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Abstract In statistical analysis, particularly in econometrics, it is usual to consider
regression models where the dependent variable is censored (limited). In particular,
a censoring scheme to the left of zero is considered here. In this article, an extension of
the classical normal censored model is developed by considering independent distur-
bances with identical Student-¢ distribution. In the context of maximum likelihood esti-
mation, an expression for the expected information matrix is provided, and an efficient
EM-type algorithm for the estimation of the model parameters is developed. In order to
know what type of variables affect the income of housewives, the results and methods
are applied to a real data set. A brief review on the normal censored regression model
or Tobit model is also presented.
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454 R. B. Arellano-Valle et al.

1 Introduction

The problem of estimation for a regression model where the dependent (or endogenous)
variable is limited, has been studied in different fields: econometric analysis, clinical
essays, wide range of political phenomena, among others. Most of the results on the
normal regression model with a censored response variable are based on the develop-
ment of the so called Tobit model, see Tobin (1958); where the response variable of
theoretical interest, Y, is censored. Instead, we may observe a dependent variable Y°
given by

Y=Y I({Y > a), (1)

for some constant a, where /(-) is the indicator function. Specifically, the censor-
ing where the threshold a equals zero receives consideration, hence our Tobit model
accepts only positive observations.

When the data are censored, the appropriate distribution for the sample is a mixture
of discrete and continuous distributions. In order to analyze this situation, the observed
response Y is considered to be related to the original, but censored, Y throughout
(1) with @ = 0. Hence, the Tobit model corresponds to the censored linear regression
model defined by

Y =D;Y; and Y; =xB+¢, 2)
i=1,...,n,where D; = I(Y; > 0), B is a k-dimensional column vector of unknown
parameters, X; = (X1, ..., xik)T, i = 1,...,n, are known covariable vectors, and
€i,1 =1,...,n,are the model disturbances assumed to be independent and normally

distributed, with mean zero and a common variance parameter o2. Thus, since Y; ind.
N (XiT B, 02), i =1,...,n, where N'(u, 02) represents the normal distribution with
mean p and variance o2, we have PY’=0)=PY; <0)=1- @(xiTﬂ/a), and
for the non-nulls Y?’s we have that they are distributed as the respective Y;’s. Here,
@ (-) represents the cumulative distribution function (cdf) of the A/(0, 1) distribution.
Under this model, Tobin (1958) focused on the estimation of the parameters  and o2,
on the basis of n = ng 4 n; observations (x1, d1y1), ..., (Xn, d,yn), Where ng and
n1 are the number of observations on the sets No = {i : d; =0} = {i : y; = 0} and
Ny ={i:d;i =1} = {i : y;i > 0}, respectively. From the relations mentioned above,
the likelihood function for the Tobit model is

. 1 I=diry 1 di
Ly(B.o%) =H[1 — (—X,Tﬂ)} [—qs(— (yi —X,-Tﬂ))} BN
o o o

i=1

where ¢ (-) denotes the probability density function (pdf) of the A/(0, 1) distribution.

Letbe,y=(y1,...,y,)! andd = (dy, ..., d,)”, the experimental latent response
and observed indicating vectors, respectively, and let be X = (x1,...,%,)! the
n x k corresponding design matrix. We define also the n x n diagonal matrix
D = diag(d, ...,d,), and we denote the n x n identity matrix by I,. From this
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Student-f censored regression model 455

notation, we can write the observed and missing/unobserved parts of y as y° = Dy
and y™ = (I,, — D)y, respectively. Moreover, the likelihood equations resulting from
(3) can be expressed as

1
o2 = —y'D(y — XpB), 4)
ni

X" (1, — D)y =X"D(y — XB), Q)

where n = (o r(—x! B/o), ..., o r(—xLB/o )T, with r(z) = ¢(2)/P(2).

The two first order condltlons defined by (4) and (5) are clearly non-linear equations,
which means that there is not a straightforward solution. Thus, iterative procedures,
such as the Newton-Raphson or Fisher-scoring methods have been considered in the
literature, in order to obtain the maximum likelihood estimates of B and o2. The
observed and expected information matrices were derived by Amemiya (1973), who
also studied the asymptotic properties of the maximum likelihood estimators. For a
review of the normal theory about the Tobit model, including the maximum likelihood
estimations, the bias produced by the censoring and further asymptotic results see
Amemiya (1984) and Maddala (1983). Most of these results are developed consid-
ering the one-to-one re-parameterization @y = (yT, Dl of 0y = (BT, o2), where

= B/o and T = 1/0o. Olsen (1978) showed that for the foregoing log-likelihood
function, the matrix 8%log Ly / 8(01\18(,01(I is negative semi-definite, with block-entries
given by

i;’TgyLTN = —Zn;(l —d)r(—=c;) (r(—ci) — ¢i) xix! Zd xix, (6
i=
O .
i=1
where ¢; = XlT y. It is important to stress that, from (6)—(8), the computation of

the expected information matrix is straightforward since E(D;) = P(Y; > 0) =
@(c;) and, by Lemma 5 of the “Appendix 2”, E(D;Y;) = E(D)E(Y; | Y; > 0) =
(1/7)(ci P (ci) + ¢ (c;)) and, similarly, E(D; Y?) = (1/t){(1 + )P (ci) +cp(ci)}

There are several extensions of Tobit model in the literature. For example, Blundell
and Meghir (1987) discussed some generalisations of the Tobit model that allow for
distinct processes determining the censoring rule and the continuous observations.
Alternatively, semi-parametric censored models such as the binary response model,
the ordered response model, the grouped dependent model, the multinomial response
model among many others can be found in Powell (1994). Hutton and Stanghellini
(2011) proposed a censored regression model assuming a skew-normal distribution in
order to study health care interventions.
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456 R. B. Arellano-Valle et al.

As was mentioned above, most of the theory on censored regression models is
related to the described Tobit model, which is constructed in terms of the normal
assumption. However, as is well-known, the inferences based in the normal model
can be strongly affected by any perturbation of the normality in data. In particular,
normal inferences are quite vulnerable to the presence of outliers. Furthermore, many
models treat this problem editing the data that represents outlying observations; this
last procedure may cause the fact that the uncertainty could not be well reflected
when the inference occurs. For that reason, this work is focused on the study of
alternative censored regression models, whose construction is based on a more realistic
assumption than the normal one. In this sense, natural extensions for the Tobit model
can be obtained by assuming e.g., that the distribution of the perturbations belongs to
the scale mixtures of normal family of distributions; see Andrews and Mallows (1974),
from which the normal model can be obtained as a special (or limit) case. One of the
most important and popular members of that class is the Student-# distribution, which
can be reduced to the Cauchy or normal distributions depending on whether the degrees
of freedom parameter is equal to one or it goes to infinity, respectively. The importance
of choosing the Student-# distribution is based on the robustness that it posses; see He
et al. (2000), He et al. (2004). In fact, as it was noticed by Lange et al. (1989), this
distribution provides a useful extension of the normal one for statistical modeling of
data sets involving errors with heavier tails than the normal distribution. The degrees
of freedom parameter of the Student-# distribution provides a convenient dimension
for achieving robust statistical inference, with moderate increases in computational
complexity for many models. Basically, this work describes the censored model using
an approach different than that of the normal model, which is quite vulnerable to the
presence of outliers.

In this work, an extension of the normal censored regression model (2) to the case
where the error terms are independent and have a Student-¢ distribution is proposed,
and a description of the the maximum likelihood approach considering an EM-type
algorithm to find the estimators for the model parameters is provided. In addition,
the respective observed and expected information matrices are obtained in order to
compute the standard errors for the parameter estimates.

The paper is organized as follows. Section 2 introduces the Student-¢# censored
regression model. Maximum likelihood equations and the observed and expected
information matrices are given in Sect. 2.2. Section 3 presents a convenient EM algo-
rithm to find the maximum likelihood estimates. An application with a real data set
of housewives wages is presented in Sect. 4. Finally, some conclusions are noted in
Sect. 5.

2 The Student-¢ censored regression model

This section presents the Student-7 censored regression model that results from replac-
ing in (2) the normal assumption for the disturbances with that of them being inde-

.. ind. .
pendent and Student-¢ distributed, namely ¢; e (0, o2, v),i = 1,...,n, where
t(u, o2, v) denotes the Student-¢ distribution with location parameter u, scale para-
meter o2 and v degrees of freedom. This is equivalent to considering that the
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unobserved random variables Y7, ..., Y, are independent, with Y¥; ~ t(xiT B, o, v),
i.e., with pdf given by

1 (1 ,
f(in0)=—t(—(yi—Xiﬂ)IV), ©)
o o

i=1,...,n,where® = (BT, 02, V)T and t(z | v) = c(W){l + z2/v}~*TD/2 with
c(v) = I'((v + 1)/2)//7v [ (v/2), is the £(0, 1, v)-pdf. In the rest of the paper,
the notation 7' (z | v) will represent the #(0, 1, v)-cdf. Thus, one has P(Y? = 0) =
1— T(é x'B | v), fori € N, and Y° ~ t(x! B,0%, v), for i € Ny. Hence, the
likelihood function of the Student-¢ censored regression model is given by

L 1 I=dirp 1 di
L(0)=H|:1—T(;xiTﬂ|v):| [;t(;(yi—xlrﬁ)h))} . (10)

i=1

Since (10) reduces to the Cauchy censored regression likelihood function when v = 1
and also since it converges to the Tobit likelihood function in (3) as v — oo, the
Student-f censored regression model provides a robust generalization of the Tobit
model.

2.1 The mean and variance of a censored Student-¢ response

In the Student-r censored regression model, the ith observed response is Yl.0 = D;Y;,
where D; = I(Y; > 0) and ¥; = p; + 0 Z;, with j1; = x/  and Z; "< 1(0, 1, v),
i =1,...,n. Hence, since E(Y?) = E(Y; | ¥; > 0)P(Y; > 0) and Var(Y?) =
E(Y?|Y; > 0)P(Y; > 0) — [E(Y?)]?, we have
E(Y?) ={ni+0E(Zi | Zi +¢; > 0)} T(ci | v),
Var(Y?) = {M,~2 +20u E(Zi | Zi +¢i > 0)}T(c;i | V{1 =T (c; | v)}
+0? {E@Z? | Zive > O T(@ | W= EZi | Zite; > 0 TG | wP),

where ¢; = p; /o and, by Lemma 3 of the “Appendix 17,

2
v ci\ t(ci | v)
E(Z; | Z; i >0 =— 1+ L) —, 1,
(Zi | Zi +¢i > 0) (V—l)(+U)T(Ci|U) v >

v T (co2i|v—2)
v—2 T(ci|v)
—cEZi | Zi+ci >0), v>2,

E(Z? | Zi+ci >0) = (
where c_j; = ”T*k ¢i, v > k. Note also that for v > 2, the above first truncated

mean can be rewritten as E(Z; | Z; +¢; > 0) = /555 % Hence, the mean
1

and variance of the Student-¢ censored model are given by
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v C~2
EY)=0 [CiT(Ci | v) + (—) (1 + —')t(ci | V)], v>1, (11)
v—1 v

v 2
Var(Yl.O) — o2 [C?T(ci | v) + 2¢; (m) (1 + j)t(c,- | v)} {1 =T |v)}

02 {T (c—ai | v —2) —[e—ai —t (c—ai | v —2)]t (c—2i | v —2)},
(12)

v > 2. It is important to stress that, when v — o0, (11) and (12) converge to the
normal censored mean and variance, respectively, i.e.,

E(Y?) = o {ci®(ci) + ¢(ci)},
Var(Y?) — o> {c%cb(ci) +eid (ci)} {1 —®(c)}
+ 02D (¢i) — [ci — ¢ ()] b (ci))}

2.2 Maximum likelihood estimation

By convenience, in this section the Olsen (1978)’s reparameterization is considered
y = tf and T = 1/0. Under this new parameterization, the log-likelihood function
for ¢ = (yT, 7, v)T obtained from (10) is

log L(@) = > (1 —dlog{l =T (c; | v)}

i=1

+ > diflogt +logt (z; | v)}, (13)

i=1

where z; = Ty; — ¢;j, with¢; = XiT)l, and

+1
logt(z |v) =logl” (UT) —log I’ (%)

1 1 2
~Dhogrny — P og (14 2. (14)
2 2 v

In order to derive the scores components Sy = dlog L/dy, S; = dlogL/dt and
S, = dlog L/dv, the following partial derivatives are considered first:

dc; 0z de; 0z oT (ci | v)
=X, o =———, — =y —— =1|vx,
oy dy dy 0ot oy

orzlv)  (v+1 2\
3z ——( 5 )(l—l—?) t(z|v)z,
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dlogt(z|v) 1 v+1 (V) 1 22
el — i I | 142
av A viz) 5 et
v+ 1 2\ 22
+ 1+=) =1
Vv V Vv
AT (c|v) 1

1 1
2 () v (B) e - sereim] T,

where 1 (x) = dI"(x)/dx is the digamma function and by, (cx | v+k) is the truncated
moment defined by

Ck

bkm(ck|v+k)=/zk’log(1+

—00

dz, (15)

22 )]m t(z|v+k)
v+k T(ck | v+k)

with ¢, = @ c,andr(z | v) =t(z | v)/T(z | v). To calculate the above partial
derivative of T'(z | v) with respect to v, the Lemmas 1-4 from the “Appendix 1" have
been used.

Thus, after some simple algebraic manipulations we obtain, from (13) and (14), the

following score functions:

-1
n 1 n 2
Sy == (1= dortar 1+ (4 )Z(1+Z7') Gdixi. (16)

i=1 i=1
n 2 -1
1 v+1 Z3
S = E T ( " )(1 + Tl) Zi Yi f di (17)

1 — 1 1
S, = —— [w(V"F )—w(K)—b()](C,'|U)——Cir(cilv)}
i=1

2 v

1 < v+ 1 vy 1
xR(ci|v>(1—di>+EZ[w( ; )‘W(z)—;

i=1

-1
v+1 z7 z7 z2

+ 1+ — — —logl 1+ — )t di, (18)
v v v v

where R(c | v) = T(c | v)/(1—=T(c | v)).Itisimportant to stress thatif v — oo, then
r(c|v) —>r(c)=¢(2)/®P(z) and R(c | v) = R(c) = @(c)/(1 — ®@(c)). Therefore,
S, — 0, while the Eqs. (16)—(17) are reduced to the following Tobit’s score functions:

Sy == D (L —dr(—cxi + ) dizixi, (19)

i=1 i=1
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= (1
&=Z{;—zm]di. (20)

i=1

Finally, note that the expressions (19) and (20) can be reformulated in terms of the
original parameterization € y through the Tobit’s likelihood equations given by (4) and

).

2.3 The information matrix
We compute now the information matrix for the Student- censored regression model.
Let Sy, be the second partial derivatives of the likelihood function (13) with respect

to the components « and A of ¢. The computation of these elements is simplified by
using the following additional results:

8}’( Z|V)=r(_z|v)ir(_z|v)_(v__|_l) (1+Z_) Z},
0z v v

_ 2y 1 2
ar( C|V)=lr(_c|‘))[(u—+1)(1+c_) C_
av 2 v v v

2
—log (u%) = R(c | v)bo1 (¢ | v) + (1 + R(c | v)
+1 1
(+(5) -+ () s semermera).
2 —1 2 2
ar(c|v) :lr(cw)i("‘*'l) (1+C_) C_—log(1+c—)+b01(c|v)
v 2 v v v Y

- l(1 —cr(c| 1)))],
Vv

dR(c | v) 1 v+1 v
a—vzzR(clv)(l—}-R(CW))Iw( 5 )_W(E)

1
—bor (¢ [v) = —crc| V)],

dbg1(c | v) _ 1

=3 [bél(c | v) — boac | v) — % (1 —cr(c|v) (bm(c ) + i)

v+1
1 T(c|v+2)
v+2 T(c|v)

by1(ca | V+2)].

This last partial derivative was obtained using again the Lemmas 1-4 of the “Appen-
dix 1”. Thus, after some extensive algebra, we obtain from (16)—(17) that

n 2
Syy = —Z [r(—c,- |v) — (U _: 1) Ci (1 + %)] r(—ci | v)(1 —di)XiXiT

i=1
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See =

1 « v+1 %
——Ei_l[(w( _ )—w(i))(lw(cmv»

1
—— (@t ciRici [vir(ei [ v) = Rici [ v)bor(ci | v)

-1
1 2 2
—log( —') vt )(1+C—’) S e 1 v = dy)x;
V V V v
-2
v+1 z?
Z ( ) Zi—( )(1+—l) Z3 t dix;,
— V v
2\
) z,v2 in d;,

a

|
|1 s
ﬁl\)l —
+
—~
<
< |+
N
[—
+
SHENS
N
|
< | N
—
+
= |4

1 - , (Y fv+1
xR(ci|v>{1+R(c,-|v>}<1—d,~)+zl§{l/f (5)—w( . )

v+3
viv+1)

1
+ b3y (ci | v) + " (b()l(ci [ v) — )Cir(ci | v)

T
1 T(ca|v+2)

—b ; b ; 2
02(C1|V)+v+2 T@ v 21(c2i | v +2)

—1
1 1 c? c2 2
i (v+ )(1+—’) —’—10g(1+—’)
V v V v V

+ %Cir(ci | V)} cir(ci | V)] R(c; | v)(1 —d;)
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In order to obtain the expected information matrix 7 (§) = —E{3*logL(0)/ 20007},
—s
truncated expectations of the form E §z9 (1 + é) lz+c¢>0¢, where z ~

(0, 1, v) are required. This expectations are obtained from the results given in the
“Appendix 1. Also, the truncated expectations bg1, bo2 and by defined by (15) are
needed, which must be computed numerically. Hence, using those results appropri-
ately, after some extensive but straightforward algebraic manipulations it is obtained
that 7(0) has (block-matrix) elements /,; = —E{Sy,} given by

" v+ 1 c?
I, = Zl: {r(—ci | v) — (T) (1 + j)ci} t(ci | v)xix]

1=

" v+ 1 2
T(cy 2

+;[(v+3) calv )+(v+3

I L[ (vt! Teen 1v+2)+ (=2 ) rer 1 v)
[ J—— V [ v X;,

yT Tl 1 v +3 Ci 1(C2f +3 Ci i

| — v+1 %
b =3 [[(( ) w(z))<1+R(c,-|v>)
—; (I+c¢iR(ci | v)r(ci | v)) — R(ci | v)boi(ci | v)
ool 1 o 2 (v—l e
—log +U _—U(V+1) V+3) (ci | v)
1 (v+5 v 1/22
; (?) (ﬁ) e vy i,
1 < 5v+9 v v+ 1
1n=—22[( )T(ci|v)+(v+2)( +3)cz,T(czller2)
v+1
+(U+3)cir(ci|v>],
_ 1 Z 2 2 3 ‘
Iy = w+3§{( +1)T(c,|v)+( +2)c2,-t(cz,|v+2)
1 (3v—1
—;(v+l)cit(ci|‘))],
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I < 1 1 :
IVU=Z§{w(”; )—w(%)—bm@|v>—;c,-r<cl-|v>] R(ci | v)

1 1
_ZZ [[b§1(0i [ v)=bo(ci | V)_;bOI(Ci [v) (1 = 2¢ir(c | V))} T(ci|v)

n
i=1

1 2
+|:v+2b21(52i|V+2)_m(1_c2ir(6’2i|V+2)):|T(02i|‘)+2)
b e+ g1 E ) L — e )

————¢cy; t(ci | v)+ — | —lo = —(I—=cir(ci|v
p(v+2) A = v & v v e
cit(ci|v)].

To recover the expected information matrix J (@) of the original parametrization
0 = (BT, 02,07, recall that J(0) = (3¢/00)T I (¢)(3¢/00), where the Jacobian
matrix is

ol —103/9 0
3_0 =1 0 fﬁ 0
v 0 0 1

Finally, note that if v — oo, then

S Alr(—ci) — cild(ci) + e} xix] —% P {ci®(e) +oedlx; 0
1(p) — —L30 i ®(cr) + e} x] L3 {d+cHd(e) +cip(en} 0
0 0 0
All the above expressions have been checked against the outcome of numerical
differentiation/integration, which has confirmed that they are correct.

3 Parameter estimation via an EM-type algorithm

The EM algorithm Dempster et al. (1977) is a very popular iterative optimization
strategy commonly used to obtain maximum likelihood estimates when the model
has missing data. The incomplete data is often referred to as a latent variable or
unobservable data. In censored regression models, the consideration of this approach
is clearly justified since the original responses Y1, ..., ¥, are latent variables, where
only those responses that were not censored are fully observed.

In this work, we propose the Student-t censored regression model. Consequently,
there is a second reason to consider the EM algorithm to obtain the maximum likelihood
estimates of this model. In fact, as is well-known, the Student-¢ distribution can be

represented as a scale-mixture of normal distributions. This mean that if Y7, ..., Y,
are independent random variables, with ¥; ~ t(xiTﬂ, o2, v),i =1,...,n,then there
are random variables Vi, ..., V,, which in our case are unobservable, such that
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464 R. B. Arellano-Valle et al.

YilVi=v " Nod B v o), @1
Vi % Ga(v/2,v/2), (22)
i =1,...,n, where Ga(x, 1) denotes the gamma distribution with shape and scale

parameters o and A, respectively. This representation is commonly used in the sta-
tistical modelling of the Student-¢ distribution in both, classical; see Liu and Rubin
(1995), and Bayesian; see Lin et al. (2004), approaches.

Considering the hierarchical representation (21)—(22) for the complete Student-¢
regression model and the observed data (x;, d;y;),i = 1, ..., n, we implement next
the EM algorithm to find the maximum likelihood estimators. The complete-data is
given by (x;,d;, Y;, V;),i = 1,...,n. Therefore, the complete-data log-likelihood
function is

1 1 n
logL.(0) = —5 n log (27‘[02) — 20—2 Z Vi(Y; — XlTﬂ)z
i=1

n

nv v v v

+710g§ —nlogl’ (5) + 3 Z;(log Vi = Vp).
=

Letbe 8 = (BOT 520 )T the estimate of @ at the ¢-th iteration, and denote

byQ(o 19"

7

) the conditional expectation of log L. (@) given the observed data and
. With these notations, we have

~n) _ 1 5 - ‘ v T2 | v 21
0(019") =— nlog (20 )—%—zzg(l—dols(v,(n—x,- 8717 <0,8")
=

I < N T g2 Y oo 2
—FZ}diE(ViIYi>0,0 ) i =%/ B +n 3 log 3
1=

n

V v
_nlog I (5) n EZ% [(1 —d,-)E[(logV,- —V) Y < o,ﬁ“)}
i=

+diE[(log V; = Vi) | Yi > 0,6(’)]}. (23)
To compute the left and right truncated expectations involved in (23), the auxiliary

results given in the Lemmas 5-7 of the “Appendix 2” are needed. By using those
lemmas, the following truncated expectations are obtained at the iteration 7:

T (e 190 +2)

E (Vi 1Y > 0,0“”) —

T
N 70 41 =)
et 7208%) =5 (%5 (F) ).

@ Springer



Student-f censored regression model 465

and

(26)

E(vily=08") =
T (-2 150)

N 0 41 5
E(logVi 1% <0,8") =y (%) - 1og(“7) —bor (<2"). @)

A(t) (1)
(= 190 +2)
E(vivi 1% 0.8") =50¢"
T (=2 190)
—oWy ( ’c\l(l) |A(t)) (28)

T () 199 +2)
T (_Ez@ | ﬁ(;))

5200 (=& 139), (29)

2
E(vir2 17 <0.9") =520 + (3950)

where &) = xT 8© /o ® and ¢} = /O +2)/50 ") Thus, from (24)~(29), (23)
can be rewritten as

1 1
0 (0 |§(’)) = —3nlog 210”) — 5 {n032<'> +B7X" (1, - D)D2Xp

5 T ~ .
n (ﬂ(t) B 2[9) X’ (I, - D) D(()t% (Xﬂ(” —ﬁ‘v’))

+(y — XB)T DﬁYT) y— Xﬂ)} +n {% log (%) —log I (g)}

L P01\ (30
> ny > nlog >

— 17 [, — DBy’ + D | — 17 (D) + D) 1n], (30)
where as before X = (x,....,x)T |y = (y1, ..., y) T, D = diag(di, ..., dy), 1,

is a n-dimensional vector of ones, and

70 =GOr@” v, ..., 50r@® | vO)T,
—~ T
b(()z) _ (bm (—Eﬁ’) W(z)) ... bo (—a(f) m(z)))

g(z) (bo (A(z) |A<r)) . bot (’C*’(lt) Iﬁ(”))T
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(&) 10 +2) T () 190 +2)

DY) = diag

rCae) ()
R T(#;g |ﬁ<f>+2) T(E( | ’)+2)
DY) = diag

T (#1” | w) T (cn” | vm)

The above results show that for the Student-7 censored regression model, com-
putationally attractive expressions that can be easily implemented have been found.
Thus, the EM algorithm can be implemented via a simple modification, called ECM
algorithm; see Meng and Rubin (1993), Liu and Rubin (1995). A key feature of this
algorithm is that it preserves the stability of the EM algorithm, namely its monotone
convergence property. The steps of the ECM algorithm are presented as follows.

E-step:  Given 79\(’), compute the conditional expectations in (24)—(25), for each
i € Ny, and those in (26)—(29), for each i € Nj.

20+

CM-step 1: By maximization of (30) over 8 and o2, update 8 and 520+ using

the following equations:

~(t+1)

B [xT ((1 ~D)BY) +DD(T’§) X]_ [XT(I DB ( X" _ ﬁ,(f))
N0

+X"DD{)y].

~ 1 A ~t+DT T (+1) o JURTRY,

02(I+1):r_1’n002(l)+ﬂ1 XTD%(I D)Xﬂt (,Bt _2'3, ) xT

I, —D)D(’)( X" _ ﬁ(v”) ( Xﬁ(:ﬂ)) PUD (y—xﬁ(’“))].

CM-step 2:  Given ﬁ(t and 520+1 obtained in the previous step, update 7“1 by
maximization of

D+D D+D 70 +1 7®
) 5 og 7 + > og 5

1 ((In _ D)D(H—l) + DﬁY—H)) 1,,

over v.

The E and CM steps are alternated repeatedly until a suitable convergence rule
is satisfied, e.g., the difference in successive values of the estimates, namely ||0(’ +D
-0 ||,1s less than a tolerance value where ||z|| = VzTz. The ECM algorithm is often
criticized because it tends to get stuck at local modes. A convenient way to avoid this
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Fig. 1 Housewives wage rates

problem is to try several ECM iterations with a variety of starting values. If there exist
several modes, one can find the global mode by comparing their relative masses and
log-likelihood values.

~(t+1) a

Finally, note that the ECM algorithm for the Tobit model to estimate B nd
520+D follows from letting 7, = 7, and Dyg = D7y = I, in the above relations,
which correspond justly to the limit case of v — oo.

4 Application

The developed method is illustrated with data from Mroz (1987), the University of
Michigan Panel Study of Income Dynamics (PSID) for the year 1975 (interview year
1976). This year was particularly special since the PSID interviewed directly the
wives in the households (during the other years, the head of the household’s interview
supplied information about the wife’s labor market experiences during the previous
year). The data consists of 753 married white women between the ages of 30 and 60
in 1975, with 428 women that worked at some point during that year. The dependent
variable used in this application is a measure of the wage of the housewife known as
the average hourly earnings (wage rates). It is important to stress that wage rates are
set equal to zero (i.e. they are censored or simply not observed) for wives who did not
work in 1975. This assumption is usually adopted in economy; see DaVanzo and Lee
(1978). Since the 43.16 % of the housewives respondents had no work at the moment
of the interviews, the data set presents a very high degree of censoring. For the rest of
the housewives, the density function is sketched by the histogram in Fig. 1.

The data are analyzed using the Student-¢ censored regression model of the house-
wife wage rate, and a set of control variables such as the wife’s age, her years of
schooling, the number of children younger than six years old in the household and the
number of children between the ages of six and nineteen.
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Fig. 2 Control variables: a age, b education, ¢ children younger than 6 years old, d children between the
ages of five and nineteen

In order to support the election of the Student-7 censored model, we analyzed the
martingale-type residuals (MT) proposed by Barros et al. (2010) for censored models.
These residuals are defined by

ru, = sign(ru)y =2 [ru, + dilog(di —ru)], i =1,....n
where ry, = d; + log(S(y;; 5)) is the martingale residual defined by Therneau et al.
(1990), with § (yi;’O\) the survival function of y evaluated at the ML estimator of
0,d; = 0,1 indicating whether the observation is censored or not respectively and
sign(z) denoting the sign of z. The plots of the M T residuals with generated confidence
envelopes,! presented in Fig. 3, confirm that the Student-t assumption is well supported
by the data.

! The confidence envelopes are a graphical model-checking device for linear models based on point-wise
confidence bounds at certain confidence level (for more details about confidence envelopes see Venables
and Ripley 2000 and references therein).
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Fig. 3 QQ plot with envelopes of MT residuals for wage rates

The obtained results are compared to the estimations of Tobit model. Table 1 con-
tains the ML estimates of the parameters from both models, together with their cor-
responding standard errors calculated using the observed information matrix given in
Sect. 2.3. The AIC model selection criteria indicate that the Student-r model, with
heavy tails, presents a better fit than the Tobit model.

5 Final conclusion

In this work, an extension of the normal censored regression model, known in the
econometrical and statistical literature as the Tobit model, has been developed by
considering the case where the error terms are independent and have a Student-f
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Table 1 PSID 1975 data

Parameter Student-t model Tobit model

Estimate SE Estimate SE
Constant —3.27 1.47¢-02 —2.75 1.89¢-02
Age —0.11 3.36¢-03 —0.10 3.32¢-03
Education 0.81 6.12¢-04 0.73 6.22¢-04
Kids < 6 years old —-0.23 2.35e-02 —0.21 2.43e-02
Kids > 6 years old —3.28 1.04¢-¢03 —-3.03 1.01e-03
o 4.44 5.16¢-08 4.57 2.86¢-08
v 6.61 3.23¢-01 — -
Log likelihood —1,459.26 —1,481.66
AIC 2,932.52 2,975.31

distribution. A convenient EM-type algorithm is developed by exploring the statistical
properties of the Student- truncated distribution. In this context, attractive expressions
that can be easily implemented are obtained. The observed and expected matrices are
analytically derived, allowing for the direct implementation of the inference on this
type of models. The Student-r censored regression model with heavy tails seems to
be more appropriate to fit the Mroz (1987) data set. R programs are available from the
authors upon request. Although the methodology proposed considers the case when
v is unknown, some computational difficulties arise (for example, slow convergence).
For that reason, a more efficient ECM algorithm; see Meng and Rubin (1993), Liu and
Rubin (1995), should be used. Finally, it is important to stress that the methodology
proposed in this paper can be extended to other types of mixture distributions, leaving
a future topic for research.
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Appendix 1
In this appendix, expressions for truncated expectations of some functions of a Student-

t random variable are provided. They are used in particular to compute the information
matrix.

Lemma 1 Let Z ~ t(0, 1, v). Then for any integrable function g:

El{g(Z)|Z <c}=E{g(—2Z)|Z+c > 0}.

@ Springer



Student-f censored regression model 471

Lemma 2 Lett(z | v) be the t(0, 1, v)-pdf. Then:

2\ "7 10 | v) v+ m
(1+7) t(zlv):t(0|v+m)t 5 zlv+m).

Lemma 3 Let my(c | v) = E{Zk | Z+4+c > 0},v >k, where Z ~ t(0, 1, v). Then,
fork =1,2,3,4 it follows that:

v C2
ml(CIV)=—(1+—)r(6|v), v>1,
v—1 v

v T(cr]|v—=2)

mz(CIV)=V_2 Tl —cmi(clv), v>2,
(c|v) 2 1+622<|)+2(|> 3
m3(c|v) = ——— — ) r(c|v cmi(c|v), v>3,
3 - —3) v !
312 T(c_a|v—4)
ma(c | v) = — zcms(c | v)
wv=2)(v—4) T(c|v) 2
1
+§c3m1(c [v), v>4,
where r(c | v) = ;((cc‘f;)) andc_y = 1’T_kc,v>k.

Lemmad Let Z,, ~t(0,1,v+m), with Zy = Z. Then:
. 1+22 _l|z+ 0 v \ T |v+2)
— c > = ,
v v+1 T(c|v)
—(—)reciv
=\ r(c|v),
A 5 v
Ejll+ — Z°NZ4+c>0r = —— ) {1l —cr(c|v)},
% v+ 1

2\, v v \ T |v+2)
E{(HT) Z|Z+C>O}=(v+1)(v+3) T [v)

-1

22
E (l—l——) Z|Z+c>0
v

x{l —car(ca|v+2)},

L2 _223 z ol = (2 L, P
(o2) 2] () ) e

1/2
% T |v+2
+( ) (e | )C§r(62 | V+2)],

v+2 T(c|v)
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el(1+8Y 22 ol =2 " Yia
(*T) |Zres _(v+1)(v+3){(_”(c|v))

v T(ca|v+2) 4
_(v~|—2) T czr(cz|v+2)],

-2

where as before ¢y, = # c.

The proofs of Lemma 1 and 2 are straightforward. For the proof of Lemma 3

see Arellano-Valle and Genton (2008). Finally, the proof of Lemma 4 is direct from
Lemma 2 and 3.

Appendix 2

Observe here some auxiliary results to compute the conditional moments used in the
EM algorithm.

Lemma5 Let Y ~ N (u, 02). Then,

E(Y|Y<a)=pu—or(a,
EY?|Y <a) = p* —20ur @) +o? {1 —ar (@)},

where a = (a — n)/o and r(z) = ¢(2)/D(2).
Lemma 6 Let W ~ Ga(a, 1). Then, E(log W) = ¢ (a) — log M.

Lemma7 Let Y | V = v ~ N(u,v '0?) and V. ~ Ga(v/2,v/2). Then, the
conditional pdf of V given [Y < a] is

(v/2)"2 0D 1=5 0 @ (foa)

- , v>0,
r(v/2) T (a]|v)

fviy<a(v) =

where a is defined above. In particular, we have

T (ax|v+2)
T@|v)

E{ﬁr(ﬁ&)|Y§a}=r(Zl|v),

1
E(logVIYSa)=1/f(v; )—log(g)—bm@,

E(V|Y <a) =

where ay = +/(v+2)/va. Moreover, for any integrable function g, E(g(V) |
Y>a)=E@gWV)|Y < —a).
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The results in Lemma 5 and 6 are well-know; see e.g., Johnson et al. (1994) and
Wilks (1932), respectively. For a proof of the selection pdf of [V | ¥ < a] given
in Lemma 7, see Arellano-Valle et al. (2002), Arellano-Valle et al. (2006); the trun-
cated expectations presented in this lemma follow after some algebra and considering
Lemma 5.
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