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Abstract This article presents findings from a case study of different approaches
to the treatment of missing data. Simulations based on data from the Los Angeles
Mammography Promotion in Churches Program (LAMP) led the authors to the fol-
lowing cautionary conclusions about the treatment of missing data: (1) Automated
selection of the imputation model in the use of full Bayesian multiple imputation can
lead to unexpected bias in coefficients of substantive models. (2) Under conditions
that occur in actual data, casewise deletion can perform less well than we were led to
expect by the existing literature. (3) Relatively unsophisticated imputations, such as
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mean imputation and conditional mean imputation, performed better than the technical
literature led us to expect. (4) To underscore points (1), (2), and (3), the article con-
cludes that imputation models are substantive models, and require the same caution
with respect to specificity and calculability.

Keywords Missing data · Imputation · Multiple imputation · Casewise deletion

1 Introduction

This article is a case study of different approaches to the treatment of missing data.
Specifically, the following techniques: casewise deletion, weighted casewise deletion,
mean imputation, mean imputation with a dummy for missingness, conditional mean
imputation, hotdeck imputation, approximate Bayesian bootstrap (ABB) multiple im-
putation, and full Bayesian multiple imputation. This article reaches the following
cautionary conclusions about the treatment of missing data: (1) Compared to other
missing data techniques we tried, automated selection of the imputation model in the
use of full Bayesian multiple imputation can lead to greater bias in coefficients of
substantive models. (2) Under conditions that occur in actual data, casewise deletion
can perform less well than we were led to expect by the existing literature (specifically,
Allison 2001). We find that relatively minor violations of assumptions can produce
this result. (3) Relatively unsophisticated imputations, such as mean imputation and
conditional mean imputation, performed better than the technical literature led us to
expect. (4) To underscore points (1), (2), and (3), we conclude that imputation models
are substantive models, and require the same caution with respect to specificity and
calculability.

Why consider and evaluate multiple alternative techniques for dealing with missing
data, given that Allison (2001, pp. 5–6) indicates that none of the widely used “conven-
tional” methods for dealing with missing data is any better than listwise (casewise)
deletion?1 Because many of these other techniques are quite common in practice.
While casewise deletion is the default treatment of missing data by most software and
many analysts, mean imputation with a dummy for missingness is also a common
practice. The US Bureau of the Census still uses hotdeck imputation. And, despite
the apparent theoretical superiority of multiple imputation, practice remains hetero-
geneous.

This case study has results that are contrary to the “received wisdom” on the treat-
ment of missing data. Because these “bad” things happened once to us in our case
study of real data, it is not impossible that they will happen to you in your analysis of
other real data. We hope that this article is successful at illustrating some of the pit-
falls in the application of missingness techniques that await even the wary. The target
audience is the journeyman data analyst; many of the issues raised and discussed here
may be clear and obvious to a veteran statistician.

1 “Conventional” methods are essentially those that predate the multiple imputation and maximum likeli-
hood approaches to the treatment of missing data.
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2 Data and core analysis

The data used for this case study and the associated simulation analysis come from a
real missing data problem: Twenty-eight percent of responses to a household income
question were missing in a survey for the Los Angeles Mammography Promotion
in Churches Program (LAMP) to whose design we contributed (Fox et al. 1998).
Since economic well-being was thought to be important for the topic that was the
focus of the survey—compliance with guidelines for regular mammography screening
among women in the United States—there were grounds for concern with the quantity
of missing responses to the household income question. Fox et al. (1998) estimated
screening guideline compliance as a function of household income and other covariates
using the “approximate Bayesian bootstrap” (Rubin and Schenker 1986, 1991) to
compensate for missingness on household income.

In the original analysis, all variables are discrete and most, including the response,
are dichotomous. Estimation is carried out with logistic regression. A respondent
is considered “compliant” if she had a mammogram within the 24 months prior to
the baseline interview and another within the 24 months prior to that most recent
mammogram, and is considered “noncompliant” otherwise. Our list of regressors2

consists of dummy variables (coded one in the presence of the stated condition and
zero otherwise) for whether the respondent is (1) Hispanic; (2) has medical insurance
of any kind; (3) is married or living with a partner; (4) has been seeing the same doctor
for a year or more; (5) is a high school graduate; (6) lives in a household with annual
income greater than $10,000 per year; (7) has a doctor she regards as enthusiastic about
mammography; and a trichotomous dummy variable classification for (8) whether the
respondent’s doctor is Asian, Hispanic, or belongs to another race/ethnicity group.

Deletion of a respondent if information is missing on any variable in the model,
including the response variable (casewise deletion), reduces the sample size to 857
cases, or 56 percent of the total sample. This is the result of a great deal of missingness
on a single covariate, and the cumulation of a low degree of missingness on the
response and remaining covariates. As noted earlier, 28 percent of respondents refused
to disclose their household annual income—by far the highest level of missingness
in the data set.3 The next highest level of missingness (seven percent) occurs for the
response variable, mammography screening compliance. A number of respondents
could not recall their mammography history in detail sufficient to allow discernment
of their compliance status.

Discarding respondents who are missing on mammography compliance or any
covariate in the logistic regression model except household income results in a data
set of 1,119 individuals, or 76 percent of the total sample. For present purposes we
define this subsample of 1,119 individuals to be the working sample of interest. In the
working sample, 23 percent (262 respondents out of 1,119) refused or were unable to
answer the household income question.

2 See Fox et al. (1998) for details and Breen and Kessler (1994) and Fox et al. (1994) for additional
justification.
3 Respondents were given 10 household income intervals with a top code of “$25,000 or more” from which
to select. In the computations presented here, we treat “don’t know” and “refused” as missing.
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Missingness on household income provides the point of departure into our
exploration of techniques for dealing with missingness. Our initial calculations on
the actual LAMP data demonstrate the effects on the logistic regression for mammog-
raphy compliance of various treatments of missing household income. The closely
related simulated data enable examination of the performance of different missingness
techniques across various assumptions about the nature of the missingness process.

3 Missingness techniques and mechanisms

Techniques for dealing with missingness can be evaluated for the extent to which
they induce coefficient (b) and standard error [SE(b)] bias, where “bias” is specified
relative to samples with no missing data, and for the extent to which they increase or
decrease the sampling variance of the coefficients [Var(b)]. The performance of a miss-
ingness technique as defined by these three characteristics depends on the mechanism
of missingness present in a given body of data. Note that the use of the “bias” concept
assumes that the substantive model is perfectly specified. For the case considered in
this article—missingness on a single regressor—when we assert that a substantive
regression is perfectly specified, we mean that it has the correct error distribution
and functional form; that it excludes no relevant regressors (whether in the data or
not); that it includes all necessary interactions between regressors; and that it con-
tains no regressor with measurement error. In actual research practice, data analysts
are unlikely to know whether a substantive model is perfectly specified, and it strains
credulity to suggest that most are. Although we believe the model used for the ex-
ample in this article is plausible, we do not know if it is perfectly specified, and our
simulation analyses reveal that probably it is not.

3.1 Mechanisms of missingness

This section reviews the typology of mechanisms of missingness for non-specialists.
Let Y denote the response variable for mammography compliance. Let X denote

the dichotomy for household income, and let Z denote not only the covariates in the
logistic regression model, but all variables in the data other than Y and X . Mechanisms
of missingness can be defined with reference to a missingness model—a model for
the probability that a respondent is missing on X . Let Ri = 1 if the i th respondent is
missing on X , and let Ri = 0 if the i th respondent provides a valid response on X .
Three mechanisms of missingness are:

1. The probability that Ri = 1 is independent of Y, Z , and X itself;
2. The probability that Ri = 1, conditional on Y and Z , is independent of X ;
3. The probability that Ri = 1, conditional on Y and Z , depends on X .

The first missingness mechanism is known as missing completely at random (MCAR).
If household income is MCAR, then the observed values are a random sample of all
values (observed and unobserved).

The second missingness mechanism is known as missing at random (MAR).
Missingness on household income is MAR if it does not depend on the actual value
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(even if unobserved) of household income itself once other variables in the data (some
subset of Y and Z ) are controlled.

Missing completely at random is a special case of missing at random. With MAR,
missingness has a purely random component and a systematic component that depends
on some variable(s) in the data set, but not on the actual values of the variable with
missingness. With MCAR, the missingness has only a purely random component.

When the MCAR and MAR assumptions (missingness has a random component;
missingness does not depend on X , conditional on Y and Z ) are combined with the
technical assumption of “parameter distinctness” (Schafer 1997a, p. 11; Little and
Rubin 2002; Rubin 1987), the missingness mechanism is termed “ignorable.” The
ignorability assumption is a necessary condition for modeling substantive relationships
in the data set separately from modeling missingness per se, or imputing missing
values.4

The third missingness mechanism is known as missing not at random (MNAR),
also referred to as “nonignorable” in much published research. If missingness on
household income is MNAR, it depends on the actual level of household income and
potentially other variables as well. Note that MNAR does not mean that missingness
lacks a random component, only that its systematic component is a function of the
actual values of the variable with missingness.5

In actual practice, it is difficult to know whether missingness is ignorable, espe-
cially with cross-sectional data, and it seems a plausible conjecture that some degree
of nonignorability in missingness processes is common.6 Here, as in many other sit-
uations, a continuum is probably more realistic than an “all or none” typology, and,
presumably, a little nonignorability differs from a lot. The assumption of nonignora-
bility in the missingness model parallels the assumption that in the substantive model
the covariates and disturbance are orthogonal. Most researchers (implicitly) argue that
if the orthogonality assumption is not perfectly satisfied by their substantive model,
then the distortion caused by nonorthogonality is not so great as to obscure the pattern
of interest. For this reason, in the simulations introduced in later sections we allow for
differing degrees of nonignorability.

3.2 Missingness techniques

This section briefly discusses the eight missing data techniques considered in the arti-
cle: casewise deletion, weighted casewise deletion, mean imputation, mean imputation
with a dummy for missingness, conditional mean imputation, hotdeck, approximate
Bayesian bootstrap multiple imputation, and full Bayesian multiple imputation. These

4 For other conditions, see Schafer (1997a, p. 10).
5 When MNAR is considered by the analyst to be the overriding feature of missingness for a specific
variable, the difficulty is generally viewed as a sample selection problem, in which case the missingness
model and the substantive model are inseparable (e.g., Heckman 1976, 1979). The complexities engendered
by solutions to missingness under nonignorability are beyond the scope of this article.
6 Groves et al. (2000) document an instance of nonignorability using a two-wave panel study; Carpenter
et al. (2007) believe MNAR missingness to be sufficiently common to advocate sensitivity analysis to
diagnose its possible impact when using multiple imputation.
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techniques are the techniques that were considered for use in the original empirical
analysis on which this case study draws and can thus be considered part of the “real-
ness” of the case study. While certainly not exhaustively representative of currently
used approaches to the treatment of missing data (notably absent is the maximum like-
lihood approach advocated by Allison 2001), these eight techniques broadly represent
existing practice.

3.2.1 Casewise deletion

The standard treatment of missing data in most statistical packages—and hence the
default treatment for most analysts—is the deletion of any case containing missing
data on one or more of the variables used in the analysis. Use of this approach assumes
that either (a) the missingness and imputation models have no covariates (missingness
is MCAR) or (b) that the substantive model is perfectly specified, and that the miss-
ingness mechanism is a special case of MAR or MNAR in which Y is not a covariate
in the missingness model (equivalently, Y is uncorrelated with missingness on X).7

If either assumption is satisfied, then unbiased coefficient estimates may be obtained
without imputation. Also, the coefficient standard errors will be valid for a sample of
reduced size.

Based on these properties, Allison (2001) argues for the superiority of casewise
deletion over other “conventional” approaches (by which he means all approaches
that are not maximum likelihood or multiple imputation approaches). He observes that
casewise deletion gives unbiased coefficient estimates when missingness is MCAR,
and under certain very specific situations of MAR and even MNAR as well. He further
observes that conventional imputation methods are not guaranteed to provide unbi-
ased coefficient estimates in the situations that casewise deletion is, but that they are
guaranteed to produce underestimated standard errors because they fail to adjust for
the uncertainty associated with the missing values that have been imputed (this is what
multiple imputation corrects for—see Sect. 3.2.7, below).

While the mathematics that he bases these claims on are correct, we take issue with
the implied frequency of occurrence of the conditions under which casewise deletion is
clearly superior to other conventional techniques. As the simulation analyses in Sect. 5
show, this case study happens to be one case in which casewise deletion is not superior.
Ambler and Omar (2007) provide another example where casewise deletion produces
unreliable predictions in simulations with real data. We have found no systematic
evidence in the literature on missing data techniques regarding the frequency with
which assumptions needed for case deletion have been checked and found valid, in
data analyzed in the social sciences.

7 The discussion of the OLS-specific Theorem 2.1 in Jones (1996) provides the basis for this assertion.
Allison (2001, p. 7, footnote 1) offers a proof that is valid for any regression procedure, including logistic
regression. Citing Vach (1994), Allison (2001, p. 7) also notes that if missingness is entirely determined by
the dependent variable of the substantive model (Y ), logistic regression with listwise deletion will result in
consistent covariate coefficient estimates. In this instance, missingness conforms to the case-control design,
for which the consistency result is well established (e.g., Farewell 1979). The applicability of the result in
a specific instance hinges on the validity of the assumed logistic functional form (Xie and Manski 1989).
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3.2.2 Weighted casewise deletion

Weighted casewise deletion extends the range of MAR models under which unbiased
coefficient estimation in the substantive model can be achieved. Specifically, if the sub-
stantive model is perfectly specified, and if missing data are MAR, and if missingness
is correlated with Y , then weighted casewise deletion can result in unbiased coefficient
estimation of the substantive model (Brick and Kalton 1996). Nonresponse weighting
increases the weight of complete cases to represent the entire sample irrespective of
missingness.

3.2.3 Mean imputation

In mean imputation each missing value for a given variable is replaced (imputed) by the
observed mean for that variable. Mean imputation is well known to produce biased
coefficient estimates in linear regression models even when missingness is MCAR
(Little 1992). Standard errors also tend to be too small, giving confidence intervals
that are too narrow or tests that reject the null hypothesis more frequently than the
nominal value would suggest.

3.2.4 Mean imputation with a dummy

Mean imputation with a dummy is a simple extension of mean imputation (Anderson
et al. 1983). Missingness is imputed by the observed mean value for the variable with
missing data, but now the covariate list of the (generalized) regression is extended to
include a dummy variable D = 1 if a case is missing on some X , and D = 0 other-
wise. If there are several variables with missing observations, then a dummy variable
corresponding to missingness on each of these variables is included in the (general-
ized) regression. This is a common approach to missingness in multivariate regression
analyses, because the missingness dummy can be used as a diagnostic tool for testing
the hypothesis that the missing data are missing completely at random: If the dummy
coefficient is significant, then the data are not MCAR.

Mean imputation with a dummy has properties similar to those for mean imputation
without a dummy. Even with the dummy, coefficient estimates can still be biased (Jones
1996).

3.2.5 Conditional mean imputation

In conditional mean imputation, missing values for some variable X are replaced by
means of X conditional on other variables in the data set. Typically these means are
the predicted values from a regression of X on other covariates in the substantive
model, although this restriction is not required. However, if Y is included, results will
be biased because of “over fitting” (Little 1992). We shall return to this point in the
discussion of the approximate Bayesian bootstrap and Bayesian multiple imputation,
both of which use Y in the imputation model.

For data on which conditional mean imputation has been used, linear regression
coefficients in the substantive model are biased but consistent (Little 1992). Estimated
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substantive models in which missing values have been filled in by conditional mean
imputation will tend to under-estimate the standard errors of the regression coefficients,
because the standard errors do not account for uncertainty in the imputed values.

3.2.6 Hotdeck imputation

Hotdeck imputation (Brick and Kalton 1996) uses a random draw from an imputation
class to fill in each missing datum. Within each imputation class a missing observation
on X is replaced by randomly sampling a single observed value of X (with replacement)
from that class. Imputation classes for hotdecking are analogous to the weighting
classes discussed for weighted casewise deletion.

The number of imputation classes is typically kept small for tractability. Too few
classes will result in coefficient bias in the substantive model. Too many classes will
increase coefficient variability. Little and Rubin (2002) suggest that three to five strata
will suffice.

When the missingness mechanism is MCAR or MAR and the imputation model is
correctly specified—the imputation classes are based on all of the observed data for
variables that correlate with X—hotdecking is thought to yield unbiased coefficient
estimates.8 However, because only a single draw is made for a given individual missing
on X, hotdecking under the stated condition is statistically inefficient.

Again, as with the other techniques discussed in previous sections, analyzing the
completed data (observed and imputed) with standard software will result in biased
estimates of standard errors because the estimates do not take into account that the
imputed data are a resample of the observed data rather than independently observed.9

3.2.7 Multiple imputation

The purpose of multiple imputations of each missing datum is to incorporate variability
due to the imputation process into assessments of the precision with which the coef-
ficients of the substantive model are estimated (Rubin 1987). The technique requires
that the missing observations be imputed M times (Rubin 1996) indicates that M = 3
or M = 5 is often sufficient; Royston (2004) suggests the use of a larger M .10 This
creates M imputed data sets, each with a potentially different value for each missing
datum on each case with missing data. Using these M data sets, the analyst estimates
the substantive model M times, once with each data set. The final estimate for the kth
of K regression coefficients in the substantive model is the average of that coefficient
over the M regressions (Rubin 1987). The estimated standard error of that coefficient,

8 Maximum likelihood estimation of a logistic regression model is nearly unbiased even when the data are
fully observed (McCullagh and Nelder 1989, pp. 455–456). The claim is that under the asserted condition
hotdecking does not contribute further bias.
9 Rao and Shao (1992) propose a variance correction for single stochastic imputation of a mean. We exper-
imented with a generalization of this technique to logistic regression. While its complexity and difficulty
of implementation place it beyond the scope of this article, we found that it increased variance estimates to
the expected order.
10 Rubin offers little in the way of justification for the sufficiency of M = 3 to 5; in this article, we have
used M = 10 in all cases.
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however, is not just the average of the standard errors from the M regressions. The
standard error estimate combines the within-replicate uncertainty (averaged across the
M regressions) with the between-replicate uncertainty (the difference across the M
regressions). More specifically, for m = 1, . . ., M , the standard error of a coefficient
is obtained using

SE(b) =
√∑ SE2(bm)

M
+

(
M + 1

M

) ∑ (bm − b̄)2

M − 1
.

Simply averaging over the M estimates of a coefficient in the substantive model and
plugging replications into the above formula for coefficient standard errors does not
necessarily yield estimates with desirable properties. Much depends on how the re-
searcher imputes M times. A sufficient condition for unbiasedness is that the imputa-
tions be “proper” (Rubin 1987, pp. 116–132). If they are, then the coefficients averaged
over the M imputations are unbiased and the above variance formula is accurate.

Full Bayesian imputation
Rubin (1987) develops a full Bayesian statistical model for making proper

imputations. There are various ways to carry out multiple imputation. Schafer (1997a)
provides a general approach to the computation of imputed values. To apply the mul-
tiple imputation technique to the LAMP data, we used Schafer’s (1997b) S-Plus/R
function. For the simulations to be discussed later, we wrote our own Stata code to
specialize Schafer’s algorithm to our problem.

Briefly, here is what Schafer’s algorithm for discrete data did with the LAMP
data. First, it fit a saturated (fully interacted) log linear model based on all of the
substantive model variables (including Y ). Using this model to specify the likelihood
and minimally conjugate priors, the function explored the posterior distribution of the
missing data using data augmentation (Tanner and Wong 1987; Schafer 1997a). This
procedure iterates between parameters and missing data imputations. Specifically,
in one cycle of the iterative procedure it produces random draws from the posterior
distribution of the parameters and then, conditional on these parameter draws, produces
draws for the missing values. Each cycle depends on the updated data that were the
result of the last step of the preceding cycle.

We captured the draws of the missing data at every 100th iteration up to the 1,000th
iteration. That is, we saved 10 imputations.

Approximate Bayesian bootstrap
Full Bayesian multiple imputation is computationally intensive. The approximate

Bayesian bootstrap (ABB) is much less so, and can also provide proper multiple im-
putations (Rubin 1987; Rubin and Schenker 1986). In ABB imputation, M bootstrap
samples of the nonmissing cases are created. A bootstrap sample is a random sam-
ple drawn from the original sample with replacement that has the same number of
observations as the full data set (Efron and Tibshirani 1993). In ABB, the imputation
model is estimated for each bootstrap sample, and missing values in the mth sample are
imputed on the basis of the model estimates for that sample. Clearly, the coefficients
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of the imputation model will vary slightly over the M bootstrap samples. Rubin and
Schenker (1986) show that under some conditions if the imputation model is “good”
and includes Y , then ABB imputations are proper. More generally, we expect that
ABB will produce better estimates of coefficient standard errors in the substantive
model than techniques that make no attempt to account for sampling variability in the
imputation model, but cannot be certain that ABB is always fully proper.

4 Application of missingness techniques to the LAMP data

This section presents the results of applying the eight missingness techniques we have
described to the LAMP data. Table 1 presents eight versions of a logistic regression
of mammography compliance using the LAMP data. The regressions are identically
specified, but each is based on a different missingness technique. No perusal of these
regressions can reveal or verify the properties of the different techniques. The data are
real; we do not know with certainty whether the missingness mechanism is MCAR,
MAR, or MNAR; we do not know the true imputation model; nor are we certain that
the substantive model is perfectly specified. The exercise is nonetheless of value for
two reasons. First, it enables us to ask whether the choice of missingness technique
matters with a genuine data set that has been used for policy research. Second, the
exercise reveals important features of the data that can be used to construct simulation
exercises that are firmly rooted in reality.

For the LAMP data, several conclusions are apparent:

1. How missing data are treated affects results: In regressions 1–2, for case and
weighted case deletion, the coefficients for doctor’s race/ethnicity and respon-
dent’s education and marital status are not significant. In the regressions based on
the other missingness techniques, these coefficients are significant.11

2. The coefficient for dichotomized household income, the sole variable with miss-
ingness, is not significant in any regression. However, this coefficient is similar
across regressions 5–8, which use conditioned imputation.

3. When household income is mean imputed (regressions 3–4), its coefficients are
smaller, which suggests attenuation.

4. All of the techniques that impute missing data (regressions 3–8) produce similar
coefficients and standard errors except for household income and the intercept.

The results presented in Table 1 will not support the conclusion that any missingness
technique has performed better than another, since we do not know the “true” pa-
rameters of the population from which the LAMP data were drawn. Allison (2001,
p. 7) suggests that case deletion may outperform multiple imputation techniques when
missingness is MNAR. In an attempt to determine if that is so in the present case, and
also to consider related questions, we turn next to simulations based on the LAMP
data.

11 A critic noted that if confidence intervals are drawn for all coefficients in Table 1, virtually all point
estimates are contained by the corresponding confidence intervals for each missing data technique. The key
point, however, is that these results represent different treatments of a single draw from the population,
not the hypothetical re-sampling to which confidence intervals refer. That the point estimates differ at all
suggests the need for further analysis; thus, our simulations.
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5 Simulations

This article reports simulations based on the LAMP data; in that sense the simulations
are realistic. We generated simulated samples in order to study the performance of
missingness techniques in samples where the enthusiasm with which the respondent’s
doctor supported mammography screening was the variable subject to missingness. We
chose to simulate missing doctor enthusiasm rather than missing income because the
relationship between the outcome (compliance) and physician enthusiasm for mam-
mography is much stronger than the relationship between compliance and income.
We were concerned that simulations based on the weaker relationship might produce
less conclusive or even spurious results. We do, however, use the observed frequency
of missing incomes as a realistic baseline from which to assign missing enthusiasms.

To generate a “population” that is similar to the LAMP data, we began with the 1,119
observations in the LAMP data set that are complete except for household income. For
the 262 cases missing on household income, we imputed using a procedure analogous
to the procedure used in ABB (Sect. 3.2.7.2). The originally nonmissing cases, together
with the cases for which household income was imputed, constitute the population for
the simulation exercise.

We generated 2,500 fully observed bootstrap samples from the population defined
above. We treat each bootstrap sample as though it is a simple random sample from the
population. For each of the 2,500 fully observed bootstrap samples, we created five
samples with 262 cases of missingness on physician enthusiasm for a random sub-
sample of observations. The five samples correspond to different missingness mech-
anisms: missing completely at random (MCAR); missing at random (MAR); missing
not at random (MNAR) with probability of nonresponse weakly related to physician
enthusiasm; MNAR with probability of nonresponse moderately related to physician
enthusiasm; and MNAR with the probability of nonresponse strongly related to physi-
cian enthusiasm. Appendix I (available as a web appendix at http://www.pwp.ccpr.
ucla.edu) supplies further details on the realizations of the missingness mechanisms
in the data sets. In essence we used a balanced design to which, for a given sample and
missingness mechanism, we applied eight missingness techniques. Based on findings
from our first simulation run, we went back and added a ninth missingness technique,
discussed below. For each of the missingness technique by missingness mechanism
combinations we estimated the substantive model for mammography compliance us-
ing logistic regression.

When missingness is MAR, the imputation regression model (or imputation classes)
in the simulations always includes the variable used to create missing data (whether
a respondent is Hispanic), as well as other variables. In this sense the imputation
models are comparable, although not identical, across missingness techniques. The
same point holds for the nonignorability cases, when doctor enthusiasm as well as
whether a respondent is Hispanic is used to create missing data.

Figure 1 summarizes results based on the 112,500 (5 × 9 × 2,500) regressions in
terms of absolute bias, where bias is defined relative to the complete data sample for
each iteration (what you would have found had there been no missingness in your
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sample), and not the “population” without sampling.12 The first column summarizes
the performance of each missingness technique for each missingness mechanism. The
entries in column one are defined as averaged percent bias over all of the coefficients
in the regression. Because bias can be positive for one coefficient and negative for
another, we use the absolute value of the percent bias for each coefficient and present
the mean over all coefficients.

Specifically, let bpt denote the estimated coefficient for the pth of P covariates
(P = 10) in the logistic regression fit to the t th of T bootstrap samples (T = 2, 500)

of the fully observed data. For the j th missing data mechanism and the kth missing
data estimation technique, let bpt jk denote the estimate of the pth coefficient of the
substantive model fit to the t j th subsample with missingness (there are four such
subsamples for the t th bootstrap sample) using the kth estimation technique. The
percent bias for the coefficient of the pth covariate is then

B Bpjk = 100

∑
t (bpt jk−bpt )∑

t bpt
,

where B Bpjk is the coefficient bias for a specific covariate normed as a percentage.
The B Bpjk are calculated for each covariate and their absolute values are averaged
over all P . Thus, the entries in column one are

B B jk = (1/P)
∑

p

∣∣B Bpjk
∣∣. (1)

Column two of Fig. 1 displays the percent bias in coefficient standard error esti-
mates. Because the application of most missingness techniques leads to standard error
estimates that are too small, we have defined percent bias in the standard errors so that
more extreme under-estimation will result in a larger positive percent bias.

For the pth covariate, j th missingness mechanism and kth estimation technique,
let spjk denote the standard deviation of the bpt jk . That is,

spjk =
√∑

t (bpt jk−bp. jk)2

T − 1
.

Let sept jk denote the estimated standard error for the pth coefficient from the logistic
regression fit to the t th bootstrap sample subjected to the j th missingness mechanism,
using the kth missingness technique. In other words, sept jk is the usual standard error
based on the information matrix of the regression for a given data set. The percent
bias in standard error estimates for the pth covariate is

BSEpjk = 100
spjk − sep. jk

spjk
,

12 Because we cannot be certain that the substantive model is perfectly specified, both bias due to specifi-
cation error and bias due to missingness technique may be present in these results.

123



A cautionary case study of approaches to the treatment of missing data 365

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Casewise deletion

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Weighted casewise deletion

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Mean imputation

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Mean imputation w/dummy

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Conditional mean imputation

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Hotdeck

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayesian bootstrap

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayes

0 10 20 30 40 50

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayes restricted

Coefficient Estimates 

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Casewise deletion

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Weighted casewise deletion

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Mean imputation

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Mean imputation w/dummy

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Conditional mean imputation

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Hotdeck

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayesian bootstrap

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayes

0 1 2 3 4 5 6 7

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayes restricted

Estimated Standard Errors

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Casewise deletion

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Weighted casewise deletion

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Mean imputation

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Mean imputation w/dummy

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Conditional mean imputation

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Hotdeck

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayesian bootstrap

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayes

0 20 40 60 80

MNAR Hi
MNAR Md
MNAR Lo

MAR
MCAR

Bayes restricted

Variance Inflation 
M

ec
ha

ni
sm

 o
f 

M
is

si
ng

ne
ss

Fig. 1 Observed Bias of Estimates from Simulation of Missing MD Enthusiasm (N = 2, 500)

where sep. jk is the average of the estimated standard errors over the T replicates. The
entries in column two of Fig. 1 are then defined to be

BSE. jk = (1/P)
∑

p

∣∣BSEpjk
∣∣. (2)

Column three in Fig. 1 displays inflation in the variance of the coefficient estimates
due to missingness, as a function of the missingness mechanism and the missingness
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technique. Let sp denote the standard deviation of the bpt , the estimate of the pth
coefficient in the t th bootstrap sample of the complete data, that is,

sp =
√∑

t (bpt − b̄p.)2

P − 1
.

The percent inflation of variance for the pth coefficient and the jkth combination of
missing data mechanism and missing data technique is defined as

VIpjk = 100
s2

pjk − s2
p

s2
p

.

Large values of V Ipjk indicate that missing data results in substantially more variable
parameter estimates, conditional on a given combination of mechanism and technique.
The entries in column three of Fig. 1 contain the average of the absolute values of the
V Ipjk over all the coefficients in the substantive model for a particular jk combination:

VI . jk = (1/P)
∑

p

∣∣VIpjk
∣∣. (3)

In these simulations, casewise deletion yields unbiased coefficients only in the MCAR
case. For other missingness mechanisms, casewise deletion is a poor performer using
the criterion of coefficient bias. For all of the missingness mechanisms, casewise dele-
tion is inefficient. Weighted casewise deletion, however, shows virtually no coefficient
bias in the MCAR and MAR cases, but is also inefficient.

With respect to coefficient bias, the major divide for these simulations is between the
case deletion and imputation techniques. For all of the imputation techniques, coeffi-
cient bias is less than for the case deletion techniques as nonignorability increases. All
of the imputation techniques have lower variance inflation, because the case deletion
techniques are based on fewer observations.

Among the imputation techniques, mean imputation with a dummy performs well
under most conditions. It should not (Jones 1996). That it does is more a reflection
of the particular details of our simulation setup than it is an indication of the inherent
advantages of mean imputation with a dummy. Specifically, the result is a consequence
of treating X as a binary coded covariate in conjunction with the way we induced
MNAR in the missingness on X . As described in Appendix I, we increased the degree of
nonignorability across the three MNAR conditions (low, medium, high) by increasing
the odds ratio between X and D (the missingness dummy). Doing so increases the
concentration of missingness at X = 0. Since X is binary, the impact of the way in
which we induce increased nonignorability is to impute with increasing accuracy
the typical missing value of X as nonignorability increases.13 Presumably the result
observed here for mean imputation with a dummy will occur in other situations in

13 This conclusion hinges on the concentration of missingness at a single value of X . The particular imputed
value of “mean imputation with a dummy” is irrelevant. Any value will do; inclusion of the missingness
dummy in the substantive regression will compensate for error.
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which missingness is concentrated at a single value of X , regardless of whether X is
discrete or numerically scaled.

Among the imputation techniques, conditional mean imputation has coefficient bias
on par with that of hotdecking and the approximate Bayesian bootstrap, and slightly
better than that of full Bayesian multiple imputation. Its standard error bias is also
modest and stable across missingness mechanisms, and its variance inflation is also
quite modest. Hotdecking also performs well, and although its standard error bias is
the largest found for the imputation techniques, the levels of bias are modest.

Of the two multiple imputation techniques, the approximate Bayesian bootstrap is
essentially on par with full Bayesian imputation, with the ABB coefficients showing
less coefficient bias. Both perform well in absolute terms, but with respect to coefficient
bias full Bayes does not exceed the performance of conditional mean imputation or
hotdecking.

6 Discussion of doctor enthusiasm simulations

6.1 Casewise and weighted casewise deletion

Casewise deletion performs as expected for the MCAR case: There is little or no
coefficient bias, the coefficient standard errors are large, and variances are inflated.
Under the MAR condition, however, casewise deletion performs poorly—worse than
any other technique considered. Allison (2001) suggests that under widely occurring
MAR conditions casewise deletion will perform well. Why isn’t that performance
realized here?

If we were dealing with a linear model problem, it would follow that either the
MAR mechanism required an association between missingness on X and values of
Y , or that the substantive model was not perfectly specified (Jones 1996). Our setup
involves logistic regression. To provide at least partial evidence in support of intuition,
we ran simulations to determine if the same conclusions would hold for the logistic
regression case. In these simulations, we found virtually no difference in conclusion
between results for ordinary least squares and those for logistic regression. From this
we infer, since we controlled the MAR mechanism and it did not depend on Y , that
the substantive model was imperfectly specified.

It will not have escaped notice that we could not have reached this conclusion with
the original data; the simulations were essential. The substantive model was plausible
and arrived at through reasoned consideration and data analysis. It passed a test of
peer review. This substantive model is hardly exceptional, and seems as well specified
as many.

Our sense of the “fragility” of casewise deletion is reinforced by further simulations
we carried out in response to the casewise deletion results summarized in Fig. 1.
Specifically, we ran simulations based on substantive models that included a variety of
interactions involving doctor enthusiasm by length of relationship with the respondent;
doctor enthusiasm by doctor ethnicity; and a number of interactions with respondent
ethnicity. Even with these interactions, the coefficient bias for case deletion in the MAR
case was virtually identical with that seen originally. Note also that in the original data,
using case deletion, we find no evidence for any of these interactions.
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Weighted casewise deletion performs well in the MCAR and MAR cases, with
respect to coefficient bias, as it was expected to. Recall that the MAR mechanism is
not directly conditioned on Y . Thus, the difference in performance of casewise and
weighted casewise deletion can not be due to the broader range of conditions under
which weighted case deletion will yield unbiased estimates in the substantive model.
Rather, the results summarized in Fig. 1 lead to the inference that the weights correctly
capture the components of the missingness model.

With increasing MNAR, the performance of weighted casewise deletion deterio-
rates. This should not be surprising. The weights are less able to capture the distribution
of the observations without missingness because the weights increasingly diverge from
the missingness model as X plays an increasingly important role in determining miss-
ingness, or in other words, as the factors determining missingness are increasingly
located outside the data.

6.2 Imputation techniques

The performance of most imputation techniques when the missingness mechanism
is MCAR, MAR, or moderately MNAR is unsurprising. Attempts to impute miss-
ing values based on an assumed missingness mechanism that is incorrect in a given
instance should result in coefficient bias. Similarly, when an imputation model does
not perfectly capture the missingness mechanism but is close, there should be some
residual coefficient bias.

We were unprepared for the performance of imputation methods when missingness
is MNAR, let alone when it is highly MNAR. Theoretically, none of these techniques
is appropriate when missingness is MNAR. To be sure, with the exception of mean
imputation with a dummy (explained above), coefficient bias increases with increas-
ing MNAR. Yet, for all of the imputation techniques considered here that attempt to
model missingness (conditional mean imputation, hot decking, Bayesian bootstrap,
and full Bayesian multiple imputation), coefficient bias increases only a small amount
as missingness becomes increasingly MNAR, relative to bias under the MAR condi-
tion. Also unexpected is the performance of full Bayesian multiple imputation. With
respect to coefficient and standard error bias, this technique performed no better than
the other imputation techniques. We expected the simulations of full Bayesian multiple
imputation to demonstrate virtually unbiased coefficients and standard errors under
the MCAR and MAR conditions. What went wrong?

It turns out that the Bayesian multiple imputation model we implemented based
on Schafer’s (1997a) algorithm is vulnerable to a problem known as “semi-complete
separability.” To function, the imputation scheme iteratively forms tables of frequen-
cies of X |{Y × Z}, where there are, for our setup, four possible outcomes for X—high
income, low income, missing, or empty. The empty outcomes do not pose a problem;
they simply correspond to {Y × Z} combinations for which there are no data. The
problem arises for {Y × Z} combinations for which there are data on X , and for which
the data consist of at least one respondent with missingness as well as at least one
respondent with no missingness, but for whom all instances are the same on X (either
all high income or all low income in this instance) for a given {Y × Z} combination.
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In the algorithm we used, it is necessary to iteratively compute probabilities for
missing elements based on the observed frequencies of X in a given cell. However, in
a semi-completely separated cell, the observed cell proportion is zero for one of the
two possible values for any missing elements. The algorithm chooses a nonzero value
for that estimated probability based on the cell size and on the minimal conjugate prior
specified in the model. In our simulations, that specification results in consistent over-
estimation of the probability of the unobserved available value appearing in a missing
element. If this happened once or twice the consequences would be minimal. However,
the low density of cases over the entire set of covariate combinations results in so many
semi-completely separated cells that the bias becomes noticeable and considerable.

This was not an obvious problem to us. We expected the simulations to demonstrate
the general superiority of Bayesian multiple imputation. Before considering alternative
explanations of the bias, we scrutinized our code, certain that the problem must be
due to our error. Once we realized semi-complete separability might be a problem,
we counted cells in the matrix that were vulnerable to separability as well as cells that
actually had a separability event during an iteration of the full Bayesian process. In
the LAMP “population” data for the simulation of missing physician enthusiasm, 103
of the 512 cells required for computation of the fully interacted log-linear regression
used in the full Bayes model are “possibly” separable (that is, they contain only one
of the two binary possibilities for that outcome) and will become separability events if
they are “dealt” missing data. Under MCAR, an average of 35 of those cells become
separability events in a single iteration.

Had this not been a simulation study in which we had access to the “true” coeffi-
cients, we would never have suspected a problem. Further, the solution to the problem
is not obvious. There would seem to be two possible strategies. First, one could spec-
ify a different set of priors that would not induce bias in semi-completely separated
cells. While attractive, this is hard to do in practice, and would require unimaginable
personal knowledge of the data and the mechanism of missingness, and would cer-
tainly preclude use of a generic “black box” multiple imputation algorithm such as
the one we used. The second strategy is to eliminate the occurrence of semi-complete
separability. This could be accomplished by reducing the complexity of the model
(Schafer 1997a, p. 341). For example, had we been imputing from a fully interacted
log-linear model based on X |{Y × Z∗}, where Z∗ is a judiciously chosen subset of
Z , we probably could have avoided semi-complete separability, but to do so we might
have had to use an imputation procedure that failed to include all of the covariates in
the correct (i.e., “ true”) imputation regression model. We will refer to this strategy
as “restricted” Bayes imputation.

To put the problem another way: We had what was thought to be the “correct”
imputation model, but it “over-taxed” the data. To stay within the limits of the data,
we would have to reduce the imputation model, which might mean that we no longer
had the correct model. We would not know whether we did. Further, we would have
no obvious means to discern how far from “correct” our reduced model was.

It is true that if the researcher has a single, real data set, it is possible to observe
whether the imputation process is encountering semi-complete separability. It did not
occur to us to check for this possibility when using our own code until we studied
the simulation results, and Schafer’s code does not provide the necessary window.
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Researchers intent on multiple imputation are advised to be aware of the need to
check for semi-complete separability. But even if checking is done, how much semi-
complete separability is too much? Further, if one decides to simplify the imputation
model to eliminate semi-complete separability, then it is necessary to enter the realm
of model uncertainty. Here the question is, how does one know when the imputation
regression specification is “good enough?” As a step toward answering this question,
we applied a restricted Bayes imputation technique to the simulations of missing
physician enthusiasm (see the final row of Fig. 1). To obtain a model with no chance
of separability we used a fully interacted log linear specification that contained only
four variables, instead of the nine that are used in the full model. The four variables that
avoided separability in their 32 cell interaction space were: compliance (Y ), married
or living with a partner, patient ethnicity, and physician ethnicity.

Figure 1 shows that, with respect to coefficient bias, the restricted Bayes spec-
ification performs better than full Bayes, and about the same as conditional mean
imputation, hotdecking, and the approximate Bayesian bootstrap. Resolution of the
semi-complete separability problem in the chosen way seems to improve the perfor-
mance of Bayesian multiple imputation.

7 Conclusion

Based on our simulation analysis we find that casewise deletion is particularly vul-
nerable to imperfections in the substantive model. What might those imperfections
be? The additive logistic regression for mammography screening compliance used in
the work reported in this article was arrived at by Fox et al. using a data set that was
designed for the analysis reported by Fox et al. (1998). We re-checked the data for
a number of interactions using a substantively based search procedure rather than an
automated interaction detector, and found no evidence of interaction. In this respect
our data analysis was at least conventional and might possibly be viewed by some as
careful. We could have missed some substantively plausible interactions; if so, then
there will be others who will do likewise in the analysis of their own data. If in fact
there are no relevant interactions between the covariates we considered for the study
of mammography screening compliance, this would seem to leave three possibilities:
covariate measurement error, omitted covariates, and inappropriate application of the
logistic distribution. We will not speculate about these possibilities except to note that
(i) the reduction of the problem to one that is expressed entirely in terms of discrete
variables, often simplified to dichotomies, is defensible; (ii) although there may be
omitted covariates, the data were collected specifically to study the problem of mam-
mography screening compliance, and the regression includes a number of appropriate
covariates; (iii) the application of logistic regression to a substantive problem for which
the observed variables are fully discrete would generally be considered appropriate.
For these reasons we conclude that even in cases where missingness is known to be
MAR and not to depend on Y , aspects of the estimated substantive model that might
not be viewed as imperfections by substantive researchers apparently can result in
considerable coefficient bias when casewise deletion is used.

If the analyst is able to arrive at a defensible imputation model based on other vari-
ables and using conditional mean imputation; hot decking; the approximate Bayesian
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bootstrap; or full Bayesian multiple imputation, it is possible to obtain results with mild
coefficient bias—even, surprisingly, when missingness is somewhat MNAR. Unfor-
tunately, there is a caveat, which is that there is a need for a reasonably well-specified
model of missingness, and a similarly well-specified imputation model (Landerman
et al. 1997). The imputation of missing values is a substantive data analysis problem
deserving no less attention than the substantive problems that attract analysts to data
in the first place. Misspecification of the imputation model can result in a degree of
coefficient bias that is as bad as, or worse than, that produced by case deletion.

The problem of possible imputation model misspecification is not easily solved.
Full Bayesian multiple imputation, a technique that purports to take care of impu-
tation modeling for the analyst by making use of all available covariates and their
relationships, can exceed the limits of the data by creating a situation with exten-
sive semi-complete separability. If the imputation model is constrained so that it does
not over-tax the data, there is then a risk that it is incorrect. Thus, if the separability
problem occurs and the analyst is aware of it, there nonetheless remains uncertainty
about the impact of the specification of the imputation model on coefficient bias in the
substantive model. This is true for any missingness technique, but in the simulations
we examined, it is especially so for Bayesian multiple imputation.

In the final analysis, we conclude that: (1) Automated selection of the imputation
model in the use of full Bayesian multiple imputation can lead to greater bias in coef-
ficients of substantive models than that resulting from other missing data techniques
we tried. (2) Under conditions that occur in actual data, casewise deletion can perform
less well than we were led to expect by the existing literature. (3) Relatively unso-
phisticated imputations, such as mean imputation and conditional mean imputation,
performed better than the technical literature led us to expect. (4) Imputation models
are substantive models, and require the same caution with respect to specificity and
calculability.
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