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Abstract In the context of capture-recapture modeling for estimating the unknown
size of a finite population it is often required a flexible framework for dealing with a
behavioural response to trapping. Many alternative settings have been proposed in the
literature to account for the variation of capture probability at each occasion depend-
ing on the previous capture history. Inference is typically carried out relying on the
so-called conditional likelihood approach. We highlight that such approach may, with
positive probability, lead to inferential pathologies such as unbounded estimates for
the finite size of the population. The occurrence of such likelihood failures is char-
acterized within a very general class of behavioural effect models. It is also pointed
out that a fully Bayesian analysis overcomes the likelihood failure phenomenon. The
overall improved performance of alternative Bayesian estimators is investigated under
different non-informative prior distributions verifying their comparative merits with
both simulated and real data.

Keywords Capture history · Capture–recapture · Conditional likelihood ·
Behavioural effect · Likelihood failure · Bayesian inference

1 Introduction

Capture-recapture models have been developed in biological sciences to estimate the
size of a finite population. Ecology has been one of the original fields of development
although many other fields such as epidemiology, genetics and software reliability
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make nowadays extensive use of capture recapture models and promote further devel-
opments. In modeling capture recapture experiments with a finite number of trapping
occasions there is a classical tripartition of the sources of variability which can affect
the probability that a particular unit is caught in one of the trapping occasions: i) behav-
ioural variability due to the change of behaviour of each unit after trapping experience;
ii) individual heterogeneity due to observable or unobservable specific characteristics
of each unit; iii) temporal, due to the external conditions (weather, season, trapping
effort, etc.) which can influence the success of the specific trapping occasion.

Especially in sampling wild animal populations there is empirical evidence that
units of the population often exhibit a change of behaviour after trapping experience
and this can affect either permanently, or temporarily, their capture probabilities.

In this paper we will be concerned with inferential tools available to model and
understand behavioural patterns in capture recapture experiments. This will lead us
to restrict the attention from the most general embedding model framework denoted
with MT B H in Otis et al. (1978) to the more restrictive MT B framework so that we can
highlight some pathologies which typically occur with behavioural models without
overlapping them with those due to another layer of difficulty related to individual
heterogeneity (Link 2003). Another critical point that is not addressed here is related
to possible relaxation of the independence hypotheses among units (Fattorini et al.
2007).

One of the aims of our paper is to point out that this sort of “estimation failure” does
hold for the conditional MLE in some classical behavioural models (as well as in some
alternative ones) whereas it does not necessarily hold for other inferential approaches.
This point is relevant from a theoretical as well as practical perspective. There is a lot
of very recent and less recent papers which are concerned with modeling and inferring
behavioural patterns. Different approaches have been used ranging from most fre-
quent and classical conditional-likelihood-based inference of Huggins (1989, 1991)
to more recent Markov-chain (Yang and Chao 2005) and extensions thereof (Farcomeni
2011), extended latent class models based on Hidden Markov Models (Bartolucci and
Pennoni 2007), semiparametric covariate dependent approach (Hwang and Huggins
2011) and others (Ramsey and Severns 2010). Previous papers based on a latent class
approach are Bartolucci and Forcina (2001), Stanghellini and van der Heijden (2004)
and Bartolucci and Forcina (2006).

Fewer authors have adopted a Bayesian approach for the simplest permanent behav-
ioural settings (Lee and Chen 1998; Lee et al. 2003; Ghosh and Norris 2005) while
alternative estimating approaches have been more recently proposed to cope with
behavioural modeling in continuous-time recapture settings (Chaiyapong and Lloyd
1997; Yip et al. 2000; Chao et al. 2000; Hwang et al. 2002).

In Sect. 2 we will adopt as model set up a rather general modeling framework
recently proposed by Farcomeni (2011) where the contingency table probabilities of
all possible capture histories are reparameterized in terms of conditional probabilities.
In that setting many classical and new alternative models are derived by imposing
restrictions on such conditional probabilities. One of the main motivation for consid-
ering the classes of models derived by the approach in Farcomeni (2011) is that the
conditional probability reparameterization of the whole joint probability of the entire
capture history is particularly suitable for modeling behavioural changes. In fact we
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believe that one can easily understand the fact that some pattern present in the (initial)
partial capture history may result in a change of the subsequent conditional proba-
bilities. In Sect. 3 we point out that a common form of pathology arises when the
conditional-likelihood approach is adopted to draw inference on the main parameter
of interest within a general class of behavioural models in that modeling framework.
Such annoying phenomenon called likelihood failure consists of unbounded estimates
for the unknown population size which also implies some degree of non robustness of
the estimator even when it is guaranteed to yield a finite estimate. This form of degen-
eracy is not true in general. It is true only sometimes, and especially if you estimate
the unknown population size N by means of the maximization of the conditional like-
lihood. We connect this phenomenon to a problem pointed out similarly by Seber and
Whale (1970) in modeling removal studies and later on faced by Carle and Strub (1978)
who suggested a weighted likelihood approach as a possible overcome. We also high-
light the generality of this likelihood failure phenomenon providing general conditions
for its occurrence. In Sect. 4 we show that a fully Bayesian approach theoretically over-
comes the possible unboundedness of estimates and we propose alternative Bayesian
estimators for further investigation. In Sect. 5 we compare the conditional maximum
likelihood estimator (CMLE) and the proposed alternative Bayesian estimators via
simulation studies providing empirical evidence of overall improved performance of
Bayesian alternatives. In Sect. 6 we also compare the two approaches with a real
dataset concerning Great Copper butterflies.

2 Capture–recapture behavioural effect modeling

Let us consider a discrete-time closed capture-recapture experiment in which the
unknown population size N is assumed to be constant (no birth–death or immigration-
emigration during the whole sampling stages) and individual trappings are recorded
in t consecutive times. Suppose that all units act independently and there is no mis-
classification i.e. all individuals are always recorded correctly and do not lose their
marks. Ideally underlying data can be represented as an N × t binary matrix X = [

xi j
]

where xi j = 1 if the i-th unit is captured in the j-th occasion and xi j = 0 otherwise.
Assume that units captured during the study are conveniently labelled from 1 to M
and those not captured from M + 1 to N . It is clear that we can observe only the firsts
M rows of the matrix X. Denoting with X = {0, 1}, the space of all possible capture
histories for each unit is X t = {0, 1}t while the set of all observable capture histories
is X t∗ = X t \ (0, . . . , 0) since the unobserved units are not sampled.

In this work we review the main aspects of modeling the behavioural effect to cap-
ture revisiting some general model frameworks proposed in literature. Indeed, mice,
voles and small mammals often modify their behaviour after being trapped and this
change can reduce or increase the probability of later recaptures. Originally Otis et al.
(1978) introduced the basic behavioural model Mb, where individual capture prob-
abilities vary only once when first capture occurs. Model Mb is the simplest way to
consider behavioural effects. In particular it considers an enduring effect to capture
since the behaviour, and, consequently, the recapture probability change permanently
until the end of the experiment. In model Mb the initial capture probability is denoted
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with p. It is the same for each unit and remains constant from occasion to occasion
until the first capture. Once the unit is captured for the first time the (re)capture proba-
bility p changes in r and it remains the same until the end of trapping stages. Formally,
in order to distinguish the first capture probability from the recapture probability we
will make use of the conditioning with respect to the quantity

∑ j−1
l=1 xil corresponding

to the number of recaptures prior to the current time j

Mb :
{

Pr(xi j = 1 | ∑ j−1
l=1 xil = 0) = p ∀i = 1, . . . N ∀ j = 1, . . . t

Pr(xi j = 1 | ∑ j−1
l=1 xil > 0) = r ∀i = 1, . . . N ∀ j = 2, . . . t

where if the upperbound of the summation index is such that j − 1 ≤ 0 then the
conditioning event

∑ j−1
l=1 xil = 0 is dropped. When r < p the capture probability

decreases for all subsequent recaptures and this corresponds to modeling the so called
trap shyness. This behavioural pattern could be due to the traumatic event associated
to the capture experience. On the other hand, when r > p there is the so called trap
happiness effect.

Alternative model frameworks have been recently proposed to model more flexibly
behavioural patterns during trapping stages. Yang and Chao (2005) propose to model
the capture history sequence by a bivariate Markov chain in which the states incor-
porate the information on both capture status (captured/non-captured) and marking
status (marked/non-marked). Notice that, obviously, if a unit is captured in the previ-
ous occasions it is also marked. Yang-Chao’s model allows to handle both enduring
effects where individuals exhibit a long lasting behavioural response to capture and
the so called ephemeral effect where individuals have a short term memory and the
capture probabilities depend only on the capture occurrence in the previous occasion.
When the marking status is not considered we have the simple first-order Markov
chain model allowing for ephemeral effect only. A generalized k-th order Markov
chain model is considered in Farcomeni (2011) and it is denoted by Mck . In model
Mck , for each unit, capture probability at some stage j depends only on the capture
status of the unit in the previous k occasions. More formally for k = 1 in model Mc1

we have

Mc1 :
{

p(xi j = 1|xi j−1 = 0) = p(0), ∀i = 1, . . . N ∀ j = 1, . . . t

p(xi j = 1|xi j−1 = 1) = p(1), ∀i = 1, . . . N ∀ j = 2, . . . t

while for k = 2 in model Mc2 we have

Mc2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pr(xi j = 1|xi j−2 = 0, xi j−1 = 0) = p(00), ∀i = 1, . . . N ∀ j = 1, . . . t

Pr(xi j = 1|xi j−2 = 0, xi j−1 = 1) = p(01), ∀i = 1, . . . N ∀ j = 2, . . . t

Pr(xi j = 1|xi j−2 = 1, xi j−1 = 0) = p(10), ∀i = 1, . . . N ∀ j = 3, . . . t

Pr(xi j = 1|xi j−2 = 1, xi j−1 = 1) = p(11), ∀i = 1, . . . N ∀ j = 3, . . . t

For k = 1, 2 if j − k ≤ 0 the conditioning events related to xi j−k are dropped. We
remark that in all the models considered so far the probability of never being observed
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during all t occasions, denoted by P0, depends only on one parameter. More precisely
we have for the previous models

Mb : P0 = (1 − p)t

Mc1 : P0 = (1 − p(0))
t

Mc2 : P0 = (1 − p(00))
t

As we will see the probability P0 plays a crucial role in determining the estimate of the
population size. Indeed it is also possible to consider an encompassing model which
allows for both ephemeral and enduring effects together and it will be denoted with
Mck b. It basically consists of a generalized k-th order Markov chain model where, in
correspondence of the same conditioning k-th order event x j−k = 0, . . . , x j−1 = 0,
one distinguishes those histories where a previous first capture has occurred. Only
for the partial capture histories formed by k zeroes in the last k occasions we need
to specify if a unit is marked or not. In conceiving an appropriate notation for the
different capture probabilities the fact that a unit has been captured previously (and
hence marked) can be denoted by the digit 0 or 1 before the comma. For example, in
model Mc3b, p0,(000) is the probability that a unit is captured at a generic stage j given
it is not captured previously and hence it is unmarked; while, p1,(000) is the probability
that a unit is captured at time j given it is not captured in the previous k = 3 stages
but it is captured at least once previously and hence it is marked. Indeed, Yang-Chao’s
model framework corresponds to Mc1b.

Farcomeni (2011) provides a much more flexible framework based on the capture
probabilities conditioned on each possible partial capture history as follows

{
p1() = Pr(xi1 = 1)

p j (xi1, ..., xi j−1)= Pr(xi j =1|xi1, ..., xi j−1) ∀ j > 1 , ∀(xi1, . . . , xi j−1)∈X j−1

All these conditional probabilities can be arranged with a natural order in a 2t − 1
dimensional vector as follows

p = (p1(), p2(0), p2(1), p3(0, 0), p3(0, 1), p3(1, 0), ..., pt (0, ..., 0), ..., pt (1, ..., 1))

where, for example, the element p3(0, 1) represents the probability of being captured
at time 3 given that the unit is not captured in the first occasion while it is captured
in the second occasion. The initial empty brackets () is understood as the absence of
previous capture history at time 1. The vector p can be seen as a convenient reparame-
terization of the joint probabilities corresponding to all 2t −1 complete capture history
configurations in X t∗ . The conditional probabilities, rather than the joint probabilities,
are more easily interpreted in the process of modeling the consequences determined
by the change of behaviour due to a particular previous trapping history.

Notice that under the saturated reparameterization the probability of never being
observed during trapping stages is

123



50 D. A. Fegatelli, L. Tardella

P0 =
⎡

⎣(1 − p1())

t∏

j=2

(1 − p j (0, . . . , 0))

⎤

⎦ (1)

From the saturated parametrization one can specify a parsimonious nested model based
on a suitable partition of the conditional probabilities in p in terms of equivalence clas-
ses. Let H be the set of all partial capture histories: H = { (), (0), (1), (00), (10), (01),
(11), . . . } = ∪t−1

j=0X j where X 0 = {()}. Denote by HB one of the possible partitions
of H in B disjoint subsets

HB = {H1, . . . , Hb, . . . , HB}

where each Hb ⊂ H . The role of the index set H is to list all the partial capture histories
which may yield possible changes in the conditional capture probability depending
on the past.

There is a corresponding parameter vector of probabilities denoted with pHB =
(pH1, . . . , pHB ). The partition of capture histories in equivalence classes is such
that

∀ h, h
′ ∈ Hb ⇒ p(lh+1)(h) = p(lh′+1)(h

′
) = pHb ∀b = 1, . . . , B

where lh is the length of the binary vector of a generic partial capture history h =
(h1, . . . , hlh ). Notice that when there is absence of previous capture history (h = ())
we have lh = 0.

With the partition HB of subsets of H representing equivalence classes we make
more explicit the fact that the set of very specific constraints formalized in Farcomeni
(2011) as Cp = 0 are nothing but a way to identify blocks of conditional probabil-
ities corresponding to the same common value hence reducing the number of free
parameters with respect to the saturated model. Indeed in the Cp = 0 formalization
the entries of the constraint matrix C must obey further restrictions (only entries -
1,0 or 1 and no more that one 1 entry in each column) and this, we believe, is not
very natural. No other specific use of those linear constraints are suggested in that
paper.

In the following we will denote by M the class of models based on conditional
probabilities parameterization and specified in terms of a suitable partition HB .

As an example of such formalization based on partitions of subsets of H one can
consider a model which assumes that only after being captured for more than 2 times
in a row the behaviour of an animal/unit can be affected so that the probability of
being trapped again could be lower (or greater). This simple model denoted with M••
can be formalized using the following (bi)partition of the partial capture histories
H2(M••) = {H1, H2} where

{
H1 = {h ∈ H : lh < 2} ∪ {

h ∈ H : lh ≥ 2 , hlh−1 + hlh < 2
}

H2 = H \ H1
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As another example, we can build up a model, denoted with M# where the number of
captures occurred may influence the capture probability. The corresponding partition
denoted with Ht (M#) splits the set H in t equivalence classes each corresponding to
a specific total number of captures as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 = X 0 ∪
{

h ∈ ∪t−1
s=1X s : ∑lh

s=1 hs = 0
}

H2 =
{

h ∈ ∪t−1
s=1X s : ∑lh

s=1 hs = 1
}

. . .

Hr =
{

h ∈ ∪t−1
s=1X s : ∑lh

s=1 hs = r − 1
}

. . .

Ht−1 =
{

h ∈ ∪t−1
s=1X s : ∑lh

s=1 hs = t − 2
}

Ht =
{

h ∈ ∪t−1
s=1X s : ∑lh

s=1 hs = t − 1
}

Indeed Farcomeni (2011) provides this general framework where the generic partition
is rather specified equivalently in terms of linear constraints on p. This constraints are
specified by a 2t − 1 × 2t − 1 matrix C as follows

Cp = 0

where the generic element of the matrix C denoted by ci j is such that ci j ∈ {0, 1,−1}
with the restriction that each column of C can not have positive and negative values at
the same time. The number of free parameters in the constrained model is the number
of columns without negative values which are in one-to-one correspondence with the
representative elements of each equivalence class. For example, model Mb can be
obtained by using two blocks of equality constraints

{
p1() = p2(0) = p3(0, 0) = · · · = pt (0, . . . , 0) = p

p2(1) = p3(10) = p3(01) = · · · = pt (1, . . . , 1) = r

Equivalently model Mb corresponds to a bipartition H2(Mb) = {H1, H2} such that

{
H1 = {(), (0), (00), . . . , (0 . . . 0)} = X 0 ∪

{
h ∈ ∪t−1

j=1X j : ∑lh
j=1 h j = 0

}

H2 = H \ H1

In the original paper it is also shown that many models proposed in the literature such
as model M0, Mb, Mck , Mck b, Mt can be recovered as special cases of model with
saturated parameterization p subject to specific linear constraints corresponding to C.

In the following we prefer to index parameters with the partition notation and we
refer to the reduced parametrization pHB = (pH1, . . . , pHB ) corresponding to the
uniquely identified conditional probabilities associated to the partition HB .
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3 Conditional likelihood approach and likelihood failure

Under individual independence assumption, the likelihood function can be written in
terms of saturated parameterization as follows

L(N , p) =
N∏

i=1

p1()
xi1(1 − p1())

1−xi1

t∏

j=2

p j (xi1, ..., xi j−1)
xi j

(1 − p j (xi1, ..., xi j−1))
1−xi j

In order to highlight the generality of some pathological likelihood features of behav-
ioural models we focus on the subclass of all models associated to a generic partition
HB where all the conditioning partial capture histories corresponding to no capture
belong to the same partition set, say H1. This means that all the conditional prob-
abilities (p1(), p2(0), . . . , pt (0, . . . , 0)) determining P0 as in (1) correspond to the
same parameter value. Notice that in the class of models we are considering the first
partition set denoted as H1 can contain also other partial capture histories beside those
corresponding to no capture. In the following we will denote by M̃ this special class
of models where, by convention, the first set H1 listed in the partition HB contains (at
least) all the aforementioned capture histories defining P0. Of course M̃ ⊂ M.

It is easy to verify that model M0, Mb, Mck , Mck b belong to M̃.
As an example, model Mc1 corresponds to the partition H2(Mc1) = {H1, H2} such

that

{
H1 = {(), (0), (00), (10), . . . } = X 0 ∪

{
h ∈ ∪t−1

j=1X j : hlh = 0
}

H2 = H \ H1

where H1 contains the void capture history () and all partial capture histories h =
(h1, . . . , hlh ) such that the terminal digit hlh = 0 for lh = 1, 2, ..., t − 1. Of course
the conditioning capture histories corresponding to no capture are contained in H1.

On the other hand, model Mt does not belong toM̃. It can be expressed asHt (Mt ) =
{H1, . . . , Ht } where Hj = X j−1 for j = 1, . . . , t . Notice also that within the class M̃
all the models such as Mb and Mck b do have the first set of the partition H1 containing
all and solely the partial capture histories with no capture i.e. with no 1 digit, while
models such as Mck do have H1 containing also other partial capture histories (see the
particular partition H2(Mc1) described above).

Hence, for all models belonging to M̃ it will be

P0 = (1 − pH1)
t

The likelihood function corresponding to the generic model MHB ∈ M̃ parametrized
with the vector of conditional probabilities pHB will have the following form

L(N , pHB ) ∝
[(N

M

)
p

n(H11)

H1
(1 − pH1)

n(H10)+t (N−M)
] B∏

b=2
p

n(Hb1)

Hb
(1 − pHb)

n(Hb0) (2)
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where n(Hb0) is the number of times that all the observed units which experience partial
capture history h belonging to Hb are not captured at time lh + 1; similarly n(Hb1) is
the number of times that the observed units which experience partial capture history
h belonging to Hb are captured at time lh + 1. Formally ∀ b = 1, . . . , B

n(Hb0) =
M∑

i=1

∑

h∈Hb

I
[
(xi1, . . . , xilh ) = h , xi(lh+1) = 0

]

n(Hb1) =
M∑

i=1

∑

h∈Hb

I
[
(xi1, . . . , xilh ) = h , xi(lh+1) = 1

]

These are easily recognized as the sufficient statistics in this model framework. The
classical estimation procedure considered in Farcomeni (2011) is based on the factor-
ization of the likelihood function in (2) as in Sanathanan (1972) as follows

L(N , pHB ) ∝
(

N

M

)
(1 − P0)

M P(N−M)
0 × 1

(1 − P0)M

B∏

b=1

p
n(Hb1)

Hb
(1 − pHb)

n(Hb0)

= Lr (N , pH1) × Lc(pHB )

where Lc is the conditional likelihood while Lr is the residual (binomial) likelihood.
The conditional maximum likelihood estimator N̂C M L E of N is obtained in 2 steps:
first we compute p̂HB

maximizing Lc(pHB ) and then using p̂H1 ∈ p̂HB maximize
Lr (N , p̂H1) with respect to N . Let qH1 = 1 − pH1 ; the CMLE of N is given by

N̂C M L E = M

1 − q̂ t
H1

= M

1 − P̂0
(3)

where q̂H1 = 1 − p̂H1 must satisfy the conditional likelihood equation

qH1

1 − qH1

n(H11)

M
− tqt

H1

1 − qt
H1

= n(H10)

M
(≡ RH1) (4)

Equation (4) can be numerically solved and then the estimate q̂H1 = 1 − p̂H1 is
plugged into (3). This corresponds to the Horvitz-Thompson estimator which can be
also derived as the classical maximum likelihood estimator of the number of trials
in a binomial experiment when the probability of success is known and it is equal to
1 − P̂0.

However in Seber and Whale (1970) it is pointed out for the first time that in a related
removal model the conditional likelihood approach may end up with an unbounded
estimate N̂C M L E yielding an annoying inferential pathology called likelihood failure.
In the removal model of Seber and Whale (1970), similarly to our models in the class
M̃, units act independently and at each trapping time the capture probability is p and
it is the same for each unit. When a unit is captured for the first time it is removed
from the population. The likelihood function for the removal model is
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L R(N , p) = (N
M

)
pM (1 − p)n0p+t (N−M)

where n0p is the number of times that observed units are not captured i.e. n0p =
∑M

i=1
∑t

j=1 I (
∑ j

l=1 xil = 0). Notice that the likelihood for a removal model has
the same functional form of the factor within brackets in (2) on the right hand side.
Since the CML estimation of N and pH1 from (2) depend only on the expression
within brackets it could end up with the same pathological unbounded estimates as
the removal model.

Notice that the argument which shows that the estimates of N depend only on
the expression within brackets makes all models MHB ∈ M̃ sharing the same ele-
ment H1 ∈ HB equivalent in terms of the resulting estimates of N . For instance the
partitions corresponding to models Mb and Mck b do share the same H1.

Hence we claim that it is important to be aware of the possible occurrence of
likelihood failures within general frameworks for behavioural modeling like the one
proposed in Farcomeni (2011) once the conditional maximum likelihood is pursued. In
particular we show that it is possible to characterize the likelihood failure occurrence
for the generic subclass of models M̃. Adapting from Seber and Whale (1970) we
provide the conditions which guarantee the finiteness and the uniqueness of the CML
solution in that class of models.

In order to understand the behaviour of the solving Eqs. (3) and (4) consider the
left-hand side of (4) as a function f of qH1

f (qH1) = qH1

1 − qH1

n(H11)

M
− tqt

H1

1 − qt
H1

Notice that we always have n(H11) ≥ M . In fact, the number of times that observed
units with partial capture history h ∈ H1 are not captured at time lh + 1 is at least M .
For models such as Mb, Mck b and M# the statistic n(H11) is always equal to M . For
0 ≤ qH1 < 1 we have that

d f (qH1)

dqH1

= 1

(1 − qH1)
2

[

1 − t2qt−1
H1

(1 − qH1)
2

(1 − qt
H1

)2

]

> 0

hence, f (qH1) is an increasing function in [0, 1). Consider the limit of f (qH1) for
qH1 → 1−; we have to distinguish 2 cases

⎧
⎪⎨

⎪⎩

limqH1→1− f (qH1) = 1
2 (t − 1) n(H11) = M

limqH1→1− f (qH1) = ∞ n(H11) > M

When n(H11) = M there exists a unique solution 0 < qH1 < 1 if and only if RH1

defined in (4) is such that

0 < RH1 <
1

2
(t − 1) (5)
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In fact, RH1 > (t − 1)/2 implies that qH1 maximizing the conditional likelihood
will be a boundary estimate q̂H1 = 1 which implies P̂0 = 1 and hence an infinite
estimate of the population size N̂C M L E = M/(1 − P̂0) = ∞ (likelihood failure!).
Of course restricting qH1 in (0, 1) does not overcome this issue. On the other hand,
when n(H11) > M the fact that limqH1→1− f (qH1) = ∞ leads to a unique solution

0 < qH1 < 1 and hence a finite estimate N̂C M L E .
The likelihood failure problem is not overcome by using the unconditional likeli-

hood. The unconditional MLE (UMLE) can be easily derived maximizing L(N , pHB )

as a function of pHB for N fixed so that once obtained p̂HB (N ) one gets the profile
likelihood L p(N ) = L(N , p̂HB (N )) which can be in turn maximized as a function of
N .
In Carle and Strub (1978) within the context of removal model it is pointed out the exis-
tence of the likelihood failure also for the unconditional likelihood approach providing
the following conditions under which failure occurs

M(t − 1) − n0p ≤ (M − 1)(t − 1)

2
− 1 ⇔ n0p

M
≥ 1

2
(t − 1) + t − 1

2M
(6)

Notice that (6) is less restrictive than condition (5) in the removal model case and
hence if failure occurs for the unconditional likelihood approach it occurs also for the
conditional likelihood approach while vice-versa is not necessary true.

In order to completely overcome the likelihood failure problem for a removal study,
Carle and Strub (1978) proposed to weight the likelihood function with a 2-parameter
Beta distribution and then integrate out the nuisance parameter p. It is easy to under-
stand that this procedure is equivalent to locating the posterior mode in a Bayesian
approach with an improper non-informative uniform prior on N and a prior Beta dis-
tribution for p. In the original paper they show only by simulation how the integrated
likelihood approach does not come across the problem of the likelihood failure.

4 Bayesian approach

Motivated by the solution proposed by Carle and Strub (1978) for the removal model
we propose to extend the weighted likelihood approach as a fully Bayesian approach for
the general class of behavioural models (2) and in particular for models in the class M̃.

We will make use of Beta densities as convenient conjugate priors for each condi-
tional probability pHb ∈ pHB . On the other hand we will consider a prior distribution
on N as well. As reference recipes we have evaluated 4 non-informative prior dis-
tributions on N : Uniform, 1/N (Jeffreys’prior), 1/N 2 and Rissanen’s prior which
represents a universal non-informative prior for discrete parameters (Rissanen 1983).
Since we would like to pursue a fully Bayesian approach we need to verify whether
the first two improper priors lead to proper posterior distributions. If this is the case
we can fully exploit alternative summaries of the posterior distribution on N . In par-
ticular we will consider as alternative summaries the mean, the median, the mode and
a minimizer of a specific loss function L connected with the Relative Mean Square
Error (RMSE) as in Tardella (2002)
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L(a, N ) =
( a

N
− 1

)2

Let π(N , pHB ) be the joint prior distribution on the whole parameter vector (N , pHB )

such that

π(N , pHB ) = π(N ) ×
B∏

b=1
π(pHb) ∝ π(N ) ×

B∏

b=1
pαb−1

Hb
(1 − pHb )

βb−1 (7)

Hence, given (2) and (7) the joint posterior distribution for model MHB is

π(N , pHB |X) ∝ L(N , pHB )π(N , pHB ) ∝

π(N )

(
N

M

)
p

n(H11)+α1−1
H1

(1 − pH1)
n(H10)+t (N−M)+β1−1

B∏

b=2

p
n(Hb1)+αb−1
Hb

(1 − pHb)
n(Hb0)+βb−1

The choice of Beta densities as prior distributions for the conditional probability
parameters makes the marginal posterior distribution of N available in closed form up
to a normalizing constant as follows

π(N |X) =
∫ 1

0
. . .

∫ 1

0
π(N , pHB |X)dpHB

∝ π(N )
N !

(N − M)! B(n(H11) + α1, t (N − M) + n(H10) + β1) (8)

where B(, ) is the Beta function. The posterior marginal distribution of N in closed
form as in (6) makes it easy to compute quickly all the posterior summaries. We will
show how the choice of the prior distribution on N has a relevant impact on the poster-
ior summaries while the sensitivity with respect to the choice of the parameters of the
Beta distribution is less relevant. In the following we consider a uniform density on
pHb corresponding to Beta parameters αb = βb = 1, for b = 1, . . . , B. As preliminary
step we formally verify whether the choice of improper prior distributions on N such
as π(N ) ∝ 1 and π(N ) ∝ 1/N leads to a proper marginal distribution on N .

Lemma 1 Consider a generic model within the class M̃ parametrized in terms of
pHB . If one chooses independent uniform priors for all its components and a nonin-
formative prior on N with probabilities π(N ) ∝ 1/Nr the Bayes rule always yields a
proper posterior distribution for any r > 0 while for r = 0 the condition nH11 > M
suffices.

Proof Considering π(N ) ∝ 1/Nr the posterior marginal distribution of N is propor-
tional to

π(N |X) ∝ 1

Nr

�(N + 1)

�(N − M + 1)

�(t (N − M) + n(H10) + 1)

�(t (N − M) + n(H10) + n(H11) + 2)
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Using the inequalities

(2π)
1
2 xx− 1

2 exp (−x) ≤ � (x) ≤ (2π)
1
2 xx− 1

2 exp (−x + 1/12x)

one gets

�(N + 1)

�(N − M + 1)
<O(N M ) ; �(t (N −M) + n(H10) + 1)

�(t (N −M) + n(H10) + n(H11) + 2)
< O(N−(n(H11)+1))

Hence, π(N |X) < O(N M−(r+n(H11)+1)) which corresponds to a proper pmf if and
only if M − (n(H11) +r +1) < −1. We have to distinguish 2 cases: when n(H11) > M
the marginal posterior distribution on N is always proper for any r ≥ 0 while when
n(H11) = M this is true only for r > 0 ♦

From the proof of the previous lemma one can easily argue formally that the
Bayes rule always provides an eventually vanishing function in the numerator of (8) for
N → ∞. This important result shows that if one makes inference on N maximizing

W (N |X) = π(N )
N !

(N − M)! B(n(H11) + 1, t (N − M) + n(H10) + 1) (9)

one will never get unbounded estimates for the finite population size no matter what
improper prior is chosen within the class of 1/Nr for r ≥ 0. Hence the Bayesian
approach can never provide unbounded estimates in the following sense.

Corollary 1 Consider a generic model within the class M̃ parametrized in terms of
pHB . If one chooses independent uniform priors for all pHb components and a nonin-
formative prior on N with probabilities π(N ) = 1/Nr then there exists N̂mode < ∞
such that W (N̂mode|X) ≥ W (N |X) for any N.

Notice that N̂mode is the mode of the posterior distribution only in those cases
where it is well defined otherwise it can be considered only as a weighted likelihood.
Hence we claim that from a theoretical inferential point of view the Bayesian approach
should be regarded in this context as a favorite inferential tool since it always yields
valid inference. Unfortunately it is not easy to get explicit formulas to determine how
likely the occurrence of the likelihood failure is. Of course that will depend on the
true model and parameter configurations. In the following section we investigate the
issue with a little simulation study with replicated data from the same model.

Moreover we will show that even when we remove from the analysis those data
which yield likelihood failure the comparative performance of Bayesian output versus
conditional maximum likelihood is still always in favor of the former.

5 Simulation study

In order to evaluate the comparative performance of the Bayesian approach with
respect to the classical approach based on conditional likelihood we propose a small
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Table 1 Parameter configurations for simulation experiments

Trial Model Probability parameters E[M]/N

Tr.1 Mb p = 0.2; r = 0.4 0.67
Tr.2 Mb p = 0.1; r = 0.3 0.41
Tr.3 Mc1 p(0) = 0.2; p(1) = 0.4 0.67
Tr.4 Mc1 p(0) = 0.1; p(1) = 0.3 0.41
Tr.5 Mc2 p(00) = 0.2; p(10) = 0.3; p(01) = 0.35; p(11) = 0.4 0.67
Tr.6 Mc2 p(00) = 0.1; p(10) = 0.2; p(01) = 0.3; p(11) = 0.4 0.41

For each parameter configuration K = 1, 000 datasets have been simulated

simulation study. We consider the set of simulation trials described in Table 1. The
true population size is N = 100 and the number of trapping occasions is t = 5. We
evaluate three different kinds of behavioural models within the extended Markovian
structure Mck b following the ideas in Yang and Chao (2005) to account for both endur-
ing and ephemeral effects. Indeed, Markov order is restricted to 2 and we have also
excluded Mc1b and Mc2b from consideration since they yield inference on N which is
identical to model Mb for the reasons we have explained in the previous section. The
true (conditional) capture probability parameters for the different simulation trials are
chosen so that they correspond to different degrees, from medium-high to medium-
low, of expected capture sample coverage defined as the fraction of distinct individuals
observed during the t trapping stages, in symbols

E[M]
N

= 1 − P0

Notice that we have used for each simulated trial the same sequence of pseudo-random
numbers so that the observed number of distinct units in each trial is the same when the
probabilities p, p(0), and p(00) are the same. To summarize the posterior distribution
of the main parameter of interest N we consider the usual mean, median and mode
together with the posterior loss minimizer for the loss function described in Sect. 4

m R = arg min
a

Eπ(N |X)(L(a, N )).

In Table 2 we report the root of the relative mean square error (RMSE) of the estimates
of N based on simulations from the correct model. RMSE is evaluated empirically on
the basis of K = 1, 000 replicated datasets for each trial. As we can see the Bayesian
approach outperforms the CMLE and UMLE in terms of RMSE. Indeed the occur-
rence of likelihood failure is reported in the last lines of Table 2 as a percentage of
the K datasets. In reporting the estimated RMSE the * sign denotes the presence of
likelihood failure so that the RMSE is indeed computed as restricted RMSE condi-
tioning on the absence of failure. This means that RMSE is computed conditioning
only on datasets which lead to a finite value of N̂C M L E and N̂U M L E . Table 2 allows
to assess the comparative performance of alternative choices as far as π(N ) is con-
cerned. We remark that the choice has some impact on the frequentist performance.
Similarly, the choice of posterior summary has a remarkable effect on the precision

123



Improved inference on capture recapture models 59

Table 2 Simulated data: estimated
√

RM SE based on 1,000 replicated datasets for each trial. For each sim-
ulation setting (column) bold values highlight the best performing estimation method and the corresponding√

RM SE

Prior Estimator Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5 Tr. 6

1/N Mean 0.999 1.400 0.188 1.265 0.535 2.787

Median 0.378 0.435 0.163 0.589 0.286 0.594

Mode 0.173 0.391 0.137 0.288 0.163 0.330

m R 0.220 0.306 0.145 0.289 0.194 0.288

1/N 2 Mean 0.374 0.356 0.163 0.463 0.271 0.454

Median 0.216 0.323 0.146 0.313 0.195 0.295

Mode 0.167 0.421 0.132 0.286 0.150 0.345

m R 0.167 0.350 0.134 0.262 0.159 0.291

Rissanen Mean 0.688 0.807 0.177 0.895 0.410 1.109

Median 0.293 0.342 0.155 0.445 0.241 0.407

Mode 0.170 0.407 0.135 0.285 0.156 0.330

m R 0.194 0.327 0.140 0.273 0.178 0.280

CMLE 1.149* 1.284* 0.176 0.642* 0.337* 0.652*

% of N̂C M L E < ∞ (99.3%) (80.5%) (100.0%) (98.2%) (99.8%) (83.8%)

% of N̂C M L E = ∞ (0.7%) (19.5%) (0.0%) (1.8%) (0.2%) (16.2%)

UMLE 1.341* 1.835* 0.166 0.592* 0.280* 0.757*

% of N̂U M L E < ∞ (99.7%) (86.3%) (100.0%) (98.2%) (99.8%) (85.2%)

% of N̂U M L E = ∞ (0.3%) (13.7%) (0.0%) (1.8%) (0.2%) (14.8%)

of the resulting estimator. Our simulations show that the combination of π(N ) and
summary which produces a better performance corresponds to either one of posterior
mode and m R combined with 1/N 2. Overall the option m R with Rissanen shows a
more robust behaviour even when they are not the best combination since its RMSE
is always close to the best one.

Notice also that the N̂C M L E seems to be more accurate than N̂U M L E in trial 1,2,6
but this is due to the fact that the RMSE are restricted RMSE computed considering
different subsets of the K datasets.

We have also considered the performance of alternative approaches with respect to
interval estimators. In Table 3 we report the actual percentage of trials in which the
95% interval estimates covered the true value of N and also the average length of the
intervals. For the classical approach 1 −α confidence intervals for the population size
are obtained through the profile log-likelihood as (N−, N+) where N− and N+ are
the two roots of the following equation

2(log(L p(N̂ )) − log(L p(N ))) = z2
α/2

where zα/2 is the α/2 quantile of the standard normal and L p is the profile likeli-
hood. As in Table 2 the * sign denotes the presence of likelihood failure while the
$ sign warns that the actual average length is greater than the reported value since we
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Table 3 Simulated data:
empirical coverage and average
length in simulated data of
alternative interval estimates
with nominal confidence level
0.95 and posterior probability
0.95 respectively

Interval estimate Coverage Average length

Tr.1 Bayes (1/N 2) 95.3% 120.87

Bayes (Rissanen) 96.0% 194.46

Classical PLI 95.1%*$ ≥ 2, 388.94*$

Tr.2 Bayes (1/N 2) 88.0% 163.94

Bayes (Rissanen) 92.8% 342.04

Classical PLI 94.5%*$ ≥ 7, 201.63*$

Tr.3 Bayes (1/N 2) 94.7% 57.07

Bayes (Rissanen) 95.1% 59.94

Classical PLI 94.5% 69.43

Tr.4 Bayes (1/N 2) 90.6% 144.4

Bayes (Rissanen) 97.3% 204.13

Classical PLI 94.5%* 488.80*

Tr.5 Bayes (1/N 2) 94.8% 81.92

Bayes (Rissanen) 95.7% 97.31

Classical PLI 94.9%* 175.10*

Tr.6 Bayes (1/N 2) 89.8% 172.67

Bayes (Rissanen) 93.0% 319.40

Classical PLI 97.2%*$ ≥ 855.24*$

have arrested the root finding to an upper-bound N+
upper = 10, 000. In those cases we

have set N+ = N+
upper . In fact in some dataset, although the failure condition is not

met the flatness of the profile likelihood prevent us from locating the root N+ before
N+

upper . For the Bayesian approach we have computed the HPD credible set with the
same nominal 1 − α posterior probability value. The prior π(N ) = 1/N 2 leads to
the smallest interval estimates, but the actual coverage is not always sufficiently close
to the level 1 − α desired for a frequentist match. For trial 2, 4 and 6, characterized
by a moderately low sample coverage E[M]/N , the coverage of the Bayesian inter-
val estimator corresponding to π(N ) = N−2 is significantly lower than 95 % while
this is not true for the Rissanen prior. Even for interval estimate purposes Rissanen’s
prior represents a good compromise: the average length is reasonably small and the
coverage is appropriately close to the nominal frequentist match.

6 Real data

We reanalyze the Great-Copper butterfly dataset originally studied in Ramsey and
Severns (2010) to support the use of more flexible behavioural models to account
for possibly decreasing/increasing recapture probability patterns likely to occur after
the first capture of each unit. It is supposed that butterflies are subject to a change
of behaviour which persists with different intensity until the end of trapping stages.
In Ramsey and Severns (2010) three alternative models denoted with Mp, Mpt , Mpb
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are proposed and referred to as persistence models (see the original paper for a more
detailed description of these models). Indeed they do not belong to the class M of con-
ditional probability models within the framework proposed in Farcomeni (2011). This
persistence phenomenon can be considered as a trap-happiness response and it can be
justified from the fact that butterflies are used to return to the same place where the
food is in great quantity. Analogously, researchers are used to return to the same place
where they find butterflies. The same dataset is also reviewed in Farcomeni (2011) to
show that the class M is flexible enough to accommodate behavioural models which
fit the same data better. The experiment is made of t = 8 trapping occasions and the
number of distinct butterflies captured during all trapping stages is M = 45. In Table 4
we report only the observed complete capture histories associated with the respective
frequencies.

We fit several models based on different partitions of the set H some of which cor-
respond to alternative versions of Mck b. Model ML originally proposed in Farcomeni
(2011) considers a 3-rd order Markov-chain-like structure where capture probabili-
ties depend only on the previous three occasions but, differently from the full model
Mc3 which contains 23 = 8 probability parameters, it considers only 2 parameters
corresponding to the following (bi)partition H2(ML) = {H1, H2} such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H1 = {
(), (0), (10), (x1, . . . , x j−4, 0, 0, 0),

(x1, . . . , x j−4, 1, 0, 0), (x1, . . . , x j−4, 0, 1, 0),

(x1, . . . , x j−4, 1, 1, 0), (x1, . . . , x j−4, 0, 0, 1)
}

∀(x1, . . . , x j−4) ∈ X j−4; ∀ j ≥ 4

H2 = H \ H1

The parameter pH1 corresponding to the first partition identifies a vanishing behav-
ioural effect which occurs if the unit is not captured in the most recent occasion, or
captured only once in the last three occasions.

In Table 5 we display point and interval estimates at level 95 % of population size
N derived with both classical and Bayesian approach. As described in Sect. 3 the
confidence intervals are built considering the normal approximation of the profile
log-likelihood while for the Bayesian approach we have proposed the HPD interval.
Furthermore in Table 5 in order to drive model selection we report both the AIC index
and the log-marginal likelihood associated to each model.

In order to get insights on the pattern of behavioural effects we look at the posterior
distribution of pH2 − pH1 for models which involve pH2 = (pH1, pH2) as nuisance
parameter.

In Fig. 1 we display the posterior densities of pH2 − pH1 for models Mb, Mc1 and
ML . Model Mb which considers only the classical enduring effect to capture pro-
vides evidence of trap-shyness. In fact the distribution pH2 − pH1 = r − p is well
concentrated almost entirely below the value zero. On the other hand both models
Mc1 and ML present trap-happiness effect (pH2 − pH1 > 0) more consistent with the
underlying biological assumptions.

Following the recommendation suggested by our simulation study we have used
Rissanen’s prior as prior distribution of N since it yields more convincing results than
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Table 4 Great Copper Butterfly
data: frequencies of observed
capture histories

History Butterflies

0 0 0 0 0 0 0 1 3

0 0 0 0 0 0 1 0 3

0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0 4

0 0 0 0 1 0 0 0 4

0 0 0 0 1 0 0 1 1

0 0 0 0 1 1 0 0 1

0 0 0 1 0 0 0 0 3

0 0 0 1 0 1 0 0 2

0 0 0 1 1 0 0 0 1

0 0 1 0 0 0 0 0 4

0 1 0 0 0 0 0 0 5

0 1 0 0 0 0 1 0 1

0 1 0 1 0 1 1 0 1

0 1 1 0 0 0 0 0 1

0 1 1 0 1 0 0 0 1

0 1 1 1 1 0 1 1 1

1 0 0 0 0 0 0 0 5

1 1 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 1

1 1 1 1 1 1 0 0 1

-0.5 0.0 0.5

0
1

2
3

4
5

6

pH2
pH1

(p
H

2
p H

1 |
 X

)

Mb
Mc1
ML

Fig. 1 Great Copper Butterfly data: posterior distribution of pH2 − pH1 for models Mb, Mc1 and ML .
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Fig. 2 Great Copper Butterfly data: forest plots for interval estimates of N. Triangles locate point estimates
while their sizes are proportional to the amount of comparative evidence evaluated either by AIC or by
log-ML

those provided by π(N ) = 1/N 2. From Table 5 one can observe how the Bayesian
approach always yields estimates of the population size N which are smaller than
CMLE. This is indeed expected from the fact that the Bayesian approach makes full
use of the (integrated) unconditional likelihood and the well known monotonicity prop-
erties with respect to the estimation based on the conditional likelihood (Sanathanan
1972). From the kind of forest plot in Fig. 2 it is also easy to appreciate that Bayesian
approach provides narrower and more stable interval estimates than those provided by
a frequentist approach based on the profile likelihood corresponding to comparable
1 − α levels. In particular model Mc2 and Mc3 yield very wide classical confidence
intervals which reflect the relative flatness of the profile likelihood. In Table 5 we
report for completeness the results of Ramsey and Severns (2010) for their proposed
models Mp, Mpt e Mpb to highlight how instability of classical estimators based on
CMLE together with wide confidence intervals may be present also in behavioural
models which are outside the M̃ class of models unraveling that likelihood flatness
problems lurks behind.

Notice also that the AIC index and the log marginal likelihood (log-ML) agree on
the choice of L2 as the best model. However, the log-ML gives stronger support than
AIC to more parsimonious Markovian models such as Mc1 and Mc1b while it rather
penalizes Mc3 and Mc3b which include a higher number of parameters.

7 Concluding remarks

In order to understand behavioural patterns in capture recapture experiments we have
focussed on a general class of models following the approach of Farcomeni (2011).
Instead of adopting more conventional tools for categorical (binary) data it relies on
the reparameterization of the joint probability of the multivariate binary outcome
corresponding to the entire individual capture history in terms of subsequent
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Table 5 Great Copper Butterfly data: AIC, log marginal likelihood, point and interval estimates

Model # parameters Approach N̂ (N−, N+) AIC Log-ML

M0 1+1 CMLE 65 (52,86) 336.80

Bayesian 63 (51,82) −174.68

Mt 1+8 CMLE 64 (52,85) 350.84

Bayesian 59 (49,72) −187.14

Mb 1+2 CMLE 67 (48,223) 342.77

Bayesian 63 (46,135) −176.57

Mc1 1+2 CMLE 96 (64,181) 328.92

Bayesian 88 (58,151) −169.63

Mc2 1+4 CMLE 176 (78,896) 326.26

Bayesian 117 (59,374) −169.51

Mc3 1+8 CMLE 174 (69,2315) 330.16

Bayesian 106 (53,419) −175.83

Mc1b 1+3 CMLE 67 (48,223) 329.24

Bayesian 63 (46,135) −170.91

Mc2b 1+5 CMLE 67 (48,223) 324.50

Bayesian 63 (46,135) −169.93

Mc3b 1+9 CMLE 67 (48,223) 328.19

Bayesian 63 (46,135) −173.62

ML 1+2 CMLE 90 (63,152) 324.01

Bayesian 84 (58,133) −166.91

Mp 1+2 CMLE 97 (70,215) 328.92

Mpt 1+9 CMLE 64 (54,103) 339.46

Mpb 1+2 CMLE 69 (60,1006) 330.16

conditional probabilities. This is in the same spirit of the so-called transitional model
reviewed in Zeng and Cook (2007). Our choice is appropriate since we believe that a
behavioural pattern is more easily understood and formalized in terms of conditional
probabilities.

We have then pointed out that with the conditional likelihood approach a possi-
ble unbounded estimate of the parameter of interest can occur and such pathological
inferential feature is indeed shared by a large class of behavioural models both with
enduring and ephemeral effects. This phenomenon is rather neglected in the literature
since most of the analyses are based on conditional likelihood.

In the literature there are other classes of capture-recapture models where likeli-
hood failure may occur. In particular some parametric and nonparametric heterogeneity
models labelled as Mh have been considered in Mao and You (2009) following some
critical remarks raised by Link (2003) on model identifiability. They showed with
simulated examples similar likelihood pathologies (see Table 5 therein and related
comments). However, as said in the introduction, we opted for distinguishing the
pathologies derived by the heterogeneity from those due to behavioural effect model-
ing.
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Hence focussing on classes of behavioural models with no heterogeneity such as
those derived from the approach of Farcomeni (2011) we have characterized with the
subclass M̃ some models and conditions under which likelihood failure occurs and
we have shown that even when there is no likelihood failure the inferential output can
be very large and unstable. On the other hand in a very flexible model framework
for behavioural patterns we have shown that a fully Bayesian approach is a viable
solution which brings a two-fold beneficial effect on inference: i) a simple conju-
gate structure with closed form expressions for the marginal posterior probabilities
π(N |X) up to a normalizing constant ii) the complete overcome of unbounded infer-
ence under any observed dataset. Since Bayesian inference requires the specification
of prior distributions on the unknown parameters we have investigated the sensitivity
of the analysis with respect to few alternative default priors using their frequentist
properties as performance criterion. Our analysis strongly supports the use of a fully
Bayesian approach within the class of models M̃ based on grouping of the condi-
tional probabilities in equivalence classes. As default choice we advocate the use of
uniform priors on the conditional probability parameters and a Rissanen prior on the
integer parameter representing the unknown population size N . In our simulations this
choice provided improved inference in terms of reduced relative mean square error
and shorter interval estimates in the presence of equivalent frequentist coverage. This
remains true, although at a lesser extent, when the comparison with unconditional
MLE is considered.

An anonymous referee suggested the possibility of using a generalized log-linear
parameterization as in Lang (1996) to get Farcomeni’s model framework as a particu-
lar instance. However we found the implementation of such idea not straightforward
and we will look forward to further investigation on that. Indeed we point out the pos-
sibility of using a logistic reparameterization of the probability of each binary outcome
of the capture history to derive unconditional MLE. In fact one can consider the logit
of the conditional probability of each binary outcome regressed as a suitable function
of the previous partial capture history. When such function corresponds to a categorical
covariate assuming levels corresponding to each equivalence class the derivation of
the unconditional MLE can be easily carried out by maximizing the profile likelihood
of N . In fact for each value of N one can augment the observed capture histories with
N − M histories corresponding to units which were not observed and obtain the pro-
file likelihood corresponding to N from the standard output of GLM routines of any
statistical software. A similar logistic model structure has been previously sketched
in Huggins (1989) and Alho (1990) although the focus there was in developing con-
ditional likelihood estimators in the presence of individual covariates different from
partial capture histories.

We believe that the generality of the pathological features of classical likelihood
analysis (CMLE and UMLE) of behavioural capture recapture models suggests a wider
use of Bayesian alternative analysis even in those more realistic and complex frame-
works such as, for instance, those developed in Bartolucci and Pennoni (2007) where
latent Markov structure is embedded to model more flexibly ephemeral effects and
heterogeneity of individual capture probability.
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