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Abstract An analysis of air quality data is provided for the municipal area of Taranto
(Italy) characterized by high environmental risks as decreed by the Italian government
in the 1990s. In the context of an agreement between Dipartimento di Scienze Statis-
tiche—Università degli Studi di Bari and the local regional environmental protection
agency air quality, data were provided concerning six monitoring stations and cov-
ering years from 2005 to 2007. In this paper we analyze the daily concentrations
of three pollutants highly relevant in such an industrial area, namely SO2, NO2 and
PM10, with the aim of reconstructing daily pollutants concentration surfaces for the
town area. Taking into account the large amount of sparse missing data and the non
normality affecting pollutants’ concentrations, we propose a full Bayesian separable
space-time hierarchical model for each pollutant concentration series. The proposed
model allows to embed missing data imputation and prediction of pollutant concen-
tration. We critically discuss the results, highlighting advantages and disadvantages
of the proposed methodology.
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1 Introduction

The analysis of the dynamics of airborne particulate mattern (PM10) concentration,
sulphur dioxide (SO2) and nitrogen dioxide (NO2) is a central issue in environmental
monitoring. In fact, several epidemiological studies have shown that personal expo-
sure to these pollutants has effects on lung functions, especially on children, the eldery
and asthmatics.

Because of these dangerous effects on the health, several studies have been con-
ducted all over the world in order to monitor pollutants levels, estimating space time
surfaces over areas of interest and evaluating the effects of meteorological factors (e.g.
temperature, relative humidity, wind velocity) on pollutants concentration (Asrari et
al. 2005; Bush et al. 2001; Rajkumar and Chang 2000).

Similar studies have been conducted also in Italy, focusing on those areas charac-
terized by high environmental risks (Primerano et al. 2006). In this paper, we focus
on the municipal area of Taranto (southern Italy): this area is characterized by high
environmental risks due to the massive presence of industrial sites with environmental
impacting activities along the NW boundary of the city conurbation. Such activities
include iron production (one of the largest plants in Europe), oil-refinery, cement pro-
duction, fuel storage, power production, waste materials management, mining industry
and many others. Some other environmental impacting activities are more deeply inte-
grated within the urban area and have to do with the presence of a large commercial
harbor and quite a few military plants (a NATO base, an old arsenal and fuel and
munitions storages). These activities have effects on the environment and on pub-
lic health, as a number of epidemiological researches concerning this area reconfirm
(Biggeri et al. 2001). In the context of an agreement between Dipartimento di Sci-
enze Statistiche—Università degli Studi di Bari and ARPA Puglia (the local regional
environmental protection agency), air quality data for the municipal area of the city of
Taranto were provided, belonging to different monitoring networks pertaining to the
regional and municipal government and counting up to 25 monitoring stations on the
whole (Primerano et al. 2006).

Pollutants continuously monitored by the stations include sulphur dioxide (SO2),
nitrogen oxide (NOX ) and nitrogen dioxide (NO2), carbon monoxide (CO), benzene,
PM10 and ozone. This study is focused on PM10, SO2 and NO2 concentrations. Only
six monitoring stations were considered, those producing the longest time series for
the three pollutants.

The main goal of this work is the proposal and critical analysis of a hierarchical
Bayesian modeling framework for mapping, each one independently from the others,
the concentration of three pollutants in the air shed of the city of Taranto. Extend-
ing the idea recently presented in Cocchi et al. (2007), we propose a hierarchical
spatio-temporal modeling approach to describe and map daily mean concentrations of
PM10, SO2 and NO2. The model explicitly describes the spatial and temporal relation-
ships within the data and those between pollutant concentrations and meteorological
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variables. This feature allows a better understanding of the pollutants diffusion and
generating processes that is crucial to infer on their sources and effects on human
health. The same data have been analyzed in Pollice and Jona Lasinio (2010): there
the authors adopted a multi-step procedure based on the combination of a multivari-
ate hierarchical spatio-temporal model within a Bayesian framework proposed by Le
and Zidek (2006) and an external missing data imputation procedure based on spatial
interpolation, the latter carried on in the Bayesian framework too. On the other hand,
here we fully benefit of the Bayesian approach treating the missing data as unknown
parameters and embed their estimation in the proposed model.

The paper is organized as follows. In Sect. 2 we introduce our data and some explor-
atory analyses are illustrated. In Sect. 3 the proposed model is defined and similarities
and differences with other methods proposed in literature are highlighted. Results are
discussed in Sect. 4 and model checking procedures are reported in Sect. 5. Some
concluding remarks are given in Sect. 6.

2 Data description

The present study is focused on three pollutants: PM10, NO2 and SO2. The data set
contains validated data for years 2005–2007 (1 January 2005–31 December 2007),
available for only 6 monitoring stations managed by the Apulia regional government,
all equipped with analogous instruments either reporting hourly, two-hourly or daily
measurements. Hourly observations of several meteorological variables (including
temperature, relative humidity, pressure, rain, solar radiation, wind speed and direc-
tion) are also available for the same time period and for 3 weather monitoring stations.
Our main objective is to integrate pollution and meteorological data in order to sum-
marize the spatial behavior of the pollution diffusion processes over the area of the
municipality for the study period.

Preliminary data analysis involved addressing quite a few data problems: first we
obtained a homogeneous time scale for all monitoring stations transforming the data
into daily averages. Normalizing transformations were then applied in order to reach
approximate marginal Gaussianity: the square roots of the logs of SO2 and the logs
of PM10 and NO2 daily average concentrations were considered. Original and trans-
formed data are shown in Figs. 1, 2 and 3: the suggested transformations strongly
improve the normality of the data.

Another interesting problem is the presence of a substantial percentage of missing
data in the three pollutants. In Table 1 a summary of the missing data situation is
reported. Missing data are due to both different operational periods of the stations
(staircase missingness) and occasional malfunction of the sensors (sparse missing
data). Missing data are embedded in the model as unknowns and estimated jointly
with the other parameters. Available weather data are also characterized by gaps and
unreliable measurements; a unique daily weather database at the city level was then
obtained combining the 3 stations data.

As a first step one of the three stations was chosen as the main source of data. More
reliable pressure and solar radiation measurements recorded by each of the other two
monitors were considered. Then daily averages were obtained by arithmetic mean
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Fig. 1 PM10 concentrations for the six stations: original data (left panel) and transformed data (right
panel). The simple logarithmic transformation strongly improves the normality of the data
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Fig. 2 SO2 concentrations for the six stations: original data (left panel) and transformed data (right panel).
The data were transformed by taking the square root of the logarithmic transformation; this transformation
strongly improves the normality of the data
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Fig. 3 NO2 concentrations for the six stations: original data (left panel) and transformed data (right panel).
The simple logarithmic transformation strongly improves the normality of the data

(temperature, relative humidity, pressure), geometric mean (wind speed, solar radia-
tion), circular mean (wind direction), mode (wind direction—quadrants), maximum
(wind speed), sum (rain). Missing daily values were imputed by averaging hourly data
recorded 12 h before and after the gap. Only rain levels were imputed as averages
of those recorded at the other two stations. Notice that differently from the pollu-
tants, missing weather data were imputed due to their role in the proposed model.
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Table 1 Missing daily averages (%)

Archimede Carcere Paolo VI SS7Wind Statte Talsano

PM10 321 (29%) 98 (9%) 144 (13%) 184 (17%) 199 (18%) 23 (2%)

SO2 183 (17%) 109 (10%) 176 (16%) 206 (19%) 93 (8%) 25 (2%)

NO2 209 (19%) 120 (11%) 202 (18%) 214 (20%) 159 (14%) 71 (7%)

Pollutants are treated as response variables and weather data as covariates. In order
to estimate missing covariates data a missing data mechanism has to be specified and
other parameters have to be added. We decide to externally impute the missing data
in the covariates in order to keep the model simpler.

Not all variables were considered like possible covariates for the construction of the
models. Their relevance was verified by fitting linear regression models: conditional
OLS estimates were obtained for the normalized pollutants concentrations at the 6
sites with weekday and month calendar variables and all meteorological covariates
as explanatory variables. Concentration levels were overall significantly affected by
the effects of weekday, calendar month, temperature, humidity, rain, maximum wind
speed and wind direction quadrant. To these, we added the spatial coordinates of the
sites.

3 The modelling approach

In this Section we sketch the basic structure of the proposed hierarchical model.
Space-time hierarchical models have a relatively long history in the statistical litera-
ture. Starting from the seminal paper by Wikle et al. (1998), going to book chapters
(Banerjee et al. 2004, ch. 8) and a variety of research articles often dealing with
challenges arising from specific applied problems. Most of these papers start from
the so called geostatistical approach where the observations are modeled as a partial
realization of a spatio-temporal, typically Gaussian, random function

Z(s; t) = μ(s, t) + e(s, t), s ∈ �d , t ∈ �

where μ(s, t) is the mean structure and e(s; t) denotes the residuals, each elements
of this formalization is then modeled to include physical knowledge, specific space-
time dynamics and more empirical knowledge such as covariate effects deduced from
available data. Z can be univariate or multivariate with the basic assumption is that
second moments exist and are finite. Several simplifying hypothesis are made, as sep-
arability between space and time, stationarity etc. raising often many issues in terms
of justifiability and model quality. Modeling efforts are,usually, directed to represent a
large scale variation (trend, level in space and time) and the second moments (covari-
ance structures), using a hierarchy of equations each dealing with one aspect of the
phenomenon. These models are a direct mathematical representation of the reduc-
tionist paradigm. As each equation directly connects to a part of the system, it is
important to stress that hierarchical models do not bound the system representation
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Fig. 4 Correlograms for observed normalized daily average pollutant concentrations and residuals after
the subtraction of the AR(1) temporal trend

to a sum of parts: estimates and predictions uncertainty is obtained by hierarchically
modeling the uncertainty of all t he parts of the system, allowing a wider perspective
on the environmental-ecological object. In practical terms all these models share a
common problem: computational complexity. No simple procedures are available and
few ready-made software packages exist. This lack of software is justified by the
necessary specificity of each case. In the Bayesian framework separable models can
often be implemented in WinBugs (Shaddick and Wakefield 2002; Cocchi et al. 2007)
allowing for a reasonable compromise between computational efficiency and easiness
of implementation. We acknowledge that the separability between space and time is
a strong assumption and this assumption is often not realistic from an empirical point
of view [see for example Brown et al. (2000)]. However, when it applies, the model
formulation is simplified and the computational complexity of the estimation proce-
dure is reduced. In order to verify the separability assumption, we take advantage
of the results in Pollice and Jona Lasinio (2010): the authors discussed the separa-
bility assumption using the so-called spatial correlation leakage proposed in Le and
Zidek (2006). Figure 4 shows the correlograms for observed normalized daily average
pollutant concentrations (left panel) and residuals after the subtraction of the AR(1)
temporal trend for our data (right panel): since the subtraction of the AR(1) temporal
trend does not imply an overall decrease in the correlogram, the spatial correlation
leakage is absent and the separability between space and time assumption is supported
by our data.

All these attractive features, and the mentioned missing data treatment typical of
the Bayesian framework, lead us to our proposal.
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3.1 The proposed model

In this section we define the proposed Bayesian hierarchical model specifying each
level.

Level 1: observed data model
Suppose that a pollutant is observed at S spatial locations and T time points, along
with a set of q meteorological variables. Let Yts denote the observed of one of the three
pollutants on day t (t = 1, . . . , T ) at spatial location s (s = 1,…,S); let (C1s , C2s) be the
spatial coordinates of site s and let Xt be the q-dimensional vector of meteorological
variables on day t.

At the first level of the hierarchy, conditional on the mean (μts) and the measurement
error variance (σ 2

s ), observations are modelled as:

Yts |μts, σ
2
s ∼ N (μts, σ

2
s ) (1)

and

μts = γ1C1s + γ2C2s + X
′
tβ + θt + εts (2)

Parameters γ1 and γ2 capture the large scale linear spatial trend, while vector β

captures the dependence of pollutant levels on the covariates. θt represents a temporal
random effect and the vector εt. = (εt1, εt2, . . . , εt S) describes the spatial random
effects at time t.

Level 2(a): temporal model
According to the results of some exploratory data analysis (Pollice and Jona Lasinio
2010), the time dynamic is represented as a first order autoregressive process:

θt = φ1θt−1 + ωt , ωt ∼ N (0, σ 2
θ ) (3)

Level 2(b): spatial model
We assume that the spatial and temporal processes are separable and that at each time
t, the vector εt. = (εt1, εt2, . . . , εt S) is a zero mean, isotropic Gaussian process with
S × S correlation matrix 	

εt.|σ 2
ε ,� ∼ MV N(0S, σ 2

ε�) (4)

The sill parameter σ 2
ε plays the role of the zero-distance variance. The ss’ entry of

the correlation matrix represents the correlation between sites s and s’ and is assumed
to be an exponential function of the distance dss′ between the two locations s and s′:

	ss′ = exp (−φdss′) (5)

where dss′ is the distance between sites s and s’.
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Level 3: hyperpriors
Model hierarchy is completed by prior specification for the hyperparameters. A Gauss-
ian prior is assumed for the regression coefficients γ1, γ2 and βi (i = 1, . . . , q). The
exponential spatial structure in (4) is ruled by two parameters: the range φ and the sill
σ 2

ε = 1
τε

of the covariance function. A flat truncated Normal prior distribution and a
flat lognormal distribution have been chosen as prior distributions respectively for φ

and τε .
The φ1 parameter was generated from a normal distribution with very small pre-

cision centered on the maximum likelihood estimate of a single AR(1) obtained by
stacking the six monitoring stations recordings in a single series.

These three levels complete the proposed model. Our model can be considered as
an extension of the model proposed in Cocchi et al. (2007) assuming a different time
dynamic: we consider a first order autoregressive process rather than a simple random
walk. This assumption has been supported by the data: as the posterior distribution of
φ is clearly bounded away from 1 to 0 (it is concentrated around 0.73) showing some
evidence of stationarity being well concentrated within the stationarity region.

Another important feature of the proposed approach is the missing data treatment:
Pollice and Jona Lasinio (2010) analyzed the same data using a different multivariate
model. However, they treated missing data by imputing them in a multi-step procedure.
The obtained estimates and prediction resulted not fully satisfactory since the external
imputation of missing data didn’t allow to fully estimate uncertainty of the estimates.
The parameters of the proposed model are estimated via Monte Carlo Markov Chain
(MCMC) algorithm implemented in WinBUGS (Spiegelhalter et al. 1999).

4 Results

Starting from the model described in Sect. 3 we verified MCMC convergence for
several model structures. Two separate chains of 50,000 iterations starting from over-
dispersed initial values were run for each model. A thinning interval of 25 and a
burn-in period of 20,000 iterations were applied. Convergence was assessed by visual
inspection of the chains sample trace plots, and by computing the Gelman and Rubin,
Geweke and Raftery and Lewis statistics (Gilks et al. 1996).

The models point out the role of covariates in determining pollutants levels.
Increases in the rain amount and maximum wind speed reduce PM10, on the con-
trary temperature and relative humidity have positive coefficients, in accordance with
the PM10 production process encouraged by high temperatures during warmer seasons.
Also the wind direction is significantly related to the PM10 concentration, suggesting
the presence of a transport phenomenon of particulate. Fitting the same model to NO2
shows no significant influence of the rain amount and wind direction, while increases
in temperature and relative humidity contribute to the pollutant’s production, follow-
ing a winter to summer reduction of its level. The model for SO2 highlights how the
rain amount and the calendar month have no influence on the pollutant level, while
temperature, relative humidity and wind speed and direction contribute significantly.
Spatial coordinates play the same role for PM10 and SO2, showing a positive however,
very small correlation with the pollutants level, suggesting the presence of a positive
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gradient in the NE direction complying with the possible effect of the sea breeze on
the reduction of the levels of these two pollutants. While as far as NO2 is concerned
the spatial behavior is less clear, little variation can be found in the SW direction.

5 Model checking

Once the model has been estimated, the plausibility of the chosen model and the ade-
quacy of model fitting have to be checked. Cross-validation is one of the most widely
used tool to evaluate model fitting. However, in Bayesian framework cross-validation
can be highly computationally expensive. In fact, in order to perform leave-one-out
cross-validation, the model must be re-fit n times and fitting a Bayesian model even
once can require long iterative computation. Hence, in a Bayesian context predictive
checking is preferred. The Bayesian setting has the desirable feature of allowing us
to discuss various critical aspects of the model from a predictive point of view: rep-
licated data are generated from the predictive distribution once new parameter values
are drawn from their posterior distributions and compared with the observed data.

We aim at evaluating the model’s ability in predicting the average pollutants levels
at unmonitored locations. In particular, daily normalized pollutant fields are interpo-
lated on a 400 points grid: a 14 × 31 square lattice with 700 m cell side, covering
the whole area of interest. Prediction of the pollutant concentration at site s’ and time
t is obtained by sampling from the posterior predictive distribution p(μs′t |Y ) whose
components are:

μts′ |Y = (γ1|Y )C1s′ + (γ2|Y )C2s′ + X
′
t (β|Y ) + (θt |Y ) + (εts′ |Y ). (6)
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Fig. 5 Locations of the six monitoring stations and of the nearest grid points
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Fig. 6 Normalized observed pollutant concentrations (dark grey line) for the Talsano monitoring station
and those predicted at the nearest grid point (black line); dotted lines are 95% credibility intervals. Year
2007

Table 2 RMSE’s for the six monitoring stations over four time windows: SO2

Years Root mean squared error

Archimede Carcere Paolo VI SS7Wind Statte Talsano

2005 0.4476 0.3801 0.5920 0.5955 0.3225 0.4905

2006 0.3427 0.3695 0.4570 0.4499 0.2428 0.3545

2007 0.3526 0.3062 0.4044 0.3555 0.1770 0.2570

2005–2007 0.3874 0.3557 0.4966 0.4844 0.2578 0.3813

Justification of the additive form of the predictive distribution is given in Shaddick and
Wakefield (2002). Samples from the predictive distribution p(μs′t |Y ) are obtained via
MCMC. We obtained 200 simulations at each of the 400 grid-points on each of the
1,095 days. Daily expectations and simulations summaries (means, standard errors,
upper and lower 95% credibility interval limits) for the grid points closest to the six
monitoring stations (see Fig. 5) are considered as the final output for the evaluation of
the modeling strategy. In Fig. 6, the time dynamic of predicted and observed values
together with the 95% credibility bounds are reported. The large majority of observed
normalized daily concentrations fall inside the corresponding credibility intervals,
showing an over-all compliance of the observed data with the simulations from the
estimated predictive distribution.

In order to assess the model’s ability in predicting pollutants levels we consider the
following validation statistics:
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Table 3 RMSE’s for the six monitoring stations over four time windows: NO2

Years Root mean squared error

Archimede Carcere Paolo VI SS7Wind Statte Talsano

2005 0.5881 0.5688 0.6638 0.5357 0.5226 0.5702

2006 0.6603 0.6554 0.6400 0.5422 0.5191 0.5437

2007 0.6326 0.4188 0.4558 0.5581 0.7772 0.3339

2005–2007 0.6276 0.5617 0.6021 0.5478 0.6039 0.4933

Table 4 RMSE’s for the six monitoring stations over four time windows: PM10

Years Root mean squared error

Archimede Carcere Paolo VI SS7Wind Statte Talsano

2005 0.5152 0.3722 0.2778 0.4510 0.2201 0.1179

2006 0.5180 0.2164 0.2038 0.6041 0.2499 0.1064

2007 0.4114 0.2853 0.3231 0.4884 0.2975 0.2495

2005–2007 0.4939 0.2997 0.2699 0.5172 0.2584 0.1862

– root mean squared error (RMSE)

RMSEs = √
(MSEs) =

√∑T
i=1(Yts − Ŷts)2

T
,

where Yts represents the observed normalized pollutant concentrations at time t
and monitoring location s and Ŷts represents predictions at time t and the nearest
grid-point;

– CR1 (Carroll and Cressie 1996)

CR1 = 1

S

S∑

s=1

{
1

T

T∑

t=1

(Yts − Ŷts)

σ̂ts

}

allows us to verify the unbiasedness of the predictors, it should be as close as
possible to 0;

– CR2 (Carroll and Cressie 1996)

CR2 = 1

S

S∑

s=1

{
1

T

T∑

t=1

(
(Yts − Ŷts)

σ̂ts

)2} 1
2

verifies the accuracy of the mean squared prediction error and should be as close
as possible to 1.

Tables 2, 3, 4 show RMSE values for the three pollutants, computed at the monitoring
stations and over different time windows.
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Table 5 CR1 and CR2 computed between monitoring stations and nearest grid points, over several time
windows, for all pollutants

Year Index SO2 NO2 PM10

2005 CR1 −0.2350 −0.1385 0.0163

CR2 1.7630 1.3678 2.2205

2006 CR1 −0.0003 −0.1474 −0.0931

CR2 1.6729 2.1789 2.3856

2007 CR1 −0.0442 0.0909 0.6749

CR2 1.4732 2.3566 3.0347

2005–2007 CR1 −0.0912 −0.0798 0.1885

CR2 1.6526 2.0071 2.6039
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Fig. 7 ACF’s of normalized pollutants and of those predicted at the nearest grid point for the Archimede
monitoring station (grey bars)

The model predictions performance in terms of pollutants levels is satisfactory, in
terms of pollutants normalized concentrations, their values are small for all sites and
time windows, as RMSE’s are expressed on the same scale as the normalized input
data.

In Table 5 CR1 and CR2 values are reported. The best pollutants’ level prediction
is obtained for SO2 in 200 and for NO2 and PM10 in 2005. While an overall slight
tendency to overestimation is shown when analyzing the three years at once for SO2
and NO2 (CR1 < 0).

To analyze the model behavior with respect to the time dynamic, we examine
the autocorrelation functions for observed concentrations and those predicted at the
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Fig. 8 PACF’s of normalized pollutants and of those predicted at the nearest grid point for the Archimede
monitoring station (grey bars)

670000 680000 690000 700000

44
70

00
0

44
75

00
0

44
80

00
0

44
85

00
0

44
90

00
0

44
95

00
0

easting

no
rt

hi
ng

log(PM10)

 3.9

4

4.1
4.1 
 4.

4.2 
 4 44.2  4.3 

4

4.4 
4.44
4

4
4

4.5 

4.666 

444.7
44444 4.8 

 4

earchimedarchimmededeeededededaa dedd

tetestattstatttattttettetttt tttt

ororsisini rsrrararrchrchaaaaaaa

paoloVII

ppperipatoooppperipatoperperiperipperippperipatoperperip

anconancnconacoana

mummmmuuzzi uzuumummumuumuucamccammam

carcerece

ennarinigee

dioddiodiostastastads adadd

talsanonottataalsal noo

talsanoarpapalsanoarplsanoaatataalaltalsanoarpa sa ooa pa

aatestasttesestae aa

01/07/2005

TEMP= 26.9

PRESS= 1000.22

HUMID= 42.87

RAIN= 0

RAD= 271.76

WV_MAX= 2.65

WIND_DWIND DNN

E

S

W +

NWW DD

+
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nearest grid point. ACF’s and PACF’s are shown in Figs. 7 and 8, respectively for
the Archimede monitoring station. Similar results are obtained with the other five
monitoring stations. It must be noticed that observed ACF’s and PACF’s estimates are
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Fig. 14 Transformed SO2 July 1, 2005, 95% credibility interval maps

obtained from time series with a large number of missing data and can thus be unreli-
able. However, results are satisfactory on the whole. The autocorrelation structure of
observed time series is well reproduced by all three models, while more discrepancies
can be found in the partial autocorrelation.

As far as the spatial prediction is concerned we report some examples of maps for
each pollutant and the corresponding 95% credibility intervals (Figs. 9, 10, 11, 12,
13, 14).

In the PM10 and SO2 maps the influence of the wind direction appears clearly, while
NO2 flatter surface seems less influenced by this meteorological condition. This is in
accordance with what was previously noticed concerning the significance of spatial
coordinates and the influence of the sea breeze. All maps show very little spatial varia-
tion, however, they present highest pollutants levels where expected, according to the
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geomorphology and the locations of human activities over the area and to daily mete-
orological conditions. Examining credibility intervals for the three pollutants shows
that while estimates of PM10 and NO2 concentrations are acceptable, for the normal-
ized SO2 results are not completely satisfactory. The credibility intervals are wider
then those obtained for the other two pollutants and their lower limit is sometimes
negative, which is unrealistic. This maybe due to a lack of the model in capturing the
large number of zeros recorded for SO2.

6 Concluding remarks

In this work we analyze the behavior of a full Bayesian separable space-time hier-
archical model adapted to predict normalized pollutant concentrations (PM10, NO2,
SO2) on a fine grid spanning the Taranto municipal area. The main advantages of the
approach consist in its capability to easily handle missing data, properly reproduce
the time dynamic and capture spatial information from the data. From the physical
point of view the predicted maps have acceptable interpretation: all maps show very
little spatial variation, however, they present highest pollutants levels where expected,
according to the geomorphology and the locations of human activities over the area and
to daily meteorological conditions. Larger values are detected near the main pollution
source (dark grey area in the maps) and a decreasing gradient is detected following
the wind direction. This is in accordance with typical diffusion of pollutants in air.
However, we must acknowledge that results are not completely satisfactory for SO2.
Furthermore, results obtained for the three univariate models are not really compara-
ble with those in Pollice and Jona Lasinio (2010), where a multivariate approach is
considered. The authors are actually working on a multivariate version of the proposed
model, that requires a considerable computational effort to be estimated: however, we
believe that the lack of fit detected in the univariate model can be solved with a more
comprehensive multivariate approach.

Acknowledgments The authors would like to thank ARPA Puglia for motivating this work and for pro-
viding the pollutants concentration and meteorological data. We are also grateful to the referee whose
suggestions have improved the manuscript.

References

Asrari E, Ghole VS, Sen PN (2005) Study on the status of SO in the Tehran-Iran. J Appl Sci Environ Manag
10(2):75–82

Banerjee S, Carlin BP, Gelfand A (2004) Hierarchical modeling and analysis for spatial data. Monographs
on statistics & applied probability. Chapman & Hall/CRC, New York

Biggeri A, Bellini P, Terracini B (2001) Metanalisi italiana degli studi sugli effetti a breve termine dell’in-
quinamento atmosferico. Epidemiologia e Prevenzione 28:1–72

Brown PE, Karesen KF, Roberts GO, Tonellato S (2000) Blur-generated non-separable space-time models.
J R Stat Soc Series B 62:847–860

Bush T, Smith S, Stevenson K, Moorcroft S (2001) Validation of nitrogen dioxide diffusion tube method-
ology in the UK. Atmos Environ 35:289–296

Carroll SS, Cressie N (1996) A comparison of geostatistical methodologies used to estimate snow water
equivalent. Wat Resour Bull 32:267–278

123



Bayesian univariate space-time hierarchical model 91

Cocchi D, Greco F, Trivisano C (2007) Hierarchical space-time modelling of PM10 pollution. Atmos Envi-
ron 41:532–542

Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman & Hall,
London 116–118

Le ND, Zidek JV (2006) Statistical analysis of environmental space-time processes. Springer, Berlin
Pollice A, Jona Lasinio G (2010) A multivariate approach to the analysis of air quality in a high environ-

mental risk area. Environmetrics 21:741–754
Primerano R, Menegotto M, Di Natale G, Giua R, Notarnicola M, Assennato G, Liberti L (2006) Episodi

acuti di inquinamento da PM10 nell’area ad elevata concentrazione industriale di Taranto. poster pre-
sented at Secondo Convegno Nazionale sul Particolato Atmosferico—PM2006, Florence, 10–13 Sept
2006

Rajkumar WS, Chang AS (2000) Suspended particulate matter concentrations along the East-West Corri-
dor, Trinidad, West Indies. Atmos Environ 34:1181–1187

Shaddick G, Wakefield J (2002) Modelling daily multivariate pollutant data at multiple sites. Appl Statist
51(part 3):351–372

Spiegelhalter DJ, Thomas A, Best N (1999). WinBUGS Version 1.2 User Manual. MRC biostatistics unit.
Software available at http://www.mrcbsu.cam.ac.uk/bugs/winbugs/contents.shtml

Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat
5:117–154

123

http://www.mrcbsu.cam.ac.uk/bugs/winbugs/contents.shtml

	Bayesian univariate space-time hierarchical model for mapping pollutant concentrations in the municipal area of Taranto
	Abstract
	1 Introduction
	2 Data description
	3 The modelling approach
	3.1 The proposed model

	4 Results
	5 Model checking
	6 Concluding remarks
	Acknowledgments
	References


