1(X j − X̄

)3
, (2)

is commonly used as a measure for multivariate skewness and as a test statistic for a
test for multivariate normality.

In Section 2.8 of McCullagh (1987) Mardia’s approximation of β1,p is shown to
be a natural generalization of γ 2. It is however not necessarily a good approximation
of the canonical correlations between X̄ and u. An important assumption underlying
Mardia’s skewness measure is that the fourth central moments of the distribution are
negligible. Seeing as, for univariate variables, γ 2 −2 ≤ κ; see Dubkov and Malakhov
(1976); this seems like a rather strong condition. For univariate random variables,
Thulin (2010) noted that

ρ2 = cor(X̄ , S2) = γ√
κ + 3 − n−3

n−1

and used ρ̂2 = Z ′
2, the sample moment version of this quantity, as a test statistic

for a test for normality, proposing a test that is a modified version of the test of Lin
and Mudholkar (1980). In Thulins’ simulation power study Z ′

2 was more powerful
than γ̂ against most of the alternatives under study. Consequently, for p = 1 it is
better to use the explicit expression for cor(X̄ , S2) rather than the approximation
cor(X̄ , S2) ≈ 1√

2
γ . It is therefore of interest to use Mardia’s approach without any

approximations, in the hope that this will render a more powerful test for normality. In
Sect. 3 we give explicit expressions for Cov(X̄i , S jk) and Cov(Si j , Skl), allowing us to
study �11

−1�12�22
−1�21 without approximations and to construct new test statistics.

2.2 Multivariate kurtosis

Mardia (1970, 1974) proposed the multivariate kurtosis measure

β2,p = E
(
(X − μ)′�−1(Y − μ)

)2
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Tests for multivariate normality 193

with sample counterpart

b2,p = 1

n

n∑
i=1

(
(Xi − X̄)′S−1(Xi − X̄)

)2
. (3)

In the univariate setting

ρ3 = cor

(
X̄ ,

n

(n − 1)(n − 2)

n∑
i=1

(Xi − X̄)3
)

= κ√
λ+ 9 n

n−1 (κ + γ 2)+ 6n2

(n−1)(n−2)

, (4)

where λ = μ6
σ 6 −15κ−10γ 2 −15 is the sixth standardized cumulant (Thulin 2010). In

a simulation power study (Thulin 2010) found the test for normality based on ρ̂3 = Z ′
3,

the sample counterpart of (4), to have a better overall performance than the popular
κ̂ = b2 = b2,1 test. It is therefore of interest to find a multivariate generalization of
Z ′

3, in hopes that it will yield a test with higher power than b2,p.
Similarly to what was done above for the covariance, let

Si jk = n

(n − 1)(n − 2)

n∑
r=1

(Xr,i − X̄i )(Xr, j − X̄ j )(Xr,k − X̄k)

and

v = (S111, S112, . . . , Spp(p−1), Sppp)
′,

a vector of length p + p(p − 1)+ p(p − 1)(p − 2)/6. We will construct tests based
on the fact that X̄ and v are independent if X1, . . . , Xn are normal. The covariance
matrix of (X̄, v) can be written as

Cov((X̄, v)) =
[

�11 �12
�21 �22

]
(5)

where �11 = Cov(X̄), �22 = Cov(v), �21 = �
′
12 and �12 contains covariances of

the type Cov(X̄i , S jkl), i, j, k, l = 1, . . . , p. If X and v are uncorrelated, �12 = 0.

3 Explicit expressions for the covariances

In the following theorems we state explicit expressions for the elements of Cov((X̄, u))
and Cov((X̄, v)) in terms of moments of (X1, . . . , X p). These covariances can be
obtained by tedious but routine calculations of the moments involved, that are much
simplified by the use of tensor notation, as described in McCullagh (1987). All five
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covariances can be found scattered in the literature, expressed using cumulants: (6)–
(8) are all given in Section 4.2.3 of McCullagh (1987), (9) is found in Problem 4.5 of
McCullagh (1987) and (10) is expression (7) in Kaplan (1952).

Theorem 1 Assume that X1, . . . , Xn are i.i.d. p-variate random variables with
E|Xi X j Xk Xl | < ∞ for i, j, k, l = 1, 2, . . . , p. Let μi1,...,is = E(Xi1 − μi1)(Xi2 −
μi2) · · · (Xis − μis ). Then, for n ≥ 2p + p(p − 1)/2 and i, j, k, l = 1, 2, . . . , p

(i) the elements of �11 are

Cov(X̄i , X̄ j ) = 1

n
μi j , (6)

(ii) the elements of �12 and �21 are

Cov(X̄i , S jk) = 1

n
μi jk (7)

and
(iii) the elements of �22 are

Cov(Si j , Skl) = 1

n
(μi jkl − μi jμkl)+ 1

n(n − 1)
(μikμ jl + μilμ jk). (8)

Since �11 = �11, we only give the expressions for �22 and �12 in the following
theorem.

Theorem 2 Assume that X1, . . . , Xn are i.i.d. p-variate random variables with
E|XαXβXγ XδXεXζ | < ∞ for α, . . . , ζ = 1, 2, . . . , p. Let μi1,...,is = E(Xi1 −
μi1)(Xi2 − μi2) · · · (Xis − μis ). Then, for n ≥ 2p + p(p − 1)+ p(p − 1)(p − 2)/6
and i, j, k, r, s, t = 1, 2, . . . , p

(i) the elements of �12 and �21 are

Cov(X̄i , Srst ) = 1

n
(μirst − μirμst − μisμr t − μi tμrs) (9)

and
(ii) the elements of �22 are

Cov(Si jk, Srst )= 1

n
λi jkrst + 1

n−1

(
9∑
μir (μ jkst −

3∑
μ jkμst )+

9∑
μi jrμkst

)

+ n

(n − 1)(n − 2)

6∑
μirμ jsμkt (10)

where λi jkrst is given below and
∑k denotes summation over k distinct permu-

tations of i, j, k, r, s, t . In particular, in
∑9

μir (. . .) the summation is taken over
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all permutations of i, j, k, r, s, t where i and either of j, k switch places and/or
r and either of s, t switch places. In

∑9
μi jrμkst the summation is taken over all

permutations except μi jkμrst . Finally, in
∑3

μ jkμst and

λi jkrst = μi jkrst −
15∑
μi j (μkrst −

3∑
μkrμst )−

10∑
μi jkμrst −

15∑
μi jμkrμst

the sums are taken over all distinct permutations.

4 Tests based on X̄ and u

4.1 Modifying Mardia’s statistic

The factor 2 in Mardia’s expression

β1,p = 2tr(�11
−1�12�22

−1�21)

is only of interest if we assume negligible fourth moments (in the sense of Mardia
(1970)). We will therefore omit it in the following and instead study the quantity

tr(�11
−1�12�22

−1�21).

Let L11, L22, L12 and L21 be the sample counterparts of �11, �22, �12 and �21,
where μi1,...,is = E(Xi1 −μi1)(Xi2 −μi2) . . . (Xis −μis ) are estimated by the sample
moments

mi1,...,is = n−1
n∑

k=1

(xk,i1 − x̄i1)(xk,i2 − x̄i2) . . . (xk,is − x̄is ), (11)

i.e. where the moments in Theorem 1 are replaced by their sample counterparts. The
test statistic for the new test is

Z (HL)
2,p = tr(L11

−1 L12 L22
−1 L21). (12)

The null hypothesis of normality is rejected if Z (HL)
2,p is sufficiently large.

Z (HL)
2,1 coincides with Z ′2

2 from Thulin (2010) and is thus equivalent to the |Z ′
2| test

presented there. Z (HL)
2,2 is a polynomial of degree 10 in 13 moments and the full formula

takes up more than two pages. It is however readily computed using a computer, as is
Z (HL)

2,p for higher p.
It should be noted that differences in index notation complicate the situation some-

what here. Mardia’s skewness is denoted b1,p, with 1 as its index, whereas the univari-
ate correlation statistic Z ′

2 has 2 as its index. When generalizing Z ′
2 to the multivariate

setting we will keep the index 2, hoping that it won’t be confused with Mardia’s
kurtosis measure b2,p.
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4.2 Other test statistics from the theory of canonical correlations

Let Y and Z be normal random vectors with

Cov((Y , Z)) =
[

�11 �12
�21 �22

]

partitioned like (1). Let �̂11, �̂22 and �̂12 = �̂′
21 be the sample covariance matrices and

ν̂2
1 , . . . , ν̂

2
p be the eigenvalues of �̂11

−1
�̂12�̂22

−1
�̂21. In Section 10.3 of Kshirsagar

(1972) the test statistic of the likelihood ratio test of H0 : �12 = 0 versus H1 : �12 �= 0
is shown to be

− n log
p∏

i=1

(1 − ν̂2
i ). (13)

Now, let λ̂2
1 ≥ λ̂2

2 ≥ . . . ≥ λ̂2
p be the eigenvalues of L11

−1 L12 L22
−1 L21. Assuming

that the necessary moments exist, X̄ and u are asymptotically normal. Although L22
and L12 are not the usual sample covariance matrices, in the light of (13), this suggests
the use of the following statistic for a test for normality:

Z (W )
2,p =

p∏
i=1

(1 − λ̂2
i ). (14)

The null hypothesis of normality is rejected if Z (W )
2,p is sufficiently small.

Another quantity that has been considered for a test of H0 : �12 = 0, for instance
by Bartlett (1939), is

Z (PB)
2,p =

p∑
i=1

λ̂2
i

1 − λ̂2
i

. (15)

Z (PB)
2,p is similar to Z (HL)

2,p , but weighs the correlation coefficients so that larger coeffi-
cients become more influential. The null hypothesis should be rejected for large values
of Z (PB)

2,p .
Finally, we can consider the statistic

Z (max)
2,p = max(λ̂2

1, . . . , λ̂
2
p) = λ̂2

1, (16)

large values of which imply non-normality. Z (max)
2,p seems perhaps like the most natural

choice for a test statistic, as λ1 = 0 implies that all canonical correlations are 0.
The statistics Z (HL)

2,p , Z (W )
2,p , Z (PB)

2,p and Z (max)
2,p are all related to well-known statistics

from multivariate analysis of variance; they are analogs of the Hotelling–Lawley trace,
Wilk’s 
, the Pillai–Bartlett trace and Roy’s greatest root, respectively. For p = 1
these statistics are all equivalent to the |Z ′

2| test from Thulin (2010).
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4.3 Theoretical results

Some fundamental properties of the new test statistics are presented in the following
theorem. Its proof is given in the Appendix.

Theorem 3 Assume that X1, . . . , Xn are i.i.d. p-variate random variables fulfilling
the conditions of Theorem 1. Then, for n ≥ 2p + p(p −1)/2 and i, j, k = 1, 2, . . . , p

(i) Z (HL)
2,p , Z (W )

2,p , Z (PB)
2,p and Z (max)

2,p are affine invariant, i.e. invariant under nonsin-
gular linear transformations AX + b where A is a nonsingular p × p matrix
and b is a p-vector,

(ii) The population canonical correlation λ1 = maxa,b |ρ(aX̄, bu)| = 0 if μi jk = 0
for all i, j, k and > 0 if μi jk �= 0 for at least one combination of i, j, k, and

(iii) Z (HL)
2,p , Z (W )

2,p , Z (PB)
2,p and Z (max)

2,p converge almost surely to the corresponding func-
tions of the population canonical correlations λ1 ≥ λ2 ≥ . . . ≥ λp.

Since the statistics are affine invariant, their distributions are the same for all p-
variate normal distributions for a given sample size n. These null distributions are
easily obtained using Monte Carlo simulation.

Since λ1 ≥ λ j for j > 1, λ1 = 0 implies that all population canonical correlations
are 0, as is the case for the normal distribution. The tests should therefore not be sensi-
tive to distributions with that kind of symmetry. All four statistics are, by (ii) and (iii),
however consistent against alternatives whereμi jk �= 0 for at least one combination of
i, j, k. In particular, they are sensitive to alternatives with skew marginal distributions.

5 Tests based on X̄ and v

5.1 Test statistics

The ideas used in Sect. 4 for Cov((X̄, u)) can also be used for Cov((X̄, v)) in an
analog manner, yielding multivariate generalizations of (4). This leads to two new
tests for normality, as described below.

Let P11, P22, P12 and P21 be the sample counterparts of �11,�22,�12 and �21,
where the μi1,...,is are estimated by the sample moments, as in (11) above. Let ψ̂2

1 ≥
. . . ≥ ψ̂2

p be the eigenvalues of P11
−1 P12 P22

−1 P21.
The test statistics for the new tests are

Z (HL)
3,p = tr(P11

−1 P12 P22
−1 P21) =

p∑
i=1

ψ̂2
i , (17)

Z (W )
3,p =

p∏
i=1

(1 − ψ̂2
i ), (18)

We have also considered other statistics, but found these to have lower power than
these two. Large values of Z (HL)

3,p and small values of Z (W )
3,p imply non-normality. Both

statistics are equivalent to |Z ′
3| from Thulin (2010) for p = 1.
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5.2 Theoretical results

The following theorem mimics Theorem 3 above. Its proof is given in the Appendix.

Theorem 4 Assume that X1, . . . , Xn are i.i.d. p-variate random variables fulfilling
the conditions of Theorem 2. Then, for n ≥ 2p + p(p − 1)+ p(p − 1)(p − 2)/6 and
i, j, k, r, s, t = 1, 2, . . . , p

(i) Z (HL)
3,p and Z (W )

3,p are affine invariant, i.e. invariant under nonsingular linear trans-
formations AX + b where A is a nonsingular p × p matrix and b is a p-vector,

(ii) The population canonical correlation ψ1 = maxa,b |ρ(aX̄, bv)| = 0 if μirst −
μirμst − μisμr t − μi tμrs = 0 for all i, r, s, t = 1, . . . , p and > 0 otherwise,
and

(iii) Z (HL)
3,p and Z (W )

3,p converge almost surely to the corresponding functions of the
population canonical correlations ψ1 ≥ ψ2 ≥ . . . ≥ ψp.

Using the affine invariance, the null distributions of the statistics can be obtained
through Monte Carlo simulation.

By (ii) and (iii) both statistics are consistent against alternatives where μirst −
μirμst − μisμr t − μi tμrs �= 0 for at least one combination of i, r, s, t .

6 Analysis of the Iris data set

In Table 1 we present the results for the new tests when applied to the famous Iris
data set of Fisher (1936). The tests are applied to each of the three subsets of the
Iris data: Setosa, Versicolor and Virginica. For each such subset n = 50 and p = 4.
We also applied Mardia’s skewness test b1,p (2), Mardia’s kurtosis test b2,p (3) and
the Mardia–Kent omnibus test T (Mardia and Kent 1991), in which the skewness
and kurtosis measures are combined. To compute the critical values and p-values, we
approximated the null distribution of each test statistic by 10,000 simulated samples

Table 1 Results for the Iris data set

b1,p b2,p T Z (HL)
2,p Z (W)

2,p Z (PB)
2,p Z (max)

2,p Z (HL)
3,p Z (W)

3,p

5 % critical
value

3.41 24.87 4,868.38 1.42 0.15 2.64 0.58 2.90 0.004

Setosa sample

p value 0.13 0.03 0.09 0.32 0.31 0.31 0.25 0.54 0.46

Statistic 2.90 25.49 4,241.12 1.13 0.24 1.82 0.49 2.52 0.01

Versicolor sample

p value 0.14 0.51 0.49 0.14 0.15 0.16 0.23 0.68 0.64

Statistic 2.84 21.97 2,593.51 1.28 0.20 2.15 0.50 2.43 0.02

Virginica sample

p value 0.11 0.20 0.18 0.31 0.33 0.34 0.28 0.29 0.38

Statistic 2.97 23.34 3,561.22 1.13 0.25 1.77 0.48 2.68 0.01
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Tests for multivariate normality 199

from a normal distribution. The resulting critical values at the 5 % level are given in
the table. Recall that for the Z(W)

2,p and Z(W)
3,p statistics, values of the statistic that are

smaller than the critical value imply non-normality.
At the 5 % level, the only time at which normality is rejected is when b2,p is applied

to the Setosa sample.

7 Simulation results

7.1 The simulation study

To evaluate the performance of the new Z2,p and Z3,p tests, a Monte Carlo study of
their power was carried out. The tests were compared to b1,p, b2,p (3) and the Mardia–
Kent test T . The tests were compared for n = 20 and n = 50 for p = 2 and p = 3.
For some alternatives, more combinations of n and p were used. Since the results for
p = 2 and p = 3 were quite similar, we only present the results for p = 3 below. The
results for p = 2 can be found in Supplement S1.

In many power studies for multivariate tests for normality alternatives with inde-
pendent marginal distributions have been used. We believe that this can be misleading,
as distributions with independent marginals are uncommon in practice and indeed of
little interest in the multivariate setting, where the dependence structure of the mar-
ginals often is paramount. For this reason, we decided to focus mainly on alternatives
with a more complex dependence structure in our study. One alternative with inde-
pendent exponential marginals, which has been used in many previous power studies,
is included for reference.

The alternatives used in the study are presented in Tables 2 and 3. Contour plots of
the alternatives from Table 2 are given in Supplement S2. The asymmetric multivariate
Laplace distribution mentioned in Table 3 is described in Kotz et al. (2000).

Table 2 Alternatives constructed using their marginal distributions

Distr. of Yi Construction of (Y1, . . . , Yp)

Indep. Exp(1) Y1, . . . , Yp i.i.d. Exp(1)

LogN (0, a) X0 ∼ LogN (0, a/2) indep. of X1, . . . , X p
i.i.d. LogN (0, a/2). Yi = X0 · X p

Laplace(0, 1) (type I) X0 ∼ Exp(1) indep. of X1, . . . , X p i.i.d.
Exp(1). Yi = Xi − X0

Laplace(0, 1) (type II) X0 ∼ N (0, 1) indep. of Xi,1, Xi,2, Xi,3,
i = 1, . . . , p i.i.d. N (0, 1).
Yi = X0 · Xi,1 + Xi,2 · Xi,3

Beta(a, b) X0 ∼ �(b, 1) indep. of X1, . . . , X p i.i.d.
�(a, 1). Yi = Xi /(Xi + X0)

χ2
2 X0 ∼ �(0.5, 0.5) indep. of X1, . . . , X p

i.i.d. �(0.5, 0.5). Yi = X0 + Xi
χ2

8 X0 ∼ �(2, 0.5) indep. of X1, . . . , X p i.i.d.
�(2, 0.5). Yi = X0 + Xi
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Table 3 Purely multivariate alternatives. Here �r is a covariance matrix with unit variances and
correlations r

Distribution Description

N (0,�0) Multivariate normal, symmetric

N (0,�0.9) Multivariate normal, symmetric

t (2) Multivariate t distribution, symmetric

AL(0,�0) Symmetric multivariate Laplace

AL(3,�0) Asymmetric multivariate Laplace

AL(1,�0.5) Asymmetric multivariate Laplace
9

10 N (0,�0)+ 1
10 N (1,�0) Location polluted normal mixture

9
10 N (0,�0)+ 1

10 N (2,�0) Location polluted normal mixture
9

10 N (0,�0)+ 1
10 N (1,�0.5) Scale and rotation polluted normal mixture

9
10 N (0,�0)+ 1

10 N (2,�0.5) Scale and rotation polluted normal mixture
3
4 N (0,�0)+ 1

4 N (1,�0) Heavily location polluted normal mixture
3
4 N (0,�0)+ 1

4 N (2,�0) Heavily location polluted normal mixture
3
4 N (0,�0)+ 1

4 N (1,�0.5) Heavily scale and rotation polluted normal mixture
3
4 N (0,�0)+ 1

4 N (2,�0.5) Heavily scale and rotation polluted normal mixture

In order to see which alternatives that the different tests could be sensitive to,
the population values of the statistics were determined for all alternatives. For most
distributions the values were computed numerically, to one decimal place for Mardia’s
statistics and to two decimal places for the Z2,p and Z3,p tests. The population values
are given in Table 3 in Supplement S1.

Using R, the nine tests were applied to 1,000,000 samples from each alternative
and each combination of n and p. The null distributions for all test statistics were
estimated using 100,000 standard normal samples.

7.2 Results for symmetric alternatives

The results for alternatives with symmetric marginal distributions are presented in
Table 4 in the “Appendix”. Mardia’s kurtosis test b2,p had the best overall perfor-
mance against symmetric alternatives with long-tailed marginal distributions, with the
Mardia-Kent T test as runner-up. The Z3,p tests had by far the best performance against
symmetric alternatives with short-tailed marginal distributions, but performed poorly
against heavy-tailed alternatives. It should therefore be regarded as being directed
against short-tailed alternatives.

b2,p and the Z3,p tests were somewhat unexpectedly outperformed by the b1,p test
and the Z2,p tests for the Laplace(0, 1) (type I) distribution. This was likely caused
by the fact that a distribution with that particular dependence structure (described
in Table 2), while having symmetric marginal distributions, is not symmetric in a
multivariate sense, as can be seen from the contour plot in Supplement S2 or in Table
3 in Supplement S1.

Finally, we investigated the size of the tests by computing their power against two
normal distributions. All tests attained the desired size α = 0.05.
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Table 4 Power of tests for normality against symmetric alternatives, α = 0.05, p = 3

Distribution b1,p b2,p T Z (HL)
2,p Z (W)

2,p Z (PB)
2,p Z (max)

2,p Z (HL)
3,p Z (W)

3,p

Laplace(0, 1) (type I)

n = 20 0.71 0.61 0.53 0.75 0.76 0.75 0.68 0.09 0.08

n = 50 0.99 0.94 0.86 0.99 1.00 0.99 0.99 0.24 0.23

Laplace(0, 1) (type II)

n = 20 0.46 0.58 0.49 0.33 0.35 0.35 0.32 0.09 0.08

n = 50 0.72 0.93 0.83 0.51 0.53 0.54 0.52 0.17 0.16

Beta(1, 1)

n = 20 0.02 0.01 0.02 0.06 0.06 0.06 0.06 0.28 0.31

n = 50 0.02 0.00 0.00 0.15 0.16 0.16 0.16 0.96 0.97
Beta(2, 2)

n = 20 0.02 0.01 0.02 0.04 0.05 0.05 0.05 0.10 0.10

n = 50 0.02 0.00 0.01 0.10 0.10 0.09 0.09 0.40 0.40

t (2)

n = 20 0.83 0.89 0.85 0.70 0.75 0.76 0.74 0.34 0.36

n = 50 0.98 1.00 0.99 0.95 0.95 0.95 0.95 0.77 0.77

AL(0,�0)

n = 20 0.58 0.71 0.60 0.43 0.46 0.46 0.44 0.10 0.08

n = 50 0.80 0.98 0.90 0.61 0.62 0.63 0.62 0.16 0.14

N (0,�0)

n = 20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

n = 50 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

N (0,�0.9)

n = 20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

n = 50 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Bold figures mark tests with high power

7.3 Results for asymmetric alternatives

The results for alternatives with asymmetric marginal distributions are presented in
Figs. 1 and 2 and Table 5 in the Appendix.

Mardias skewness test b1,p and the Z2,p tests are all directed to asymmetric alter-
natives, and outperformed the other tests. However, no directed test was uniformly
more powerful than the other directed tests. For p = 2, the Z (max)

2,p had the best overall

performance against asymmetric alternatives, while b1,p and the Z (W )
2,p and Z (PB)

2,p tests

also displayed a good average performance. For p = 3 the performance of Z (max)
2,p

was somewhat worse, whereas b1,p, Z (W )
2,p and Z (PB)

2,p still showed good performance.
How varying n and p affects the power of the tests is investigated in Figs. 1 and 2. In

Fig. 1a, we see that against a distribution with Beta(1, 2) marginal distributions, the
Z3,p tests have the best performance for small n, whereas the Z2,p tests are superior
for larger n. In Fig. 1, it is seen that against a distribution with LogN (0, 1) marginal
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distributions, the Z2,p tests have higher power than the b1,p test for small n, while the
relation is reversed for larger n.

In Fig. 2a, we see that against the AL(3, �0) distribution, b2,p has slightly higher
power than the Z2,p tests for small n, whereas the Z2,p tests have slightly higher power
for larger n. In Fig. 2b however, when n/p is fixed and p is increased, the difference
in power between the tests remains more or less unchanged.

8 Discussion

Based on the simulation results, our recommendations are that the Z (max)
2,p test should

be used against asymmetric alternatives when p = 2. For higher p, b1,p, Z (W )
2,p or

Z (PB)
2,p should be used instead. Mardia’s b2,p test should be used against heavy-tailed

symmetric alternatives. For short-tailed symmetric alternatives, one of the Z3,p tests
would be a better choice.

Most previous power studies for multivariate tests for normality have focused on
alternatives with independent marginal distributions. Such distributions are likely to be
rare in practice, and as is shown by the two distributions with Laplace(0, 1)marginals
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Table 5 Power of tests for normality against asymmetric alternatives, α = 0.05, p = 3

Distribution b1,p b2,p T Z (HL)
2,p Z (W)

2,p Z (PB)
2,p Z (max)

2,p Z (HL)
3,p Z (W)

3,p

Indep. Exp(1)

n = 20 0.82 0.61 0.62 0.84 0.86 0.84 0.77 0.29 0.29

n = 50 1.00 0.93 0.91 1.00 1.00 1.00 1.00 0.59 0.59

LogN (0, 2)

n = 20 0.97 0.89 0.88 0.98 0.98 0.98 0.96 0.61 0.63

n = 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95

LogN (0, 1)

n = 20 0.41 0.33 0.36 0.28 0.30 0.30 0.29 0.13 0.12

n = 50 0.89 0.69 0.67 0.87 0.88 0.88 0.84 0.22 0.21

Beta(1, 2)

n = 20 0.08 0.05 0.06 0.09 0.10 0.10 0.11 0.16 0.16

n = 50 0.21 0.02 0.03 0.45 0.49 0.52 0.56 0.45 0.46

χ2
2
n = 20 0.89 0.79 0.76 0.88 0.90 0.90 0.86 0.35 0.34

n = 50 1.00 0.99 0.97 1.00 1.00 1.00 1.00 0.71 0.71

χ2
8
n = 20 0.39 0.31 0.32 0.31 0.33 0.32 0.29 0.10 0.09

n = 50 0.87 0.62 0.59 0.87 0.88 0.87 0.82 0.18 0.18

AL(3,�0)

n = 20 0.78 0.71 0.70 0.64 0.72 0.74 0.73 0.28 0.27

n = 50 1.00 0.98 0.96 1.00 1.00 1.00 1.00 0.39 0.39

AL(1,�0.5)

n = 20 0.72 0.71 0.66 0.55 0.61 0.62 0.61 0.20 0.19

n = 50 0.98 0.98 0.94 0.97 0.98 0.98 0.98 0.31 0.30
9

10 N (0,�0)+ 1
10 N (1,�0)

n = 20 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05

n = 50 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.05 0.05
9

10 N (0,�0)+ 1
10 N (2,�0)

n = 20 0.15 0.13 0.13 0.11 0.12 0.12 0.12 0.06 0.06

n = 50 0.39 0.21 0.19 0.27 0.32 0.36 0.42 0.07 0.07
9

10 N (0,�0)+ 1
10 N (1,�0.5)

n = 20 0.16 0.11 0.11 0.14 0.14 0.14 0.14 0.05 0.05

n = 50 0.15 0.12 0.12 0.11 0.12 0.12 0.12 0.07 0.07
9

10 N (0,�0)+ 1
10 N (2,�0.5)

n = 20 0.74 0.32 0.27 0.68 0.69 0.70 0.71 0.14 0.13

n = 50 0.54 0.25 0.25 0.40 0.44 0.48 0.51 0.14 0.14
3
4 N (0,�0)+ 1

4 N (1,�0)

n = 20 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

n = 50 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.05
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Table 5 continued

Distribution b1,p b2,p T Z (HL)
2,p Z (W)

2,p Z (PB)
2,p Z (max)

2,p Z (HL)
3,p Z (W)

3,p

3
4 N (0,�0)+ 1

4 N (2,�0)

n = 20 0.07 0.05 0.05 0.09 0.09 0.09 0.09 0.06 0.06

n = 50 0.12 0.04 0.04 0.21 0.24 0.27 0.32 0.06 0.06
3
4 N (0,�0)+ 1

4 N (1,�0.5)

n = 20 0.08 0.07 0.07 0.09 0.08 0.08 0.08 0.05 0.05

n = 50 0.18 0.10 0.09 0.19 0.19 0.20 0.17 0.06 0.06
3
4 N (0,�0)+ 1

4 N (2,�0.5)

n = 20 0.11 0.07 0.07 0.15 0.15 0.15 0.13 0.06 0.06

n = 50 0.35 0.06 0.06 0.51 0.54 0.57 0.56 0.08 0.08

Bold figures mark tests with high power

Table 6 Critical values of the new tests

Z (HL)
2,p Z (W)

2,p Z (PB)
2,p Z (max)

2,p Z (HL)
3,p Z (W)

3,p

p = 2, n = 20

α = 0.05 0.85 0.31 1.75 0.58 1.25 0.13

α = 0.01 1.06 0.21 2.65 0.67 1.40 0.08

p = 2, n = 50

α = 0.05 0.43 0.61 0.58 0.31 0.80 0.33

α = 0.01 0.55 0.51 0.83 0.39 0.98 0.24

p = 3, n = 20

α = 0.05 1.62 0.07 4.98 0.78 2.30 0.01

α = 0.01 1.83 0.04 6.84 0.82 2.40 0.01

p = 3, n = 50

α = 0.05 0.83 0.36 1.29 0.45 1.67 0.07

α = 0.01 0.98 0.29 1.67 0.52 1.84 0.05

used in our study, multivariate dependence structures can greatly affect the power of
tests for normality.

To complicate matters further, some of the results in the tables highlight the fact
that what holds true for one combination of p and n can be false for a different
combination. For instance, when p = 2, Z (max)

2,p had higher power than b1,p for the

AL(1,�0) and the multivariate χ2
8 alternatives, but when p = 3, Z (max)

2,p had lower
power than b1,p . This phenomenon merits further investigation, as it implies that power
studies performed for low values of p can be misleading when choosing between tests
to use for higher-dimensional data. Further examples of this phenomenon are given in
Figs. 1 and 2.

In recent years, several authors have studied robust testing for normality, i.e. nor-
mality test designed to be robust against outliers. See Stehlík et al. (2012) and Cerioli
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et al. (2013) for examples. Stehlík et al. (2014) proposed a robustified version of the
univariate Z2,1 test. A robustified version of the multivariate Z2,p test will appear in
a future paper by the author.

Looking at the normal mixtures, which can be viewed as contaminated normal
distributions, we see that Z (max)

2,p and b1,p were on a par for the mildy polluted mixtures

(with a 9:1 mixing ratio) and that Z (max)
2,p in general had higher power for the heavily

polluted mixtures (with a 3:1 mixing ratio). This suggests the use of the Z (max)
2,p statistic

for a test for outliers, an idea that perhaps could be investigated further.
Implementations of the Z2,p and Z3,p in R are available from the author. Some

critical values for the new tests are given in Table 6.

Acknowledgments The author wishes to thank the editor and two anonymous referees for comments that
helped improve the paper, and Silvelyn Zwanzig for several helpful suggestions.

Appendix: proofs and tables

For the proof of Theorems 3 and Theorems 4 we need some basic properties of the
Kronecker product ⊗ and vech and vec operators from Henderson and Searle (1979).
See also Kollo and von Rosen (2005) and Kollo (2002) for more on these tools from
matrix algebra.

For a p ×q matrix A = {ai j } and an r × s matrix B, the Kronecker product A⊗ B
is the pr ×qs matrix {ai j B}, i = 1, . . . , p, j = 1, . . . , q. The vec operator stacks the
columns of a matrix underneath eachother, forming a single vector. If the columns of
the p × q matrix A are denoted a1, . . . , aq then vec(A) = (a′

1, . . . , a′
q)

′ is a vector
of length pq.

We will use that

(A ⊗ B)(C ⊗ D) = AC ⊗ B D, (A ⊗ B)′ = A′ ⊗ B′

and that if A is a p × p matrix and B a q × q matrix,

det(A ⊗ B) = det(A)q det(A)p.

The vech operator works as the vec operator, except that it only contains each distinct
element of the matrix once. For a symmetric matrix A, vech(A) thus contains only the
diagonal and the elements above the diagonal, whereas vec(A) contains the diagonal
elements and the off-diagonal elements twice.

We have the following relationship between the vec operator and the Kronecker
product:

vec(ABC) = (C ′ ⊗ A)vec(B).
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Furthermore, for a given symmetric p × p matrix A there exists a p(p + 1)/2 × p2

matrix H and a p2 × p(p + 1)/2 matrix G such that

vech(A) = Hvec(A) and vec(A) = Gvech(A).

As a preparation for the proof of Theorem 3, we prove the following auxiliary
lemma.

Lemma 1 Assume that X, X1, . . . , Xn are i.i.d. p-variate random variables fulfilling
the conditions of Theorem 1. Let Si j = (n − 1)−1 ∑n

k=1(Xk,i − X̄i )(Xk, j − X̄ j ) be
the elements of the sample covariance matrix S.

uX = (S11, S12, . . . , S1p, S22, S23, . . . , S2p, S33, . . . , Sp−1,p, Spp)
′ = vech(S)

is a vector with q = p(p + 1)/2 distinct elements. Denote its covariance matrix
Cov(uX ) = �22.

Let A be a nonsingular p × p matrix and let b be a p-dimensional vector. Then
there exists a nonsingular q × q matrix D such that

(i) the sample variances and covariances of Y = AX + b are given by uY = DuX ,
(ii) Cov(uY ) = D�22 D′ and

(iii) det(D) = det(A)p+1,

Proof The transformed sample AX + b has sample covariance matrix ASA′, so we
wish to study vech(ASA′). We have

vec(ASA′) = (A ⊗ A)vec(S).

Moreover, since S is symmetric there exist nonsingular matrices G and H such that

vec(S) = Gvech(S) and vech(S) = Hvec(S).

Thus

uY = vech(ASA′) = H(A ⊗ A)Gvech(S) =: DuX ,

which establishes the existence of D. From Section 4.2 of Henderson and Searle (1979)
we have

det(D) = det(H(A ⊗ A)G) = det(A)p+1

which is nonzero, since A is nonsingular. D is hence also nonsingular. In conclusion,
we have established the existence and nonsingularity of D as well as (i) and (iii).
Finally, (ii) follows immediately from (i). ��

We now have the tools necessary to tackle Theorem 3.
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Proof of Theorem 3 (i) From Theorem 10.2.4 in Mardia et al. (1979) we have that
the canonical correlations between the random vectors Y and Z are invariant
under the nonsingular linear transformations AY + b and C Z + d. Clearly all five
statistics are invariant under changes in location, since S11, S22, S12 and S21 all
share that invariance property. It therefore suffices to show that the nonsingular
linear transformation AX induces nonsingular linear transformations C X̄ and Du.
C = A is immediate and the existence of D is given by Lemma 1.

(ii) By part (ii) of Theorem 1, μi jk = 0 for all i, j, k implies that �12 = 0. But then
�11

−1�12�22
−1�21 = 0 and all canonical correlations are 0. If μi jk �= 0 then

ρ(X̄i , S jk) �= 0. Thus the linear combinations a′ X̄ = X̄i and b′u = S jk have
nonzero correlation. λ1 must therefore be greater than 0.

(iii) Follows from the fact that the statistics are continuous function of sample
moments that converge almost surely. ��

The proofs of parts (ii) and (iii) of Theorem 4 are analog to the previous proof. The
proof for part (i) is however slightly different as we omit to explicitly give a matrix
that gives a nonsingular linear transformation of vX .

Proof of Theorem 4 (i) Let the third order central moment of a multivariate random
variable Z be

m̄3(Z) = E
[
(Z − EZ)⊗ (Z − EZ)′ ⊗ (Z − EZ)

]′
= E

[
(Z − EZ) ((Z − EZ)⊗ (Z − EZ))′

]
.

Given a sample X1, . . . , X p, let Si jk = n
(n−1)(n−2)

∑n
r=1(Xr,i−X̄i )(Xr, j−X̄ j )(Xr,k−

X̄k). When the distribution of Z is the empirical distribution of said sample,

vX = (S111, S112, . . . , Spp(p−1), Sppp)
′ = n2

(n − 1)(n − 2)
vech (m̄3(Z)) .

Similarly vec (m̄3(Z)) stacks the elements of m̄3(Z) in a vector that simply is
vech (m̄3(Z)) with a few repetitions:

wX = (S111, S112, . . . , S112 . . . , Spp(p−1), Sppp)
′ = n2

(n − 1)(n − 2)
vec (m̄3(Z)) .

Thus, for each linear combination a′wX there exists a b so that b′vX = a′wX and
therefore, by the definition of canonical correlations, the (sample) canonical correla-
tions between X̄ and vX are the same as those between X̄ and wX .

Writing Y = Z − EZ, we have m̄3(Z) = E
(
Y(Y ⊗ Y)′

)
and

m̄3(AZ) = E
(

AY(AY ⊗ AY)′
) = E

(
AY(Y ⊗ Y)′(A ⊗ A)′

)

= Am̄3(Z)(A ⊗ A)′.

Hence

vec (m̄3(AZ)) = (A ⊗ A ⊗ A)vec (m̄3(Z)) .
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Now, det(A⊗ A⊗ A) = det(A⊗ A)p det(A)p2 = det(A)3p2
> 0, so E := (A⊗ A⊗

A) is a nonsingular matrix such that m̄3(AZ) = Em̄3(Z). Since canonical correlations
are invariant under nonsingular linear transformations of the two sets of variables, this
means that the canonical correlations between X̄ and wX remain unchanged under the
transformation AX + b. Thus the canonical correlations between X̄ and vY must also
necessarily remain unchanged. This proves the affine invariance of the statistics. ��
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