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Abstract Skewed and fat-tailed distributions frequently occur in many applications.
Models proposed to deal with skewness and kurtosis may be difficult to treat because
the density function cannot usually be written in a closed form and the moments might
not exist. The log-Dagum distribution is a flexible and simple model obtained by a
logarithmic transformation of the Dagum random variable. In this paper, some charac-
teristics of the model are illustrated and the estimation of the parameters is considered.
An application is given with the purpose of modeling kurtosis and skewness that mark
the financial return distribution.
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1 Introduction

The practice of obtaining new random variables from transformations of well-known
distributions is commonly employed in Statistics. The underlying idea is to find new
distributions which can emphasize or mitigate some aspects of the original model in
order to provide a better fitting to data.
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In this paper, the main characteristics of the log-Dagum random variable, ob-
tained by a logarithmic transformation of the Dagum model (Dagum 1977, 1980), are
analyzed. The log-Dagum random variable seems to be a flexible parametric family as
it takes values on the real line and the shape of the distribution is always leptokurtic.
Moreover, it may be both symmetric and asymmetric (positive or negative). Therefore,
it may be useful in modeling skewed and leptokurtic distributions which frequently
occur in many fields such as hydrology, seismology, telecommunications, Web traf-
fic, economics, insurance and finance. Currently, a wide variety of parametric models
have been considered to deal with asymmetric and heavy-tailed distributions. Amongst
these, choices are usually made as a matter of analytical and numerical tractability. The
log-Dagum distribution does not particularly suffer from analytical and computational
limitations and its cumulative distribution function, quantiles, mode and moments are
given in a closed form. Moreover, computational aspects concerned with the maxi-
mum likelihood (ML) estimates do not involve great complexity. These reasons ought
to make the log-Dagum distribution a competitive model for data marked by skewness
and kurtosis.

The present paper is organized as follows. Section 2 introduces the genesis and the
main features of the log-Dagum model, and points out that the model is leptokurtic
and with skewness and kurtosis governed only by one parameter. Section 3 provides
some results concerning the ML estimates of the log-Dagum parameters and quantiles.
In Sect. 4, a simulation study is carried out in order to appraise the performance of
the ML estimates of the model parameters for finite sample size. Section 5 reports our
application of the log-Dagum distribution to a financial context to model daily returns
and to calculate the value-at-Risk (VaR) of some stocks showing a different degree
of skewness and kurtosis. A comparison with the «-Stable distribution is then carried
out. In the conclusive part of the paper, some final considerations are made.

2 Genesis and properties of the log-Dagum distribution

In this section, we outline the genesis of the log-Dagum model, moving from some
considerations on survival data model building. We also investigate its shape charac-
teristics, showing that the distribution is always leptokurtic.

The Dagum model (Dagum 1977, 1980) has been successfully used in studies on
income and wage distribution as well as in those on wealth distribution. Characteris-
tics and properties of the model have been extensively analyzed by several authors.
Nevertheless, in their monograph Kleiber and Kotz (2003, p. 215) argued that “...the
hazard rate and the mean excess function of the Dagum distribution have not been
investigated in the statistical literature”. As a matter of fact, Domma (2002) studied
the Dagum hazard function proving that it is very flexible and suited for describing dif-
ferent situations. Specifically, with a proper combination of the parameters, the hazard
function is either always decreasing, or it shows a maximum (upside down bathtub),
or both a minimum and a maximum (bathtub and then upside down bathtub). This nice
characteristic ought to make the Dagum distribution particularly suitable for modeling
survival data. On this issue, we observe that it is a very common practice in survival
analysis to consider the observed heterogeneity by means the so-called accelerated
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failure time model (AFTM), in which a logarithmic transformation of survival time
is adopted. The possibility of using an AFTM with Dagum-distributed survival time,
requires a preliminary study of the main properties and characteristics of the random
variable that we call log-Dagum. Therefore, in this work, focus will not be placed on
the study of the log-Dagum model in the context of survival analysis, but rather only
on the exploration of its statistical properties.

A positive random variable Y is Dagum-distributed if its cumulative distribution
function (CDF) is given by:

Fy (i oo 8) = (1+2y7%) 7,

where A > 0 is a scale parameter and 8 > 0, § > 0 are two shape parameters. The
logarithmic transformation of ¥, X = In Y, has the following CDF

Fx (x; B, 1, 8) = Fy (¢*; B, 1, 8) = (1 + 2e ™) ", (1

where, unlike the Dagum model, x € R, 8 > 0 is a shape parameter, > > 0 influences
only the location while § > 0 is a scale parameter. The probability density function
(PDF) is:

Fx (6 B0, 8) = Base ™ (14 re5) P71,
Throughout this paper, the log-Dagum model will be denoted with L Da(8, X, §).

We observe that the expression of Fx (x; B, A, §) may also be obtained in different
ways. For instance, the log-Dagum density may be considered as a reparameterization
of the type I generalized logistic distribution (see, e.g., Johnson et al. 1995, p. 140)
and, consequently, a special case of the exponential generalized beta distribution of
second type (McDonald and Xu 1995).

From (1) it is easy to verify that the mode of the distribution always exists, and
that it is unique and given by m = 8! In (A8). Instead, we remember that the Dagum
distribution is unimodal for 86 > 1 and zeromodal for 8§ < 1.

Solving with respect to x the equation Fy (x; 8, A,5) = p, with p € (0, 1), we
obtain the simple and closed expression for the pth quantile of L Da (8, X, §):

1 A
=—In{————). 2
Xp S n(p_l/ﬂ_l) ( )

As for the shape of LDa(8, X, §), Domma (2001) showed that § is a direct indica-
tor of asymmetry. In particular, unlike the Dagum model which shows only positive
skewness, LDa(B, A, 8) is negative skewed for 8 € (0, 1); for B > 1, it is positive
skewed and symmetric for § = 1. Moreover, in Domma (2004) it is also shown that the
kurtosis of the distribution is influenced only by 8. As follows, through the moments
of the distribution, we will prove that L Da(B, X, §) is always leptokurtic, whatever
the value of g is.
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The moment generating function of L Da (g, A, §) is equal to the moment of order
t of the Dagum random variable:

mx(t)zE[e’X]=E[Y’]=ﬂ/\§3(ﬂ+§,l—g), §>1,

where B(.,.) is the Beta mathematical function. Nevertheless, in order to calculate
the moments of LDa(B, A, §), it is more convenient to use the cumulant generating
function, In [mx (¢)], from which the rth cumulant is given by:

T ANGT
t=0

at”

Using the cumulant generating function, it is possible to prove that, for any 8, A, § > 0,
the first four moments of L Da(B, A, §) are:

EX)=8"lnr+w B —¥ )]

E(x?) =2 {[¢' (&) +9 (D] + i+ (B — v (DI}

E(X*) =6 {["®) - w" O]+ i+ @) - v DF
+3[nA+w (B)— v (DI[¥ (B) + W (1)]}

E (X4) —s54 {[l]/”’ B) + o' (1)] +3 [l]/’ (B) + o’ (1)]2
+4[nx+ ¥ (B) —w (HI[¥" () —¥" ()]
+6[InA+ W (B) — ¥ (D [¥'(B) + ¥ (D]
TnA+w(B) - (1)]4},

where ¥ (.), ¥/ (), ¥” (.) and ¥"” (.) are the respective digamma, trigamma, tetrag-
amma and pentagamma functions. Let Z be the standardized log-Dagum distribution.
Then, after some algebra, we obtain the standardized third and fourth moments:

£(2) = @ -v"m] L (7) = [v" B +v" (1]

3 4
3g 3g

+37

where §g = /¥ (B) + ¥’ (1).

We highlight that the standardized fourth moment is always greater than 3 since,
forany 8 > 0, ¥"’(B) > 0. Consequently, the log-Dagum distribution turns out to be
always leptokurtic and, thus, it is potentially suitable to model data which exhibit fat
tails.
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3 Maximum likelihood estimates

In this section, we aim at providing the elements to estimate the log-Dagum model
parameters using the ML method. We illustrate the elements of the Fisher information
matrix which are useful to implement the Fisher-scoring method and to compute the
asymptotic variance—covariance matrix of the ML estimators. Moreover, since many
applications may find it useful to determine the quantiles of a distribution, we also
employ the ML method to estimate L Da(B, X, ) quantiles.

3.1 Parameter estimation

Letx = (xy, x2, ..., x,) bearealization of therandom sample X = (X1, X», ..., X)),
where X1, X7, ..., X, are i.i.d. random variables according to L Da (8, A, §). Then,
the log-likelihood function of x is:

LB, A, 8;x) =nln(BrS) — 6 in —(B+1 Zln (1+ )\e—ﬁx,‘).

i=1 i=1

Maximization of E(ﬂ A, 8; X) does not admit any explicit solution. Therefore, the ML
estimates 0n = (,Bn, )»,,, S ) can be obtained only by means of numerical procedures
such as the Fisher-scoring method.

Under the usual regularity conditions, the well-known asymptotic properties of the
ML method ensure that \/n (én — 0) —d> N (0, Xy), where Xy = [I (¢9)]*1 is the
asymptotic variance—covariance matrix and I (@) is the Fisher information matrix in a
single observation, whose elements are:

R A+ () — Q)
W TRy P T s
B AP D Y
=Bt M7 W(B+2)

iss = 5% (L+Aps+ Ass),
where
Ay = ﬂﬁ 5 {[ln)»—l—lP(,B—f— D—PQP+¥B+1)-2¢'B+3)+¥'(Q)
T2 B+D-YB+I)PER) -¥(B+ 3)]}

Ars =2B(B+1)
X[W(ﬁ+3)—w(1)_w’(ﬂ+3) (B +2) v W’(ﬁ+2)]
(B +2)? B+2 (B+1)2 B+1 |
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The mathematical developments, needed to derive these elements, are given in the
Appendix.

Since the log-Dagum model can alternatively be obtained through a proper repa-
rameterization of the type I generalized logistic distribution, it is worth pointing out
some issues, regarding the ML estimates, which have been debated in the literature.
Focusing on the generalized logistic distribution, Zelterman (1987) proved that the
likelihood function becomes unbounded at some points on the edge of the param-
eter space and, consequently, the global ML estimator does not exist. Despite the
fact that there are no ML estimators, the information matrix is non-singular and may
be used to analyze the behavior of asymptotically efficient estimators. Fortunately,
Abberger and Heiler (2000) and Abberger (2002) derived local maximum likelihood
estimators and showed that likelihood equations have a root which is consistent and
asymptotically normally distributed. The problem has been further investigated by
Shao (2002).

3.2 Quantile estimation
In several situations, like those involving finance and economic studies, it may be use-
ful to determine the pth quantile of a distribution. We have seen that for L Da (8, A, §)

the pth quantile is given by (2). Now, if the population parameters are unknown, the
invariance principle (Zehna 1966), provides us with the ML estimator of x, given by:

. ' A 3
Xp=—In{ —— ),
8},, p_l/ﬂn _1

where Bn, ):,,, Sn are the ML estimators of 8, A and § based on a sample of size n.
Moreover, under the usual regularity conditions, the well-known asymptotic properties
of the ML method ensure that:

A d
ﬁ(xp—xp) — N(O, Ug’,,), 4)
where oy , = g[1(0)]"' g’ and

_[Bxp 0x, Bxp]

p - or 3s
—p VBInp 1 1 I A
=l— — 5 I|—)
B2 (p~'F —1)" A8" 82 p~ /B —1

Even though the asymptotic variance in (4) is unknown, it can be estimated through
the ML estimator of 6. In this case, the asymptotic result defined in (4) is still valid

and .,
\/ﬁ()?p —xp) SN (O, 6@}1’1)).
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This result makes the construction of the 100 x (1 — «)% confidence interval for the
quantile x,, particularly easy. It is given by:

&é » &é »
~ ns A ns
Cl(xp) = Xp —2g P xp-I—Z% p )

where z, denotes the (1 — y)th quantile of the standard Normal distribution.

Alternative asymptotic results for L Da(g, A, §) quantiles may be provided by the
theory of order statistics. For p € (0, 1), letbe r = [np]+ 1, where [np] is the integer
part of np. Then, X,., represents the pth sample quantile. Since the log-Dagum CDF is
absolutely continuous with PDF which is positive and continuous in the pth quantile,
then, as n — o0,

\/ﬁ (Xr:n - xp) _d> N (O» gO,p)

_pd=p
f)% (Xp; B, A, 5)

This result can be used to obtain approximate confidence intervals for x, either
the form of fx (x; B, A, 8) is completely specified around x, or a good estimator of
fx (xp: B, &, 8) is available (Arnold et al. 1992, p. 224).

with S(),p =

4 Simulation study

In this section, we intend to investigate the behavior of the ML estimates for L Da
(B, A, 8) parameters in a finite sample size context. For this purpose, we carry out a
simulation study based on different log-Dagum distributions obtained by varying the
parameter values. For each combination of parameters supposedly known, k random
samples of n i.i.d. observations are independently generated, and the ML estimates
are computed for each sample. The simulation can be summarized in the following
steps:

1. choose the values, By, Ao and &g, for L Da(B, A, §) parameters;

2. choose the sample size n;

3. compute the elements of the asymptotic variance—covariance matrix, Xy =
[1(6)]™", 6=60 = (Bo. 20. 80);

4. draw k random samples of size n from L Da(Bo, Lo, 80);

5. compute the ML estimates 6, = (,3,,, )A\n, Sn) of 0y for each of the k samples.
A -1
Furthermore, provide a consistent estimate of ¥y by means of [1(0,,)] ;

6. for each of the ML estimates obtained at the previous step, compute the empirical
bias and empirical mean square error (MSE) as:

k
A A A ~rs 2
b(p) = pn@,) — 60 and MSE@,) =k > (95) _ 90) 7

i=1
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where 11(6,) = k™! Zf-czl é,Ei), Ou = Bus hons Sn-

As far as the first step is concerned, we observe that the model parameters ought to
be chosen in such a way as to provide a wide spectrum of different situations that might
occur with real data. For the purpose of saving space, we have selected in the analysis
the values By = 0.5, 1, 2.5; §o = 70, 140, 200 and Ao = 1. It is worth pointing out
that we have also considered many other different values for the parameters. Even so,
the results are not significantly different from those obtained with the aforementioned
values. The parameter values have been selected on the basis of a preliminary study
in which we have fitted the log-Dagum model to real data from different fields of
applications. The values, considered for the simulation, fall in the range of the ML
estimates obtained for the considered data set. As for the number of replications, we
have fixed k = 5,000. Finally, we have independently selected samples with size 250
and 1,000. Having specified the population, the number of samples to be drawn and
the sample size, we have computed the ML estimates for the population parameters
by means of the Fisher-scoring procedure.

Results for each combination of the parameter values and for each sample size are
shown in Table 1. In general, we observe that both the bias and the MSE of the ML
estimates are quite small and decrease as the sample size increases. Moreover, the
contribution of bias to the empirical MSE is negligible. Estimates provided by 8, are
very close to the corresponding population parameter, 8, even if the sample size is
small. On the contrary, only for § = 2.5 and n = 250 the bias and the MSE seem
to be higher than the ones obtained for the other situations. Moreover, the bias turns
out to be positive for the parameter 8. Conclusions are still valid if we consider the
estimates of the asymptotic variance. Therefore, we can state that the ML method pro-
vides efficient and unbiased estimates for the log-Dagum parameters for finite sample
size.

We have presently restricted our brief analysis only to the ML parameter estimates
in order to keep the length of the paper to a minimum. Indeed, a more extensive
simulation study has been carried out to additionally investigate the behavior of the
estimators for LDa(B, 1, §) quantiles. Briefly, we have found that estimates based
on order statistics approach are less efficient than those provided by the ML method.
Further details of an exhaustive simulation are shown in Domma and Perri (2005).

5 An application to VaR estimation

In the field of financial applications, the need for modeling skewed and heavy-tailed
distributions has become particularly relevant. In fact, the increasing growth of trad-
ing activities and frequent trading loss of well-known financial institutions have led
financial regulators to favor quantitative techniques which evaluate the possible loss
that can be faced by financial traders or institutions. Focusing on the market risk, a
well-known measure to quantify and control risk is the VaR, defined as the maximal
loss that a financial position can incur with a given probability over a given period.
From a statistical viewpoint it can be simply interpreted as the quantile of the financial
return distribution (profit/loss distribution).
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Table1 Empirical bias and empirical MSE (in brackets) of the ML estimators for L Da (g8, A, §) parameters

B 4 n .Bn in on B ¢ n /én An on
0.5 70 250 0.0080 0.0095  2.24E-09 1,000 0.0050  0.0034 —1.12E-11
(0.0025) (0.0474) (3.88E-15) (0.0041) (0.0124) (9.83E-19)
1,000 0.0019 0.0003 —4.51E-11 1 200 250  0.0254  0.0047 1.44E-11
(0.0006) (0.0114) (5.74E-16) (0.0192) (0.0508) (7.46E-19)
0.5 140 250 0.0076  0.0072  1.66E-10 1,000 0.0071 —0.0021 2.81E-12
(0.0024) (0.0472) (5.55E-17) (0.0041) (0.0116) (1.10E-19)
1,000 0.0015 0.0018 —5.88E-12 2.5 70 250 0.2115 0.0192  5.38E-11
(0.0006) (0.0113) (8.40E-18) (0.5990) (0.2616) (1.71E-17)
0.5 200 250 0.0069 0.0085 4.11E-11 1,000 0.0463  —0.0023 —2.03E-11
(0.0024) (0.0460) (5.85E-18) (0.0883) (0.0217) (9.90E-19)
1,000 0.0018 0.0018 —6.76E-12 2.5 140 250 0.2298 0.0182 1.94E-11
(0.0006) (0.0113) (8.89E-19) (0.6548) (0.3079) (1.98E-19)
1 70 250 0.0277 0.0003  2.28E-10 1,000 0.0508 —0.0033 —5.40E-13
(0.0199) (0.0500) (4.90E-16) (0.0897) (0.0226) (1.39E-20)
1,000 0.0061  0.0006  1.80E-11 2.5 200 250 0.2201  0.0149 3.44E-12
(0.0043) (0.0125) (6.90E-17) (0.6563) (0.2297) (2.23E-20)
1 140 250  0.0254  0.0021 —4.88E-11 1,000 0.0414  0.0008 —7.67E-13
(0.0194) (0.0504) (6.76E-18) (0.0891) (0.0225) (1.62E-21)

Let P, denote the value of a financial asset (a stock, an exchange rate or market
index) at the time index 7, = 1, 2, ..., T. Then, the (log)return between dates ¢ and
t + k is defined as R; (k) = In (Pyryr/ Pr).

In this section we intend to estimate VaR for a long and short financial trading
position by using the log-Dagum distribution. Suppose that at the time ¢ we are inter-
ested in the risk of a long financial position. Then, for a fixed probability level p,
VaR is defined as the quantity which satisfies p = Pr[R;(k) < VaR]. Since the
holder of a long position suffers a loss when R;(k) < 0, VaR typically assumes a
negative value when p is small. The opposite situation occurs for traders with a short
position. In this case, the holder suffers a loss when the value of the asset increases
(i.e. R;(k) > 0) because he/she would have to buy the asset at a higher price than
the one he/she obtained when selling it. Therefore, for a short position, VaR at level
p is defined through p = Pr[R;(k) > VaR] and, for small p, it typically assumes
a positive value. The previous definitions show that VaR is concerned with the tail
behavior of the return distribution. For a long position, the lower (left) tail is important,
while for a short position, the upper (right) tail has to be investigated. As a matter of
fact, the return distribution is unknown even though many empirical studies showed
that it diverges sensibly from the Normal one, being asymmetric and with fat tails
(see, e.g., Cont 2001).

In the previous sections, we have described some of the main features concerning
skewness, kurtosis and quantiles of L Da(8, X, §). Now, an empirical analysis is car-
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Table 2 Descriptive statistics for the daily returns

Generali Unipol Telecom Tiscali
Minimum —0.0845 —0.0150 —0.1692 —0.1787
Maximum 0.0884 0.0921 0.1411 0.3064
Mean —0.0005 —0.0001 —0.0006 —0.0008
Standard deviation 0.0192 0.0133 0.0280 0.0386
Skewness —0.0351 —0.1043 —0.2324 1.2079
Kurtosis 5.0013 18.331 5.9827 11.005
JP test p-value 0.0000 0.0000 0.0000 0.0000

ried out to explore the capability of the model in predicting long and short VaR for
daily trading positions. The study is based on the daily returns of four Italian stocks:
Generali (from 8 January 1999 to 7 January 2004), Unipol (from 18 June 1998 to 19
May 2005), Telecom (from 8 January 1999 to 7 January 2004) and Tiscali (from 27
October 1999 to 19 May 2005). Descriptive statistics, given in Table 2, point out that
the returns are negatively or positively skewed with a rather high level of kurtosis for
Tiscali and Unipol stocks. The assumption of normality to describe the data seems to
be inadequate as is also confirmed by the Jarque—Bera test (JB test).

In order to capture the asymmetry and tail heaviness, we have fitted the log-Dagum
model to the observed returns and we have evaluated model performance, first by using
the Akaike’s Information Criterion, and then by comparing VaR estimates with those
provided under Normal and «-Stable distributions. The use of the Normal distribution
is mainly motivated by the need to introduce a comparative term as a limit case. In
so doing, the way competitive models can describe departures from normality can be
better appreciated. The a-Stable distribution is widely and successfully used in finance
(see, e.g., McCulloch 1996; Rachev and Mittnik 2000). There are several reasons for
the popularity of this distribution. First, the family of the «-Stable laws is fairly flex-
ible, given that it is characterized by four parameters. It represents a generalization
of the Normal distribution and allows both skewness and tail heaviness regulation. In
fact, in addition to a location and scale parameter, the distribution is characterized by
a shape parameter or tail index, o € (0, 2], and a skewness parameter, 8§ € [—1, 1]. If
a = 2, the distribution coincides with the Normal one. A particular attractive aspect
of «-Stable models is that they allow us to generalize Normal-based concepts and
theories, providing a more general framework for modeling financial data. General-
ization is possible because the «-Stable models show specific and unique probabilistic
properties, namely, domains of attraction, stability property, Central Limit Theorem
and invariance principle (see, e.g., Rachev and Mittnik 2000).

In our analysis, we have first computed the ML estimates of the log-Dagum
parameters by fitting the model to the selected stock daily returns. The results are
given in Table 3, together with some indices computed for the estimated models. Sub-
sequently, considering both the lower and upper tail of L Da(8, X, §), and assuming
that p takes value in the interval [0.001, 0.1], we have estimated long and short VaR
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Table 3 ML estimates for LDa(B, A, §)

Generali Unipol Telecom Tiscali
Bn 0.9522 0.9242 0.9083 1.3439
An 1.0225 1.0576 1.1162 0.5917
Sn 99.586 170.60 69.155 48.050
Mean —0.0006 —0.0005 —0.0008 —0.0014
Standard deviation 0.0110 0.0066 0.0166 0.0148
Skewness —0.0541 —0.0879 —0.1078 0.2894
Kurtosis 4.2305 4.2530 4.2674 4.1568

Table 4 AIC for the log-Dagum, «-Stable and Normal distributions

Generali Unipol Telecom Tiscali
log-Dagum —3241.6 —5360.3 —2765.1 —2719.1
a-Stable —3230.5 —5505.1 —2760.3 —2756.4
Normal —3198.9 —5092.9 —2722.3 —2581.9

using the expression defined in (3). We have used the STABLE program, downloadable
at http://academic2.american.edu/~jpnolan, to estimate the «-Stable quantiles.

In order to evaluate the overall goodness-of-fit of the log-Dagum, «-Stable and
Normal distributions, in Table 4 we have provided the Akaike’s Information Crite-
rion value, AIC = —26(@,,) + 2k, where E(én) is the maximum log-likelihood value
and k the number of parameters to be estimated. We note that the log-Dagum model
performs better than the «-Stable for Generali and Telecom return series which are
marked by a moderate kurtosis. This outcome seems to be quite consistent with the
conclusions that can be drawn by comparing empirical and estimation results shown
in Tables 2 and 3, respectively.

Additionally, the performance of the three distributions in estimating VaR has been
assessed by carrying out a simple backtesting procedure based on the in-sample com-
putation of the failure rate, p, i.e. the proportion of times returns exceed (in absolute
value) the predicted VaR. The results for long and short VaR computation are sum-
marized in Fig. 1, which shows the behavior of p under the log-Dagum, Normal and
a-Stable distributions.

For a model which perfectly fits the tails of the return empirical distribution, the
points (p, p) should lie on a straight line because we expect the proportion of obser-
vations falling further on the VaR to be equal to p. The models we have fitted to the
data show departures from the straight line: the failure rate may be greater or smaller
than p. Values of p greater than p indicate that the VaR underestimates the actual loss
risk, while for p < p, the model appears conservative, leading to an overestimation
of the risk.

In general, we observe a poor fitting for the Normal distribution. The log-Dagum and
a-Stable distributions better fit the data since their plots are closer to the straight line.
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Fig. 1 Behavior of the failure rate for long and short VaR under the log-Dagum (.), Normal (—.) and
«-Stable (— —) distributions
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Moreover, the two competitive models seem to have a similar behavior for Generali
and Telecom, which are series marked by a moderate degree of kurtosis. In particular,
we observe that, for upper tail observations, the plots of the log-Dagum and «-Stable
distributions are indistinguishable. The a-Stable distribution performs better than the
log-Dagum for Unipol and Tiscali lower tail (VaR prediction for a long position) and,
except for values of p nearly falling in the range (0.055, 0.08), also for Unipol upper
tail (VaR prediction for a short position). On the other hand, the log-Dagum model
should be preferred for Tiscali upper tail when p € (0.06, 0.1). However, values of
p which make the log-Dagum model suitable for VaR estimation are evident also for
Generali and Telecom lower tails.

6 Concluding remarks

In this paper, we have described some shape characteristics of the log-Dagum model
and analyzed the performance of the ML estimates. In order to investigate the capabil-
ity of the model in describing data in which skewness and fat tails occur, an application
to VaR estimation has been carried out by considering four Italian stocks. VaR, esti-
mated under the log-Dagum model, has been compared with that obtained by using
the Normal and «-Stable distributions. If compared with the «-Stable distribution,
the log-Dagum model seems to provide a good representation of data which show a
moderate kurtosis. To better appreciate the potentiality of the distribution, it is worth
underlining that the o-Stable distribution requires quite complex numerical procedures
to estimate parameters and quantiles. Furthermore, except in few special cases, the
density function cannot be expressed in a closed form and the moments may not exist.
In spite of its simplicity, the log-Dagum model allows us to overcome these possible
drawbacks.

In addition to employing the log-Dagum distribution to model data which exhibit
skewness and kurtosis, we think that the preliminary study, performed in this paper,
has been necessary in the light of a possible use of the distribution for survival data to
build non-Gaussian regression models. We believe that the investigation of this topic
may certainly be of interest for future researches.

Acknowledgments The authors wish to thank the anonymous Associate Editor and the referee for their
useful comments in improving the original version of the paper.
Appendix

In order to derive the elements of the Fisher information matrix, we preliminarily
obtain, for g > 0, the following expressions:

1
Lig+1) = /Zq(l —2)lnzdz=B(@+1,2)[VY(q+ 1) —¥(g +3)]
0
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1

Lg+1) = /zq(l —z2)In(1 —z2)dz=B2,q+ D [¥2) —Y¥ (g +3)]

0
1

ILg+1) = /z"(l —2)(Inz)%dz
0
—Blg+1,2) [[lI/(q L)@+ g+ ) =¥ (g +3)}
1
L(g+1) = /zq(l — 2 [In(1 — 2))*dz
0
=B2,g+ 1) {[q/(z) — WG+ +YQ) -V (g + 3)}
1
Isg+1) = /zq(l —)InzIn(l —z)dz=1(q+1)—1(g+2)
0

where

1

1 1

— q _ —_ - ) _ — /

1(q+1>_/z Iz In(1 z)dz-q+1|q+1[llf(q+2) W] - g+ ).
0

Considering the following expectation

jo—hsX +oo

X/e™ . B 1—

Ej,h,k =F —e 3 = BAS / x/e_‘s(h"’l)x [1 +)\€_8x] -1 kdx
(14 re9X) .

and putting w = e*, we have:

+00

Ejni = B8 / (nw)/ w D11 4 0] P E
0

dw

Moreover, setting z = (1 + Aw S )_1, after some algebra, we obtain:

1
Ejpi= )Lhiaj/[ln)» +Inz —In(1 — ) P11 = »)dw.
0

The elements of the Fisher information matrix are functions of the expectations
Eo1,1, Eo0,2,2, E1,1,1, E1,12 and E3 12, which are particular cases of £ j x. These
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expectations are given by:

1

E = —
0,1,1 AB+ 1)

2

Fo22= e+

Eii= LB omae ne) - b =

InA+¥(B) —¥(Q2)

AS(B+1)

Ejn = }% BB+ 1L.2)Ina+L(B+1) —L(B+1)]

InA+W¥(@B+1)—w(Q)

=p

MEB+DB+2)

Exin= A% {(1nx)2 BB+ 1,2)+ LB+ 1)+ 1y(B+1)

+20(B+ DInA—20L(B8 + Ink —2I5(8 + 1)

8 IA+¥B+1D) VP +2[W B+ 1) —¥(B+3)¥Q) — ¥ +3)]

2

ASZ(B+1D(B+2)

WEB+3)-—vM] ¥EB+3) [¥B+2)-v)]

282

(B+2)?

B+2

lI/’(ﬂ—l—Z)}

B+1)? B+1

Finally, the elements of the Fisher information matrix in a single observation are:

igg = —E
i = —E
iss = —E
igr = —E
igy = —E
irs = —E

[92¢(B, 2, 8;X) ]
L Ip?
[92¢(B, 1, 8:X) ]
L 92 |
[02¢(B, A, 8;X) ]
962
[820(8, 1, 8;X) ]
dBIA ]
[92¢(B, A, 8; X))
9p0s
[92¢(B, A, 8;X) ]
REXL)

1

/g2

1
=3~ (B+DEpp22

1
2 +AB+DE22

= Ep 1,1

=—AE1 1

=—(B+DE1,2.
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